Properties

Label 1920.2.h.f.1151.3
Level $1920$
Weight $2$
Character 1920.1151
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1151,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.3
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1151
Dual form 1920.2.h.f.1151.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.618034 - 1.61803i) q^{3} -1.00000i q^{5} -2.00000i q^{7} +(-2.23607 - 2.00000i) q^{9} -2.47214 q^{11} -1.23607 q^{13} +(-1.61803 - 0.618034i) q^{15} -0.763932i q^{17} -5.23607i q^{19} +(-3.23607 - 1.23607i) q^{21} +0.472136 q^{23} -1.00000 q^{25} +(-4.61803 + 2.38197i) q^{27} +8.47214i q^{29} +4.76393i q^{31} +(-1.52786 + 4.00000i) q^{33} -2.00000 q^{35} -7.70820 q^{37} +(-0.763932 + 2.00000i) q^{39} -1.52786i q^{41} -9.70820i q^{43} +(-2.00000 + 2.23607i) q^{45} +4.47214 q^{47} +3.00000 q^{49} +(-1.23607 - 0.472136i) q^{51} +4.47214i q^{53} +2.47214i q^{55} +(-8.47214 - 3.23607i) q^{57} -6.47214 q^{59} -12.4721 q^{61} +(-4.00000 + 4.47214i) q^{63} +1.23607i q^{65} -11.2361i q^{67} +(0.291796 - 0.763932i) q^{69} +4.00000 q^{71} -0.472136 q^{73} +(-0.618034 + 1.61803i) q^{75} +4.94427i q^{77} +8.18034i q^{79} +(1.00000 + 8.94427i) q^{81} +11.7082 q^{83} -0.763932 q^{85} +(13.7082 + 5.23607i) q^{87} +1.52786i q^{89} +2.47214i q^{91} +(7.70820 + 2.94427i) q^{93} -5.23607 q^{95} -12.4721 q^{97} +(5.52786 + 4.94427i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 8 q^{11} + 4 q^{13} - 2 q^{15} - 4 q^{21} - 16 q^{23} - 4 q^{25} - 14 q^{27} - 24 q^{33} - 8 q^{35} - 4 q^{37} - 12 q^{39} - 8 q^{45} + 12 q^{49} + 4 q^{51} - 16 q^{57} - 8 q^{59} - 32 q^{61}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034 1.61803i 0.356822 0.934172i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) −2.23607 2.00000i −0.745356 0.666667i
\(10\) 0 0
\(11\) −2.47214 −0.745377 −0.372689 0.927957i \(-0.621564\pi\)
−0.372689 + 0.927957i \(0.621564\pi\)
\(12\) 0 0
\(13\) −1.23607 −0.342824 −0.171412 0.985199i \(-0.554833\pi\)
−0.171412 + 0.985199i \(0.554833\pi\)
\(14\) 0 0
\(15\) −1.61803 0.618034i −0.417775 0.159576i
\(16\) 0 0
\(17\) 0.763932i 0.185281i −0.995700 0.0926404i \(-0.970469\pi\)
0.995700 0.0926404i \(-0.0295307\pi\)
\(18\) 0 0
\(19\) 5.23607i 1.20124i −0.799536 0.600618i \(-0.794921\pi\)
0.799536 0.600618i \(-0.205079\pi\)
\(20\) 0 0
\(21\) −3.23607 1.23607i −0.706168 0.269732i
\(22\) 0 0
\(23\) 0.472136 0.0984472 0.0492236 0.998788i \(-0.484325\pi\)
0.0492236 + 0.998788i \(0.484325\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −4.61803 + 2.38197i −0.888741 + 0.458410i
\(28\) 0 0
\(29\) 8.47214i 1.57324i 0.617440 + 0.786618i \(0.288170\pi\)
−0.617440 + 0.786618i \(0.711830\pi\)
\(30\) 0 0
\(31\) 4.76393i 0.855627i 0.903867 + 0.427814i \(0.140716\pi\)
−0.903867 + 0.427814i \(0.859284\pi\)
\(32\) 0 0
\(33\) −1.52786 + 4.00000i −0.265967 + 0.696311i
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) −7.70820 −1.26722 −0.633610 0.773652i \(-0.718428\pi\)
−0.633610 + 0.773652i \(0.718428\pi\)
\(38\) 0 0
\(39\) −0.763932 + 2.00000i −0.122327 + 0.320256i
\(40\) 0 0
\(41\) 1.52786i 0.238612i −0.992858 0.119306i \(-0.961933\pi\)
0.992858 0.119306i \(-0.0380670\pi\)
\(42\) 0 0
\(43\) 9.70820i 1.48049i −0.672339 0.740244i \(-0.734710\pi\)
0.672339 0.740244i \(-0.265290\pi\)
\(44\) 0 0
\(45\) −2.00000 + 2.23607i −0.298142 + 0.333333i
\(46\) 0 0
\(47\) 4.47214 0.652328 0.326164 0.945313i \(-0.394244\pi\)
0.326164 + 0.945313i \(0.394244\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −1.23607 0.472136i −0.173084 0.0661123i
\(52\) 0 0
\(53\) 4.47214i 0.614295i 0.951662 + 0.307148i \(0.0993745\pi\)
−0.951662 + 0.307148i \(0.900625\pi\)
\(54\) 0 0
\(55\) 2.47214i 0.333343i
\(56\) 0 0
\(57\) −8.47214 3.23607i −1.12216 0.428628i
\(58\) 0 0
\(59\) −6.47214 −0.842600 −0.421300 0.906921i \(-0.638426\pi\)
−0.421300 + 0.906921i \(0.638426\pi\)
\(60\) 0 0
\(61\) −12.4721 −1.59689 −0.798447 0.602066i \(-0.794345\pi\)
−0.798447 + 0.602066i \(0.794345\pi\)
\(62\) 0 0
\(63\) −4.00000 + 4.47214i −0.503953 + 0.563436i
\(64\) 0 0
\(65\) 1.23607i 0.153315i
\(66\) 0 0
\(67\) 11.2361i 1.37270i −0.727269 0.686352i \(-0.759211\pi\)
0.727269 0.686352i \(-0.240789\pi\)
\(68\) 0 0
\(69\) 0.291796 0.763932i 0.0351281 0.0919666i
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) −0.472136 −0.0552593 −0.0276297 0.999618i \(-0.508796\pi\)
−0.0276297 + 0.999618i \(0.508796\pi\)
\(74\) 0 0
\(75\) −0.618034 + 1.61803i −0.0713644 + 0.186834i
\(76\) 0 0
\(77\) 4.94427i 0.563452i
\(78\) 0 0
\(79\) 8.18034i 0.920360i 0.887826 + 0.460180i \(0.152215\pi\)
−0.887826 + 0.460180i \(0.847785\pi\)
