Properties

Label 1920.2.h.e
Level 19201920
Weight 22
Character orbit 1920.h
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1151,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+β1)q3β2q52β2q7+(β3+2β2β11)q9+(2β32β1)q11+(β3+β1)q13+(β3+1)q15++(2β36β1+8)q99+O(q100) q + (\beta_{2} + \beta_1) q^{3} - \beta_{2} q^{5} - 2 \beta_{2} q^{7} + (\beta_{3} + 2 \beta_{2} - \beta_1 - 1) q^{9} + (2 \beta_{3} - 2 \beta_1) q^{11} + ( - \beta_{3} + \beta_1) q^{13} + ( - \beta_{3} + 1) q^{15}+ \cdots + ( - 2 \beta_{3} - 6 \beta_1 + 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q3+8q114q13+2q15+4q21+16q234q2514q2724q338q35+4q37+12q39+8q45+12q49+4q5116q578q59+32q61++40q99+O(q100) 4 q - 2 q^{3} + 8 q^{11} - 4 q^{13} + 2 q^{15} + 4 q^{21} + 16 q^{23} - 4 q^{25} - 14 q^{27} - 24 q^{33} - 8 q^{35} + 4 q^{37} + 12 q^{39} + 8 q^{45} + 12 q^{49} + 4 q^{51} - 16 q^{57} - 8 q^{59} + 32 q^{61}+ \cdots + 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν2+ν+1 \nu^{2} + \nu + 1 Copy content Toggle raw display
β2\beta_{2}== ν3+2ν \nu^{3} + 2\nu Copy content Toggle raw display
β3\beta_{3}== ν2+ν1 -\nu^{2} + \nu - 1 Copy content Toggle raw display
ν\nu== (β3+β1)/2 ( \beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+β12)/2 ( -\beta_{3} + \beta _1 - 2 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== β3+β2β1 -\beta_{3} + \beta_{2} - \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 1-1 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1151.1
1.61803i
1.61803i
0.618034i
0.618034i
0 −1.61803 0.618034i 0 1.00000i 0 2.00000i 0 2.23607 + 2.00000i 0
1151.2 0 −1.61803 + 0.618034i 0 1.00000i 0 2.00000i 0 2.23607 2.00000i 0
1151.3 0 0.618034 1.61803i 0 1.00000i 0 2.00000i 0 −2.23607 2.00000i 0
1151.4 0 0.618034 + 1.61803i 0 1.00000i 0 2.00000i 0 −2.23607 + 2.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.h.e 4
3.b odd 2 1 1920.2.h.k yes 4
4.b odd 2 1 1920.2.h.k yes 4
8.b even 2 1 1920.2.h.l yes 4
8.d odd 2 1 1920.2.h.f yes 4
12.b even 2 1 inner 1920.2.h.e 4
24.f even 2 1 1920.2.h.l yes 4
24.h odd 2 1 1920.2.h.f yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.h.e 4 1.a even 1 1 trivial
1920.2.h.e 4 12.b even 2 1 inner
1920.2.h.f yes 4 8.d odd 2 1
1920.2.h.f yes 4 24.h odd 2 1
1920.2.h.k yes 4 3.b odd 2 1
1920.2.h.k yes 4 4.b odd 2 1
1920.2.h.l yes 4 8.b even 2 1
1920.2.h.l yes 4 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1920,[χ])S_{2}^{\mathrm{new}}(1920, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T1124T1116 T_{11}^{2} - 4T_{11} - 16 Copy content Toggle raw display
T132+2T134 T_{13}^{2} + 2T_{13} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+2T3++9 T^{4} + 2 T^{3} + \cdots + 9 Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1111 (T24T16)2 (T^{2} - 4 T - 16)^{2} Copy content Toggle raw display
1313 (T2+2T4)2 (T^{2} + 2 T - 4)^{2} Copy content Toggle raw display
1717 T4+28T2+16 T^{4} + 28T^{2} + 16 Copy content Toggle raw display
1919 T4+28T2+16 T^{4} + 28T^{2} + 16 Copy content Toggle raw display
2323 (T28T4)2 (T^{2} - 8 T - 4)^{2} Copy content Toggle raw display
2929 T4+72T2+16 T^{4} + 72T^{2} + 16 Copy content Toggle raw display
3131 T4+108T2+1936 T^{4} + 108T^{2} + 1936 Copy content Toggle raw display
3737 (T22T44)2 (T^{2} - 2 T - 44)^{2} Copy content Toggle raw display
4141 T4+112T2+256 T^{4} + 112T^{2} + 256 Copy content Toggle raw display
4343 T4+108T2+1296 T^{4} + 108T^{2} + 1296 Copy content Toggle raw display
4747 (T220)2 (T^{2} - 20)^{2} Copy content Toggle raw display
5353 (T2+20)2 (T^{2} + 20)^{2} Copy content Toggle raw display
5959 (T2+4T16)2 (T^{2} + 4 T - 16)^{2} Copy content Toggle raw display
6161 (T216T+44)2 (T^{2} - 16 T + 44)^{2} Copy content Toggle raw display
6767 T4+172T2+5776 T^{4} + 172T^{2} + 5776 Copy content Toggle raw display
7171 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
7373 (T28T4)2 (T^{2} - 8 T - 4)^{2} Copy content Toggle raw display
7979 T4+268T2+13456 T^{4} + 268 T^{2} + 13456 Copy content Toggle raw display
8383 (T210T20)2 (T^{2} - 10 T - 20)^{2} Copy content Toggle raw display
8989 T4+112T2+256 T^{4} + 112T^{2} + 256 Copy content Toggle raw display
9797 (T2+16T+44)2 (T^{2} + 16 T + 44)^{2} Copy content Toggle raw display
show more
show less