\(80\) 0 0
\(81\) 1.00000 + 8.94427i 0.111111 + 0.993808i
\(82\) 0 0
\(83\) 11.7082 1.28514 0.642571 0.766226i \(-0.277868\pi\)
0.642571 + 0.766226i \(0.277868\pi\)
\(84\) 0 0
\(85\) −0.763932 −0.0828601
\(86\) 0 0
\(87\) 13.7082 + 5.23607i 1.46967 + 0.561365i
\(88\) 0 0
\(89\) 1.52786i 0.161953i 0.996716 + 0.0809766i \(0.0258039\pi\)
−0.996716 + 0.0809766i \(0.974196\pi\)
\(90\) 0 0
\(91\) 2.47214i 0.259150i
\(92\) 0 0
\(93\) 7.70820 + 2.94427i 0.799304 + 0.305307i
\(94\) 0 0
\(95\) −5.23607 −0.537209
\(96\) 0 0
\(97\) −12.4721 −1.26635 −0.633177 0.774007i \(-0.718249\pi\)
−0.633177 + 0.774007i \(0.718249\pi\)
\(98\) 0 0
\(99\) 5.52786 + 4.94427i 0.555571 + 0.496918i
\(100\) 0 0
\(101\) 17.4164i 1.73300i −0.499179 0.866499i \(-0.666365\pi\)
0.499179 0.866499i \(-0.333635\pi\)
\(102\) 0 0
\(103\) 0.472136i 0.0465209i 0.999729 + 0.0232605i \(0.00740471\pi\)
−0.999729 + 0.0232605i \(0.992595\pi\)
\(104\) 0 0
\(105\) −1.23607 + 3.23607i −0.120628 + 0.315808i
\(106\) 0 0
\(107\) 13.2361 1.27958 0.639789 0.768550i \(-0.279022\pi\)
0.639789 + 0.768550i \(0.279022\pi\)
\(108\) 0 0
\(109\) −1.05573 −0.101120 −0.0505602 0.998721i \(-0.516101\pi\)
−0.0505602 + 0.998721i \(0.516101\pi\)
\(110\) 0 0
\(111\) −4.76393 + 12.4721i −0.452172 + 1.18380i
\(112\) 0 0
\(113\) 21.1246i 1.98724i 0.112796 + 0.993618i \(0.464019\pi\)
−0.112796 + 0.993618i \(0.535981\pi\)
\(114\) 0 0
\(115\) 0.472136i 0.0440269i
\(116\) 0 0
\(117\) 2.76393 + 2.47214i 0.255526 + 0.228549i
\(118\) 0 0
\(119\) −1.52786 −0.140059
\(120\) 0 0
\(121\) −4.88854 −0.444413
\(122\) 0 0
\(123\) −2.47214 0.944272i −0.222905 0.0851421i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 10.0000i 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(128\) 0 0
\(129\) −15.7082 6.00000i −1.38303 0.528271i
\(130\) 0 0
\(131\) −21.8885 −1.91241 −0.956205 0.292696i \(-0.905448\pi\)
−0.956205 + 0.292696i \(0.905448\pi\)
\(132\) 0 0
\(133\) −10.4721 −0.908049
\(134\) 0 0
\(135\) 2.38197 + 4.61803i 0.205007 + 0.397457i
\(136\) 0 0
\(137\) 18.6525i 1.59359i −0.604251 0.796794i \(-0.706527\pi\)
0.604251 0.796794i \(-0.293473\pi\)
\(138\) 0 0
\(139\) 14.1803i 1.20276i −0.798963 0.601380i \(-0.794618\pi\)
0.798963 0.601380i \(-0.205382\pi\)
\(140\) 0 0
\(141\) 2.76393 7.23607i 0.232765 0.609387i
\(142\) 0 0
\(143\) 3.05573 0.255533
\(144\) 0 0
\(145\) 8.47214 0.703573
\(146\) 0 0
\(147\) 1.85410 4.85410i 0.152924 0.400360i
\(148\) 0 0
\(149\) 10.0000i 0.819232i −0.912258 0.409616i \(-0.865663\pi\)
0.912258 0.409616i \(-0.134337\pi\)
\(150\) 0 0
\(151\) 3.23607i 0.263347i −0.991293 0.131674i \(-0.957965\pi\)
0.991293 0.131674i \(-0.0420351\pi\)
\(152\) 0 0
\(153\) −1.52786 + 1.70820i −0.123520 + 0.138100i
\(154\) 0 0
\(155\) 4.76393 0.382648
\(156\) 0 0
\(157\) 11.7082 0.934416 0.467208 0.884147i \(-0.345260\pi\)
0.467208 + 0.884147i \(0.345260\pi\)
\(158\) 0 0
\(159\) 7.23607 + 2.76393i 0.573858 + 0.219194i
\(160\) 0 0
\(161\) 0.944272i 0.0744191i
\(162\) 0 0
\(163\) 3.23607i 0.253468i 0.991937 + 0.126734i \(0.0404495\pi\)
−0.991937 + 0.126734i \(0.959550\pi\)
\(164\) 0 0
\(165\) 4.00000 + 1.52786i 0.311400 + 0.118944i
\(166\) 0 0
\(167\) 2.94427 0.227835 0.113917 0.993490i \(-0.463660\pi\)
0.113917 + 0.993490i \(0.463660\pi\)
\(168\) 0 0
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) −10.4721 + 11.7082i −0.800824 + 0.895349i
\(172\) 0 0
\(173\) 20.4721i 1.55647i 0.627975 + 0.778234i \(0.283884\pi\)
−0.627975 + 0.778234i \(0.716116\pi\)
\(174\) 0 0
\(175\) 2.00000i 0.151186i
\(176\) 0 0
\(177\) −4.00000 + 10.4721i −0.300658 + 0.787134i
\(178\) 0 0
\(179\) −1.52786 −0.114198 −0.0570990 0.998369i \(-0.518185\pi\)
−0.0570990 + 0.998369i \(0.518185\pi\)
\(180\) 0 0
\(181\) −13.4164 −0.997234 −0.498617 0.866822i \(-0.666159\pi\)
−0.498617 + 0.866822i \(0.666159\pi\)
\(182\) 0 0
\(183\) −7.70820 + 20.1803i −0.569807 + 1.49177i
\(184\) 0 0
\(185\) 7.70820i 0.566718i
\(186\) 0 0
\(187\) 1.88854i 0.138104i
\(188\) 0 0
\(189\) 4.76393 + 9.23607i 0.346525 + 0.671825i
\(190\) 0 0
\(191\) 14.4721 1.04717 0.523584 0.851974i \(-0.324595\pi\)
0.523584 + 0.851974i \(0.324595\pi\)
\(192\) 0 0
\(193\) 2.94427 0.211933 0.105967 0.994370i \(-0.466206\pi\)
0.105967 + 0.994370i \(0.466206\pi\)
\(194\) 0 0
\(195\) 2.00000 + 0.763932i 0.143223 + 0.0547063i
\(196\) 0 0
\(197\) 10.0000i 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 0 0
\(199\) 17.7082i 1.25530i −0.778495 0.627651i \(-0.784017\pi\)
0.778495 0.627651i \(-0.215983\pi\)
\(200\) 0 0
\(201\) −18.1803 6.94427i −1.28234 0.489811i
\(202\) 0 0
\(203\) 16.9443 1.18925
\(204\) 0 0
\(205\) −1.52786 −0.106711
\(206\) 0 0
\(207\) −1.05573 0.944272i −0.0733782 0.0656314i
\(208\) 0 0
\(209\) 12.9443i 0.895374i
\(210\) 0 0
\(211\) 0.291796i 0.0200881i −0.999950 0.0100440i \(-0.996803\pi\)
0.999950 0.0100440i \(-0.00319717\pi\)
\(212\) 0 0
\(213\) 2.47214 6.47214i 0.169388 0.443463i
\(214\) 0 0
\(215\) −9.70820 −0.662094
\(216\) 0 0
\(217\) 9.52786 0.646794
\(218\) 0 0
\(219\) −0.291796 + 0.763932i −0.0197178 + 0.0516217i
\(220\) 0 0
\(221\) 0.944272i 0.0635186i
\(222\) 0 0
\(223\) 2.94427i 0.197163i 0.995129 + 0.0985815i \(0.0314305\pi\)
−0.995129 + 0.0985815i \(0.968569\pi\)
\(224\) 0 0
\(225\) 2.23607 + 2.00000i 0.149071 + 0.133333i
\(226\) 0 0
\(227\) −19.7082 −1.30808 −0.654040 0.756460i \(-0.726927\pi\)
−0.654040 + 0.756460i \(0.726927\pi\)
\(228\) 0 0
\(229\) −14.9443 −0.987545 −0.493773 0.869591i \(-0.664382\pi\)
−0.493773 + 0.869591i \(0.664382\pi\)
\(230\) 0 0
\(231\) 8.00000 + 3.05573i 0.526361 + 0.201052i
\(232\) 0 0
\(233\) 9.70820i 0.636006i −0.948090 0.318003i \(-0.896988\pi\)
0.948090 0.318003i \(-0.103012\pi\)
\(234\) 0 0
\(235\) 4.47214i 0.291730i
\(236\) 0 0
\(237\) 13.2361 + 5.05573i 0.859775 + 0.328405i
\(238\) 0 0
\(239\) 23.4164 1.51468 0.757341 0.653020i \(-0.226498\pi\)
0.757341 + 0.653020i \(0.226498\pi\)
\(240\) 0 0
\(241\) 22.9443 1.47797 0.738985 0.673722i \(-0.235305\pi\)
0.738985 + 0.673722i \(0.235305\pi\)
\(242\) 0 0
\(243\) 15.0902 + 3.90983i 0.968035 + 0.250816i
\(244\) 0 0
\(245\) 3.00000i 0.191663i
\(246\) 0 0
\(247\) 6.47214i 0.411812i
\(248\) 0 0
\(249\) 7.23607 18.9443i 0.458567 1.20054i
\(250\) 0 0
\(251\) −10.4721 −0.660995 −0.330498 0.943807i \(-0.607217\pi\)
−0.330498 + 0.943807i \(0.607217\pi\)
\(252\) 0 0
\(253\) −1.16718 −0.0733802
\(254\) 0 0
\(255\) −0.472136 + 1.23607i −0.0295663 + 0.0774056i
\(256\) 0 0
\(257\) 3.23607i 0.201860i −0.994894 0.100930i \(-0.967818\pi\)
0.994894 0.100930i \(-0.0321819\pi\)
\(258\) 0 0
\(259\) 15.4164i 0.957929i
\(260\) 0 0
\(261\) 16.9443 18.9443i 1.04882 1.17262i
\(262\) 0 0
\(263\) −23.8885 −1.47303 −0.736515 0.676421i \(-0.763530\pi\)
−0.736515 + 0.676421i \(0.763530\pi\)
\(264\) 0 0
\(265\) 4.47214 0.274721
\(266\) 0 0
\(267\) 2.47214 + 0.944272i 0.151292 + 0.0577885i
\(268\) 0 0
\(269\) 14.0000i 0.853595i −0.904347 0.426798i \(-0.859642\pi\)
0.904347 0.426798i \(-0.140358\pi\)
\(270\) 0 0
\(271\) 28.1803i 1.71183i −0.517113 0.855917i \(-0.672993\pi\)
0.517113 0.855917i \(-0.327007\pi\)
\(272\) 0 0
\(273\) 4.00000 + 1.52786i 0.242091 + 0.0924705i
\(274\) 0 0
\(275\) 2.47214 0.149075
\(276\) 0 0
\(277\) −12.6525 −0.760214 −0.380107 0.924943i \(-0.624113\pi\)
−0.380107 + 0.924943i \(0.624113\pi\)
\(278\) 0 0
\(279\) 9.52786 10.6525i 0.570418 0.637747i
\(280\) 0 0
\(281\) 5.52786i 0.329765i −0.986313 0.164882i \(-0.947276\pi\)
0.986313 0.164882i \(-0.0527244\pi\)
\(282\) 0 0
\(283\) 11.2361i 0.667915i −0.942588 0.333957i \(-0.891616\pi\)
0.942588 0.333957i \(-0.108384\pi\)
\(284\) 0 0
\(285\) −3.23607 + 8.47214i −0.191688 + 0.501846i
\(286\) 0 0
\(287\) −3.05573 −0.180374
\(288\) 0 0
\(289\) 16.4164 0.965671
\(290\) 0 0
\(291\) −7.70820 + 20.1803i −0.451863 + 1.18299i
\(292\) 0 0
\(293\) 29.4164i 1.71852i 0.511535 + 0.859262i \(0.329077\pi\)
−0.511535 + 0.859262i \(0.670923\pi\)
\(294\) 0 0
\(295\) 6.47214i 0.376822i
\(296\) 0 0
\(297\) 11.4164 5.88854i 0.662447 0.341688i
\(298\) 0 0
\(299\) −0.583592 −0.0337500
\(300\) 0 0
\(301\) −19.4164 −1.11914
\(302\) 0 0
\(303\) −28.1803 10.7639i −1.61892 0.618372i
\(304\) 0 0
\(305\) 12.4721i 0.714152i
\(306\) 0 0
\(307\) 17.1246i 0.977353i −0.872465 0.488677i \(-0.837480\pi\)
0.872465 0.488677i \(-0.162520\pi\)
\(308\) 0 0
\(309\) 0.763932 + 0.291796i 0.0434586 + 0.0165997i
\(310\) 0 0
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) 0 0
\(313\) 23.8885 1.35026 0.675130 0.737699i \(-0.264087\pi\)
0.675130 + 0.737699i \(0.264087\pi\)
\(314\) 0 0
\(315\) 4.47214 + 4.00000i 0.251976 + 0.225374i
\(316\) 0 0
\(317\) 7.88854i 0.443065i −0.975153 0.221532i \(-0.928894\pi\)
0.975153 0.221532i \(-0.0711059\pi\)
\(318\) 0 0
\(319\) 20.9443i 1.17265i
\(320\) 0 0
\(321\) 8.18034 21.4164i 0.456582 1.19535i
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 1.23607 0.0685647
\(326\) 0 0
\(327\) −0.652476 + 1.70820i −0.0360820 + 0.0944639i
\(328\) 0 0
\(329\) 8.94427i 0.493114i
\(330\) 0 0
\(331\) 2.76393i 0.151919i 0.997111 + 0.0759597i \(0.0242020\pi\)
−0.997111 + 0.0759597i \(0.975798\pi\)
\(332\) 0 0
\(333\) 17.2361 + 15.4164i 0.944531 + 0.844814i
\(334\) 0 0
\(335\) −11.2361 −0.613892
\(336\) 0 0
\(337\) 7.52786 0.410069 0.205034 0.978755i \(-0.434269\pi\)
0.205034 + 0.978755i \(0.434269\pi\)
\(338\) 0 0
\(339\) 34.1803 + 13.0557i 1.85642 + 0.709090i
\(340\) 0 0
\(341\) 11.7771i 0.637765i
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) −0.763932 0.291796i −0.0411287 0.0157098i
\(346\) 0 0
\(347\) 10.7639 0.577838 0.288919 0.957354i \(-0.406704\pi\)
0.288919 + 0.957354i \(0.406704\pi\)
\(348\) 0 0
\(349\) 17.0557 0.912972 0.456486 0.889731i \(-0.349108\pi\)
0.456486 + 0.889731i \(0.349108\pi\)
\(350\) 0 0
\(351\) 5.70820 2.94427i 0.304681 0.157154i
\(352\) 0 0
\(353\) 4.76393i 0.253559i −0.991931 0.126779i \(-0.959536\pi\)
0.991931 0.126779i \(-0.0404640\pi\)
\(354\) 0 0
\(355\) 4.00000i 0.212298i
\(356\) 0 0
\(357\) −0.944272 + 2.47214i −0.0499762 + 0.130839i
\(358\) 0 0
\(359\) −31.4164 −1.65809 −0.829047 0.559178i \(-0.811117\pi\)
−0.829047 + 0.559178i \(0.811117\pi\)
\(360\) 0 0
\(361\) −8.41641 −0.442969
\(362\) 0 0
\(363\) −3.02129 + 7.90983i −0.158576 + 0.415158i
\(364\) 0 0
\(365\) 0.472136i 0.0247127i
\(366\) 0 0
\(367\) 27.3050i 1.42531i −0.701516 0.712653i \(-0.747493\pi\)
0.701516 0.712653i \(-0.252507\pi\)
\(368\) 0 0
\(369\) −3.05573 + 3.41641i −0.159075 + 0.177851i
\(370\) 0 0
\(371\) 8.94427 0.464363
\(372\) 0 0
\(373\) 37.5967 1.94669 0.973343 0.229355i \(-0.0736616\pi\)
0.973343 + 0.229355i \(0.0736616\pi\)
\(374\) 0 0
\(375\) 1.61803 + 0.618034i 0.0835549 + 0.0319151i
\(376\) 0 0
\(377\) 10.4721i 0.539342i
\(378\) 0 0
\(379\) 8.29180i 0.425921i −0.977061 0.212960i \(-0.931689\pi\)
0.977061 0.212960i \(-0.0683106\pi\)
\(380\) 0 0
\(381\) −16.1803 6.18034i −0.828944 0.316628i
\(382\) 0 0
\(383\) −2.94427 −0.150445 −0.0752226 0.997167i \(-0.523967\pi\)
−0.0752226 + 0.997167i \(0.523967\pi\)
\(384\) 0 0
\(385\) 4.94427 0.251983
\(386\) 0 0
\(387\) −19.4164 + 21.7082i −0.986991 + 1.10349i
\(388\) 0 0
\(389\) 2.94427i 0.149281i −0.997211 0.0746403i \(-0.976219\pi\)
0.997211 0.0746403i \(-0.0237808\pi\)
\(390\) 0 0
\(391\) 0.360680i 0.0182404i
\(392\) 0 0
\(393\) −13.5279 + 35.4164i −0.682390 + 1.78652i
\(394\) 0 0
\(395\) 8.18034 0.411598
\(396\) 0 0
\(397\) 2.18034 0.109428 0.0547141 0.998502i \(-0.482575\pi\)
0.0547141 + 0.998502i \(0.482575\pi\)
\(398\) 0 0
\(399\) −6.47214 + 16.9443i −0.324012 + 0.848275i
\(400\) 0 0
\(401\) 34.8328i 1.73947i −0.493521 0.869734i \(-0.664290\pi\)
0.493521 0.869734i \(-0.335710\pi\)
\(402\) 0 0
\(403\) 5.88854i 0.293329i
\(404\) 0 0
\(405\) 8.94427 1.00000i 0.444444 0.0496904i
\(406\) 0 0
\(407\) 19.0557 0.944557
\(408\) 0 0
\(409\) 29.4164 1.45455 0.727274 0.686347i \(-0.240787\pi\)
0.727274 + 0.686347i \(0.240787\pi\)
\(410\) 0 0
\(411\) −30.1803 11.5279i −1.48869 0.568628i
\(412\) 0 0
\(413\) 12.9443i 0.636946i
\(414\) 0 0
\(415\) 11.7082i 0.574733i
\(416\) 0 0
\(417\) −22.9443 8.76393i −1.12359 0.429172i
\(418\) 0 0
\(419\) −36.9443 −1.80485 −0.902423 0.430851i \(-0.858213\pi\)
−0.902423 + 0.430851i \(0.858213\pi\)
\(420\) 0 0
\(421\) 39.3050 1.91561 0.957803 0.287425i \(-0.0927993\pi\)
0.957803 + 0.287425i \(0.0927993\pi\)
\(422\) 0 0
\(423\) −10.0000 8.94427i −0.486217 0.434885i
\(424\) 0 0
\(425\) 0.763932i 0.0370561i
\(426\) 0 0
\(427\) 24.9443i 1.20714i
\(428\) 0 0
\(429\) 1.88854 4.94427i 0.0911798 0.238712i
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) 18.3607 0.882358 0.441179 0.897419i \(-0.354560\pi\)
0.441179 + 0.897419i \(0.354560\pi\)
\(434\) 0 0
\(435\) 5.23607 13.7082i 0.251050 0.657258i
\(436\) 0 0
\(437\) 2.47214i 0.118258i
\(438\) 0 0
\(439\) 6.65248i 0.317505i −0.987318 0.158753i \(-0.949253\pi\)
0.987318 0.158753i \(-0.0507472\pi\)
\(440\) 0 0
\(441\) −6.70820 6.00000i −0.319438 0.285714i
\(442\) 0 0
\(443\) 32.6525 1.55137 0.775683 0.631123i \(-0.217406\pi\)
0.775683 + 0.631123i \(0.217406\pi\)
\(444\) 0 0
\(445\) 1.52786 0.0724277
\(446\) 0 0
\(447\) −16.1803 6.18034i −0.765304 0.292320i
\(448\) 0 0
\(449\) 19.0557i 0.899295i 0.893206 + 0.449648i \(0.148450\pi\)
−0.893206 + 0.449648i \(0.851550\pi\)
\(450\) 0 0
\(451\) 3.77709i 0.177856i
\(452\) 0 0
\(453\) −5.23607 2.00000i −0.246012 0.0939682i
\(454\) 0 0
\(455\) 2.47214 0.115896
\(456\) 0 0
\(457\) 29.4164 1.37604 0.688021 0.725691i \(-0.258480\pi\)
0.688021 + 0.725691i \(0.258480\pi\)
\(458\) 0 0
\(459\) 1.81966 + 3.52786i 0.0849345 + 0.164667i
\(460\) 0 0
\(461\) 8.47214i 0.394587i 0.980344 + 0.197293i \(0.0632151\pi\)
−0.980344 + 0.197293i \(0.936785\pi\)
\(462\) 0 0
\(463\) 18.3607i 0.853293i 0.904418 + 0.426647i \(0.140305\pi\)
−0.904418 + 0.426647i \(0.859695\pi\)
\(464\) 0 0
\(465\) 2.94427 7.70820i 0.136537 0.357459i
\(466\) 0 0
\(467\) −3.34752 −0.154905 −0.0774525 0.996996i \(-0.524679\pi\)
−0.0774525 + 0.996996i \(0.524679\pi\)
\(468\) 0 0
\(469\) −22.4721 −1.03767
\(470\) 0 0
\(471\) 7.23607 18.9443i 0.333420 0.872906i
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) 5.23607i 0.240247i
\(476\) 0 0
\(477\) 8.94427 10.0000i 0.409530 0.457869i
\(478\) 0 0
\(479\) −12.3607 −0.564774 −0.282387 0.959301i \(-0.591126\pi\)
−0.282387 + 0.959301i \(0.591126\pi\)
\(480\) 0 0
\(481\) 9.52786 0.434433
\(482\) 0 0
\(483\) −1.52786 0.583592i −0.0695202 0.0265544i
\(484\) 0 0
\(485\) 12.4721i 0.566331i
\(486\) 0 0
\(487\) 7.52786i 0.341120i −0.985347 0.170560i \(-0.945442\pi\)
0.985347 0.170560i \(-0.0545577\pi\)
\(488\) 0 0
\(489\) 5.23607 + 2.00000i 0.236783 + 0.0904431i
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) 6.47214 0.291490
\(494\) 0 0
\(495\) 4.94427 5.52786i 0.222228 0.248459i
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 4.29180i 0.192127i −0.995375 0.0960636i \(-0.969375\pi\)
0.995375 0.0960636i \(-0.0306252\pi\)
\(500\) 0 0
\(501\) 1.81966 4.76393i 0.0812964 0.212837i
\(502\) 0 0
\(503\) −23.8885 −1.06514 −0.532569 0.846387i \(-0.678773\pi\)
−0.532569 + 0.846387i \(0.678773\pi\)
\(504\) 0 0
\(505\) −17.4164 −0.775020
\(506\) 0 0
\(507\) −7.09017 + 18.5623i −0.314886 + 0.824381i
\(508\) 0 0
\(509\) 31.3050i 1.38757i −0.720183 0.693784i \(-0.755942\pi\)
0.720183 0.693784i \(-0.244058\pi\)
\(510\) 0 0
\(511\) 0.944272i 0.0417721i
\(512\) 0 0
\(513\) 12.4721 + 24.1803i 0.550658 + 1.06759i
\(514\) 0 0
\(515\) 0.472136 0.0208048
\(516\) 0 0
\(517\) −11.0557 −0.486230
\(518\) 0 0
\(519\) 33.1246 + 12.6525i 1.45401 + 0.555382i
\(520\) 0 0
\(521\) 20.0000i 0.876216i −0.898922 0.438108i \(-0.855649\pi\)
0.898922 0.438108i \(-0.144351\pi\)
\(522\) 0 0
\(523\) 18.6525i 0.815616i −0.913068 0.407808i \(-0.866293\pi\)
0.913068 0.407808i \(-0.133707\pi\)
\(524\) 0 0
\(525\) 3.23607 + 1.23607i 0.141234 + 0.0539464i
\(526\) 0 0
\(527\) 3.63932 0.158531
\(528\) 0 0
\(529\) −22.7771 −0.990308
\(530\) 0 0
\(531\) 14.4721 + 12.9443i 0.628037 + 0.561734i
\(532\) 0 0
\(533\) 1.88854i 0.0818019i
\(534\) 0 0
\(535\) 13.2361i 0.572245i
\(536\) 0 0
\(537\) −0.944272 + 2.47214i −0.0407483 + 0.106681i
\(538\) 0 0
\(539\) −7.41641 −0.319447
\(540\) 0 0
\(541\) −18.3607 −0.789387 −0.394694 0.918813i \(-0.629149\pi\)
−0.394694 + 0.918813i \(0.629149\pi\)
\(542\) 0 0
\(543\) −8.29180 + 21.7082i −0.355835 + 0.931588i
\(544\) 0 0
\(545\) 1.05573i 0.0452224i
\(546\) 0 0
\(547\) 26.0689i 1.11462i 0.830303 + 0.557312i \(0.188167\pi\)
−0.830303 + 0.557312i \(0.811833\pi\)
\(548\) 0 0
\(549\) 27.8885 + 24.9443i 1.19025 + 1.06460i
\(550\) 0 0
\(551\) 44.3607 1.88983
\(552\) 0 0
\(553\) 16.3607 0.695727
\(554\) 0 0
\(555\) 12.4721 + 4.76393i 0.529413 + 0.202218i
\(556\) 0 0
\(557\) 44.2492i 1.87490i −0.348120 0.937450i \(-0.613180\pi\)
0.348120 0.937450i \(-0.386820\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 0 0
\(561\) 3.05573 + 1.16718i 0.129013 + 0.0492786i
\(562\) 0 0
\(563\) 44.0689 1.85728 0.928641 0.370980i \(-0.120978\pi\)
0.928641 + 0.370980i \(0.120978\pi\)
\(564\) 0 0
\(565\) 21.1246 0.888719
\(566\) 0 0
\(567\) 17.8885 2.00000i 0.751248 0.0839921i
\(568\) 0 0
\(569\) 19.0557i 0.798858i 0.916764 + 0.399429i \(0.130792\pi\)
−0.916764 + 0.399429i \(0.869208\pi\)
\(570\) 0 0
\(571\) 28.6525i 1.19907i 0.800349 + 0.599534i \(0.204648\pi\)
−0.800349 + 0.599534i \(0.795352\pi\)
\(572\) 0 0
\(573\) 8.94427 23.4164i 0.373652 0.978234i
\(574\) 0 0
\(575\) −0.472136 −0.0196894
\(576\) 0 0
\(577\) −10.3607 −0.431321 −0.215660 0.976468i \(-0.569190\pi\)
−0.215660 + 0.976468i \(0.569190\pi\)
\(578\) 0 0
\(579\) 1.81966 4.76393i 0.0756225 0.197982i
\(580\) 0 0
\(581\) 23.4164i 0.971476i
\(582\) 0 0
\(583\) 11.0557i 0.457881i
\(584\) 0 0
\(585\) 2.47214 2.76393i 0.102210 0.114275i
\(586\) 0 0
\(587\) −12.6525 −0.522224 −0.261112 0.965309i \(-0.584089\pi\)
−0.261112 + 0.965309i \(0.584089\pi\)
\(588\) 0 0
\(589\) 24.9443 1.02781
\(590\) 0 0
\(591\) −16.1803 6.18034i −0.665570 0.254225i
\(592\) 0 0
\(593\) 4.76393i 0.195631i −0.995205 0.0978156i \(-0.968814\pi\)
0.995205 0.0978156i \(-0.0311855\pi\)
\(594\) 0 0
\(595\) 1.52786i 0.0626363i
\(596\) 0 0
\(597\) −28.6525 10.9443i −1.17267 0.447919i
\(598\) 0 0
\(599\) −16.5836 −0.677587 −0.338794 0.940861i \(-0.610019\pi\)
−0.338794 + 0.940861i \(0.610019\pi\)
\(600\) 0 0
\(601\) −35.5279 −1.44921 −0.724606 0.689163i \(-0.757978\pi\)
−0.724606 + 0.689163i \(0.757978\pi\)
\(602\) 0 0
\(603\) −22.4721 + 25.1246i −0.915136 + 1.02315i
\(604\) 0 0
\(605\) 4.88854i 0.198748i
\(606\) 0 0
\(607\) 3.52786i 0.143192i 0.997434 + 0.0715958i \(0.0228092\pi\)
−0.997434 + 0.0715958i \(0.977191\pi\)
\(608\) 0 0
\(609\) 10.4721 27.4164i 0.424352 1.11097i
\(610\) 0 0
\(611\) −5.52786 −0.223633
\(612\) 0 0
\(613\) −10.7639 −0.434751 −0.217376 0.976088i \(-0.569750\pi\)
−0.217376 + 0.976088i \(0.569750\pi\)
\(614\) 0 0
\(615\) −0.944272 + 2.47214i −0.0380767 + 0.0996861i
\(616\) 0 0
\(617\) 3.23607i 0.130279i −0.997876 0.0651396i \(-0.979251\pi\)
0.997876 0.0651396i \(-0.0207493\pi\)
\(618\) 0 0
\(619\) 32.6525i 1.31241i 0.754581 + 0.656207i \(0.227840\pi\)
−0.754581 + 0.656207i \(0.772160\pi\)
\(620\) 0 0
\(621\) −2.18034 + 1.12461i −0.0874940 + 0.0451291i
\(622\) 0 0
\(623\) 3.05573 0.122425
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 20.9443 + 8.00000i 0.836434 + 0.319489i
\(628\) 0 0
\(629\) 5.88854i 0.234792i
\(630\) 0 0
\(631\) 2.29180i 0.0912350i −0.998959 0.0456175i \(-0.985474\pi\)
0.998959 0.0456175i \(-0.0145255\pi\)
\(632\) 0 0
\(633\) −0.472136 0.180340i −0.0187657 0.00716787i
\(634\) 0 0
\(635\) −10.0000 −0.396838
\(636\) 0 0
\(637\) −3.70820 −0.146924
\(638\) 0 0
\(639\) −8.94427 8.00000i −0.353830 0.316475i
\(640\) 0 0
\(641\) 37.3050i 1.47346i −0.676189 0.736729i \(-0.736370\pi\)
0.676189 0.736729i \(-0.263630\pi\)
\(642\) 0 0
\(643\) 6.29180i 0.248124i 0.992274 + 0.124062i \(0.0395922\pi\)
−0.992274 + 0.124062i \(0.960408\pi\)
\(644\) 0 0
\(645\) −6.00000 + 15.7082i −0.236250 + 0.618510i
\(646\) 0 0
\(647\) −0.111456 −0.00438179 −0.00219090 0.999998i \(-0.500697\pi\)
−0.00219090 + 0.999998i \(0.500697\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 5.88854 15.4164i 0.230790 0.604217i
\(652\) 0 0
\(653\) 27.5279i 1.07725i 0.842546 + 0.538624i \(0.181056\pi\)
−0.842546 + 0.538624i \(0.818944\pi\)
\(654\) 0 0
\(655\) 21.8885i 0.855256i
\(656\) 0 0
\(657\) 1.05573 + 0.944272i 0.0411879 + 0.0368396i
\(658\) 0 0
\(659\) 14.4721 0.563754 0.281877 0.959450i \(-0.409043\pi\)
0.281877 + 0.959450i \(0.409043\pi\)
\(660\) 0 0
\(661\) 40.4721 1.57418 0.787092 0.616836i \(-0.211586\pi\)
0.787092 + 0.616836i \(0.211586\pi\)
\(662\) 0 0
\(663\) 1.52786 + 0.583592i 0.0593373 + 0.0226648i
\(664\) 0 0
\(665\) 10.4721i 0.406092i
\(666\) 0 0
\(667\) 4.00000i 0.154881i
\(668\) 0 0
\(669\) 4.76393 + 1.81966i 0.184184 + 0.0703521i
\(670\) 0 0
\(671\) 30.8328 1.19029
\(672\) 0 0
\(673\) −17.4164 −0.671353 −0.335677 0.941977i \(-0.608965\pi\)
−0.335677 + 0.941977i \(0.608965\pi\)
\(674\) 0 0
\(675\) 4.61803 2.38197i 0.177748 0.0916819i
\(676\) 0 0
\(677\) 14.3607i 0.551926i 0.961168 + 0.275963i \(0.0889967\pi\)
−0.961168 + 0.275963i \(0.911003\pi\)
\(678\) 0 0
\(679\) 24.9443i 0.957273i
\(680\) 0 0
\(681\) −12.1803 + 31.8885i −0.466752 + 1.22197i
\(682\) 0 0
\(683\) 37.2361 1.42480 0.712399 0.701774i \(-0.247609\pi\)
0.712399 + 0.701774i \(0.247609\pi\)
\(684\) 0 0
\(685\) −18.6525 −0.712674
\(686\) 0 0
\(687\) −9.23607 + 24.1803i −0.352378 + 0.922538i
\(688\) 0 0
\(689\) 5.52786i 0.210595i
\(690\) 0 0
\(691\) 24.0689i 0.915623i −0.889049 0.457812i \(-0.848633\pi\)
0.889049 0.457812i \(-0.151367\pi\)
\(692\) 0 0
\(693\) 9.88854 11.0557i 0.375635 0.419972i
\(694\) 0 0
\(695\) −14.1803 −0.537891
\(696\) 0 0
\(697\) −1.16718 −0.0442103
\(698\) 0 0
\(699\) −15.7082 6.00000i −0.594139 0.226941i
\(700\) 0 0
\(701\) 0.111456i 0.00420964i −0.999998 0.00210482i \(-0.999330\pi\)
0.999998 0.00210482i \(-0.000669986\pi\)
\(702\) 0 0
\(703\) 40.3607i 1.52223i
\(704\) 0 0
\(705\) −7.23607 2.76393i −0.272526 0.104096i
\(706\) 0 0
\(707\) −34.8328 −1.31002
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 16.3607 18.2918i 0.613573 0.685996i
\(712\) 0 0
\(713\) 2.24922i 0.0842341i
\(714\) 0 0
\(715\) 3.05573i 0.114278i
\(716\) 0 0
\(717\) 14.4721 37.8885i 0.540472 1.41497i
\(718\) 0 0
\(719\) −19.0557 −0.710659 −0.355329 0.934741i \(-0.615631\pi\)
−0.355329 + 0.934741i \(0.615631\pi\)
\(720\) 0 0
\(721\) 0.944272 0.0351665
\(722\) 0 0
\(723\) 14.1803 37.1246i 0.527373 1.38068i
\(724\) 0 0
\(725\) 8.47214i 0.314647i
\(726\) 0 0
\(727\) 22.5836i 0.837579i 0.908083 + 0.418790i \(0.137545\pi\)
−0.908083 + 0.418790i \(0.862455\pi\)
\(728\) 0 0
\(729\) 15.6525 22.0000i 0.579721 0.814815i
\(730\) 0 0
\(731\) −7.41641 −0.274306
\(732\) 0 0
\(733\) 13.2361 0.488885 0.244443 0.969664i \(-0.421395\pi\)
0.244443 + 0.969664i \(0.421395\pi\)
\(734\) 0 0
\(735\) −4.85410 1.85410i −0.179046 0.0683896i
\(736\) 0 0
\(737\) 27.7771i 1.02318i
\(738\) 0 0
\(739\) 0.652476i 0.0240017i 0.999928 + 0.0120009i \(0.00382008\pi\)
−0.999928 + 0.0120009i \(0.996180\pi\)
\(740\) 0 0
\(741\) 10.4721 + 4.00000i 0.384704 + 0.146944i
\(742\) 0 0
\(743\) 6.58359 0.241529 0.120764 0.992681i \(-0.461465\pi\)
0.120764 + 0.992681i \(0.461465\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) −26.1803 23.4164i −0.957889 0.856762i
\(748\) 0 0
\(749\) 26.4721i 0.967271i
\(750\) 0 0
\(751\) 42.0689i 1.53512i −0.640980 0.767558i \(-0.721472\pi\)
0.640980 0.767558i \(-0.278528\pi\)
\(752\) 0 0
\(753\) −6.47214 + 16.9443i −0.235858 + 0.617484i
\(754\) 0 0
\(755\) −3.23607 −0.117773
\(756\) 0 0
\(757\) −41.5967 −1.51186 −0.755930 0.654653i \(-0.772815\pi\)
−0.755930 + 0.654653i \(0.772815\pi\)
\(758\) 0 0
\(759\) −0.721360 + 1.88854i −0.0261837 + 0.0685498i
\(760\) 0 0
\(761\) 20.0000i 0.724999i 0.931984 + 0.362500i \(0.118077\pi\)
−0.931984 + 0.362500i \(0.881923\pi\)
\(762\) 0 0
\(763\) 2.11146i 0.0764398i
\(764\) 0 0
\(765\) 1.70820 + 1.52786i 0.0617602 + 0.0552400i
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) −30.3607 −1.09483 −0.547417 0.836860i \(-0.684389\pi\)
−0.547417 + 0.836860i \(0.684389\pi\)
\(770\) 0 0
\(771\) −5.23607 2.00000i −0.188572 0.0720282i
\(772\) 0 0
\(773\) 46.0000i 1.65451i 0.561830 + 0.827253i \(0.310097\pi\)
−0.561830 + 0.827253i \(0.689903\pi\)
\(774\) 0 0
\(775\) 4.76393i 0.171125i
\(776\) 0 0
\(777\) 24.9443 + 9.52786i 0.894871 + 0.341810i
\(778\) 0 0
\(779\) −8.00000 −0.286630
\(780\) 0 0
\(781\) −9.88854 −0.353840
\(782\) 0 0
\(783\) −20.1803 39.1246i −0.721187 1.39820i
\(784\) 0 0
\(785\) 11.7082i 0.417884i
\(786\) 0 0
\(787\) 5.70820i 0.203475i −0.994811 0.101738i \(-0.967560\pi\)
0.994811 0.101738i \(-0.0324403\pi\)
\(788\) 0 0
\(789\) −14.7639 + 38.6525i −0.525610 + 1.37606i
\(790\) 0 0
\(791\) 42.2492 1.50221
\(792\) 0 0
\(793\) 15.4164 0.547453
\(794\) 0 0
\(795\) 2.76393 7.23607i 0.0980266 0.256637i
\(796\) 0 0
\(797\) 13.0557i 0.462458i 0.972899 + 0.231229i \(0.0742746\pi\)
−0.972899 + 0.231229i \(0.925725\pi\)
\(798\) 0 0
\(799\) 3.41641i 0.120864i
\(800\) 0 0
\(801\) 3.05573 3.41641i 0.107969 0.120713i
\(802\) 0 0
\(803\) 1.16718 0.0411890
\(804\) 0 0
\(805\) −0.944272 −0.0332812
\(806\) 0 0
\(807\) −22.6525 8.65248i −0.797405 0.304582i
\(808\) 0 0
\(809\) 17.3050i 0.608410i 0.952607 + 0.304205i \(0.0983907\pi\)
−0.952607 + 0.304205i \(0.901609\pi\)
\(810\) 0 0
\(811\) 41.2361i 1.44799i −0.689803 0.723997i \(-0.742303\pi\)
0.689803 0.723997i \(-0.257697\pi\)
\(812\) 0 0
\(813\) −45.5967 17.4164i −1.59915 0.610820i
\(814\) 0 0
\(815\) 3.23607 0.113355
\(816\) 0 0
\(817\) −50.8328 −1.77842
\(818\) 0 0
\(819\) 4.94427 5.52786i 0.172767 0.193159i
\(820\) 0 0
\(821\) 47.8885i 1.67132i 0.549246 + 0.835661i \(0.314915\pi\)
−0.549246 + 0.835661i \(0.685085\pi\)
\(822\) 0 0
\(823\) 18.3607i 0.640013i 0.947415 + 0.320007i \(0.103685\pi\)
−0.947415 + 0.320007i \(0.896315\pi\)
\(824\) 0 0
\(825\) 1.52786 4.00000i 0.0531934 0.139262i
\(826\) 0 0
\(827\) −27.1246 −0.943215 −0.471608 0.881809i \(-0.656326\pi\)
−0.471608 + 0.881809i \(0.656326\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) −7.81966 + 20.4721i −0.271261 + 0.710171i
\(832\) 0 0
\(833\) 2.29180i 0.0794060i
\(834\) 0 0
\(835\) 2.94427i 0.101891i
\(836\) 0 0
\(837\) −11.3475 22.0000i −0.392228 0.760431i
\(838\) 0 0
\(839\) −21.5279 −0.743224 −0.371612 0.928388i \(-0.621195\pi\)
−0.371612 + 0.928388i \(0.621195\pi\)
\(840\) 0 0
\(841\) −42.7771 −1.47507
\(842\) 0 0
\(843\) −8.94427 3.41641i −0.308057 0.117667i
\(844\) 0 0
\(845\) 11.4721i 0.394653i
\(846\) 0 0
\(847\) 9.77709i 0.335945i
\(848\) 0 0
\(849\) −18.1803 6.94427i −0.623948 0.238327i
\(850\) 0 0
\(851\) −3.63932 −0.124754
\(852\) 0 0
\(853\) −0.875388 −0.0299727 −0.0149864 0.999888i \(-0.504770\pi\)
−0.0149864 + 0.999888i \(0.504770\pi\)
\(854\) 0 0
\(855\) 11.7082 + 10.4721i 0.400412 + 0.358139i
\(856\) 0 0
\(857\) 55.2361i 1.88683i 0.331617 + 0.943414i \(0.392406\pi\)
−0.331617 + 0.943414i \(0.607594\pi\)
\(858\) 0 0
\(859\) 13.8197i 0.471521i 0.971811 + 0.235760i \(0.0757580\pi\)
−0.971811 + 0.235760i \(0.924242\pi\)
\(860\) 0 0
\(861\) −1.88854 + 4.94427i −0.0643614 + 0.168500i
\(862\) 0 0
\(863\) 34.3607 1.16965 0.584826 0.811159i \(-0.301163\pi\)
0.584826 + 0.811159i \(0.301163\pi\)
\(864\) 0 0
\(865\) 20.4721 0.696074
\(866\) 0 0
\(867\) 10.1459 26.5623i 0.344573 0.902103i
\(868\) 0 0
\(869\) 20.2229i 0.686015i
\(870\) 0 0
\(871\) 13.8885i 0.470595i
\(872\) 0 0
\(873\) 27.8885 + 24.9443i 0.943884 + 0.844236i
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 19.7082 0.665499 0.332749 0.943015i \(-0.392024\pi\)
0.332749 + 0.943015i \(0.392024\pi\)
\(878\) 0 0
\(879\) 47.5967 + 18.1803i 1.60540 + 0.613208i
\(880\) 0 0
\(881\) 44.3607i 1.49455i −0.664515 0.747275i \(-0.731362\pi\)
0.664515 0.747275i \(-0.268638\pi\)
\(882\) 0 0
\(883\) 8.54102i 0.287428i −0.989619 0.143714i \(-0.954095\pi\)
0.989619 0.143714i \(-0.0459046\pi\)
\(884\) 0 0
\(885\) 10.4721 + 4.00000i 0.352017 + 0.134459i
\(886\) 0 0
\(887\) −48.8328 −1.63965 −0.819823 0.572617i \(-0.805928\pi\)
−0.819823 + 0.572617i \(0.805928\pi\)
\(888\) 0 0
\(889\) −20.0000 −0.670778
\(890\) 0 0
\(891\) −2.47214 22.1115i −0.0828197 0.740762i
\(892\) 0 0
\(893\) 23.4164i 0.783600i
\(894\) 0 0
\(895\) 1.52786i 0.0510709i
\(896\) 0 0
\(897\) −0.360680 + 0.944272i −0.0120427 + 0.0315283i
\(898\) 0 0
\(899\) −40.3607 −1.34610
\(900\) 0 0
\(901\) 3.41641 0.113817
\(902\) 0 0
\(903\) −12.0000 + 31.4164i −0.399335 + 1.04547i
\(904\) 0 0
\(905\) 13.4164i 0.445976i
\(906\) 0 0
\(907\) 0.403252i 0.0133898i 0.999978 + 0.00669489i \(0.00213106\pi\)
−0.999978 + 0.00669489i \(0.997869\pi\)
\(908\) 0 0
\(909\) −34.8328 + 38.9443i −1.15533 + 1.29170i
\(910\) 0 0
\(911\) −7.05573 −0.233767 −0.116883 0.993146i \(-0.537290\pi\)
−0.116883 + 0.993146i \(0.537290\pi\)
\(912\) 0 0
\(913\) −28.9443 −0.957916
\(914\) 0 0
\(915\) 20.1803 + 7.70820i 0.667141 + 0.254825i
\(916\) 0 0
\(917\) 43.7771i 1.44565i
\(918\) 0 0
\(919\) 21.7082i 0.716088i −0.933705 0.358044i \(-0.883444\pi\)
0.933705 0.358044i \(-0.116556\pi\)
\(920\) 0 0
\(921\) −27.7082 10.5836i −0.913016 0.348741i
\(922\) 0 0
\(923\) −4.94427 −0.162743
\(924\) 0 0
\(925\) 7.70820 0.253444
\(926\) 0 0
\(927\) 0.944272 1.05573i 0.0310140 0.0346747i
\(928\) 0 0
\(929\) 1.88854i 0.0619611i 0.999520 + 0.0309806i \(0.00986300\pi\)
−0.999520 + 0.0309806i \(0.990137\pi\)
\(930\) 0 0
\(931\) 15.7082i 0.514816i
\(932\) 0 0
\(933\) −12.3607 + 32.3607i −0.404670 + 1.05944i
\(934\) 0 0
\(935\) 1.88854 0.0617620
\(936\) 0 0
\(937\) 35.8885 1.17243 0.586214 0.810156i \(-0.300618\pi\)
0.586214 + 0.810156i \(0.300618\pi\)
\(938\) 0 0
\(939\) 14.7639 38.6525i 0.481803 1.26138i
\(940\) 0 0
\(941\) 24.4721i 0.797769i −0.917001 0.398884i \(-0.869397\pi\)
0.917001 0.398884i \(-0.130603\pi\)
\(942\) 0 0
\(943\) 0.721360i 0.0234907i
\(944\) 0 0
\(945\) 9.23607 4.76393i 0.300449 0.154971i
\(946\) 0 0
\(947\) 29.2361 0.950045 0.475022 0.879974i \(-0.342440\pi\)
0.475022 + 0.879974i \(0.342440\pi\)
\(948\) 0 0
\(949\) 0.583592 0.0189442
\(950\) 0 0
\(951\) −12.7639 4.87539i −0.413899 0.158095i
\(952\) 0 0
\(953\) 15.5967i 0.505228i 0.967567 + 0.252614i \(0.0812903\pi\)
−0.967567 + 0.252614i \(0.918710\pi\)
\(954\) 0 0
\(955\) 14.4721i 0.468307i
\(956\) 0 0
\(957\) −33.8885 12.9443i −1.09546 0.418429i
\(958\) 0 0
\(959\) −37.3050 −1.20464
\(960\) 0 0
\(961\) 8.30495 0.267902
\(962\) 0 0
\(963\) −29.5967 26.4721i −0.953742 0.853053i
\(964\) 0 0
\(965\) 2.94427i 0.0947795i
\(966\) 0 0
\(967\) 32.4721i 1.04423i 0.852874 + 0.522117i \(0.174857\pi\)
−0.852874 + 0.522117i \(0.825143\pi\)
\(968\) 0 0
\(969\) −2.47214 + 6.47214i −0.0794164 + 0.207915i
\(970\) 0 0
\(971\) 18.4721 0.592799 0.296400 0.955064i \(-0.404214\pi\)
0.296400 + 0.955064i \(0.404214\pi\)
\(972\) 0 0
\(973\) −28.3607 −0.909202
\(974\) 0 0
\(975\) 0.763932 2.00000i 0.0244654 0.0640513i
\(976\) 0 0
\(977\) 21.7082i 0.694507i −0.937771 0.347253i \(-0.887114\pi\)
0.937771 0.347253i \(-0.112886\pi\)
\(978\) 0 0
\(979\) 3.77709i 0.120716i
\(980\) 0 0
\(981\) 2.36068 + 2.11146i 0.0753707 + 0.0674136i
\(982\) 0 0
\(983\) 44.2492 1.41133 0.705666 0.708545i \(-0.250648\pi\)
0.705666 + 0.708545i \(0.250648\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) −14.4721 5.52786i −0.460653 0.175954i
\(988\) 0 0
\(989\) 4.58359i 0.145750i
\(990\) 0 0
\(991\) 0.763932i 0.0242671i 0.999926 + 0.0121336i \(0.00386232\pi\)
−0.999926 + 0.0121336i \(0.996138\pi\)
\(992\) 0 0
\(993\) 4.47214 + 1.70820i 0.141919 + 0.0542082i
\(994\) 0 0
\(995\) −17.7082 −0.561388
\(996\) 0 0
\(997\) 33.8197 1.07108 0.535540 0.844510i \(-0.320108\pi\)
0.535540 + 0.844510i \(0.320108\pi\)
\(998\) 0 0
\(999\) 35.5967 18.3607i 1.12623 0.580906i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.h.f.1151.3 yes 4
3.2 odd 2 1920.2.h.l.1151.1 yes 4
4.3 odd 2 1920.2.h.l.1151.2 yes 4
8.3 odd 2 1920.2.h.e.1151.3 4
8.5 even 2 1920.2.h.k.1151.2 yes 4
12.11 even 2 inner 1920.2.h.f.1151.4 yes 4
24.5 odd 2 1920.2.h.e.1151.4 yes 4
24.11 even 2 1920.2.h.k.1151.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.h.e.1151.3 4 8.3 odd 2
1920.2.h.e.1151.4 yes 4 24.5 odd 2
1920.2.h.f.1151.3 yes 4 1.1 even 1 trivial
1920.2.h.f.1151.4 yes 4 12.11 even 2 inner
1920.2.h.k.1151.1 yes 4 24.11 even 2
1920.2.h.k.1151.2 yes 4 8.5 even 2
1920.2.h.l.1151.1 yes 4 3.2 odd 2
1920.2.h.l.1151.2 yes 4 4.3 odd 2