Properties

Label 1920.2.h.i.1151.2
Level $1920$
Weight $2$
Character 1920.1151
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1151,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.2
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1151
Dual form 1920.2.h.i.1151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 1.22474i) q^{3} +1.00000i q^{5} -4.44949i q^{7} -3.00000i q^{9} +2.00000 q^{11} -6.89898 q^{13} +(-1.22474 - 1.22474i) q^{15} -2.00000i q^{17} -2.00000i q^{19} +(5.44949 + 5.44949i) q^{21} -0.449490 q^{23} -1.00000 q^{25} +(3.67423 + 3.67423i) q^{27} +8.89898i q^{29} +8.00000i q^{31} +(-2.44949 + 2.44949i) q^{33} +4.44949 q^{35} -6.00000 q^{37} +(8.44949 - 8.44949i) q^{39} +11.7980i q^{41} +1.55051i q^{43} +3.00000 q^{45} +3.55051 q^{47} -12.7980 q^{49} +(2.44949 + 2.44949i) q^{51} +2.89898i q^{53} +2.00000i q^{55} +(2.44949 + 2.44949i) q^{57} +10.8990 q^{59} -0.898979 q^{61} -13.3485 q^{63} -6.89898i q^{65} +3.34847i q^{67} +(0.550510 - 0.550510i) q^{69} -8.89898 q^{71} +1.10102 q^{73} +(1.22474 - 1.22474i) q^{75} -8.89898i q^{77} -4.89898i q^{79} -9.00000 q^{81} +12.2474 q^{83} +2.00000 q^{85} +(-10.8990 - 10.8990i) q^{87} +9.79796i q^{89} +30.6969i q^{91} +(-9.79796 - 9.79796i) q^{93} +2.00000 q^{95} +9.10102 q^{97} -6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{11} - 8 q^{13} + 12 q^{21} + 8 q^{23} - 4 q^{25} + 8 q^{35} - 24 q^{37} + 24 q^{39} + 12 q^{45} + 24 q^{47} - 12 q^{49} + 24 q^{59} + 16 q^{61} - 24 q^{63} + 12 q^{69} - 16 q^{71} + 24 q^{73}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22474 + 1.22474i −0.707107 + 0.707107i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.44949i 1.68175i −0.541230 0.840875i \(-0.682041\pi\)
0.541230 0.840875i \(-0.317959\pi\)
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −6.89898 −1.91343 −0.956716 0.291022i \(-0.906005\pi\)
−0.956716 + 0.291022i \(0.906005\pi\)
\(14\) 0 0
\(15\) −1.22474 1.22474i −0.316228 0.316228i
\(16\) 0 0
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i −0.973329 0.229416i \(-0.926318\pi\)
0.973329 0.229416i \(-0.0736815\pi\)
\(20\) 0 0
\(21\) 5.44949 + 5.44949i 1.18918 + 1.18918i
\(22\) 0 0
\(23\) −0.449490 −0.0937251 −0.0468625 0.998901i \(-0.514922\pi\)
−0.0468625 + 0.998901i \(0.514922\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 3.67423 + 3.67423i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) 8.89898i 1.65250i 0.563304 + 0.826250i \(0.309530\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(30\) 0 0
\(31\) 8.00000i 1.43684i 0.695608 + 0.718421i \(0.255135\pi\)
−0.695608 + 0.718421i \(0.744865\pi\)
\(32\) 0 0
\(33\) −2.44949 + 2.44949i −0.426401 + 0.426401i
\(34\) 0 0
\(35\) 4.44949 0.752101
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 8.44949 8.44949i 1.35300 1.35300i
\(40\) 0 0
\(41\) 11.7980i 1.84253i 0.388934 + 0.921266i \(0.372844\pi\)
−0.388934 + 0.921266i \(0.627156\pi\)
\(42\) 0 0
\(43\) 1.55051i 0.236451i 0.992987 + 0.118225i \(0.0377205\pi\)
−0.992987 + 0.118225i \(0.962279\pi\)
\(44\) 0 0
\(45\) 3.00000 0.447214
\(46\) 0 0
\(47\) 3.55051 0.517895 0.258948 0.965891i \(-0.416624\pi\)
0.258948 + 0.965891i \(0.416624\pi\)
\(48\) 0 0
\(49\) −12.7980 −1.82828
\(50\) 0 0
\(51\) 2.44949 + 2.44949i 0.342997 + 0.342997i
\(52\) 0 0
\(53\) 2.89898i 0.398205i 0.979979 + 0.199103i \(0.0638027\pi\)
−0.979979 + 0.199103i \(0.936197\pi\)
\(54\) 0 0
\(55\) 2.00000i 0.269680i
\(56\) 0 0
\(57\) 2.44949 + 2.44949i 0.324443 + 0.324443i
\(58\) 0 0
\(59\) 10.8990 1.41893 0.709463 0.704743i \(-0.248937\pi\)
0.709463 + 0.704743i \(0.248937\pi\)
\(60\) 0 0
\(61\) −0.898979 −0.115103 −0.0575513 0.998343i \(-0.518329\pi\)
−0.0575513 + 0.998343i \(0.518329\pi\)
\(62\) 0 0
\(63\) −13.3485 −1.68175
\(64\) 0 0
\(65\) 6.89898i 0.855713i
\(66\) 0 0
\(67\) 3.34847i 0.409081i 0.978858 + 0.204540i \(0.0655699\pi\)
−0.978858 + 0.204540i \(0.934430\pi\)
\(68\) 0 0
\(69\) 0.550510 0.550510i 0.0662736 0.0662736i
\(70\) 0 0
\(71\) −8.89898 −1.05611 −0.528057 0.849209i \(-0.677079\pi\)
−0.528057 + 0.849209i \(0.677079\pi\)
\(72\) 0 0
\(73\) 1.10102 0.128865 0.0644324 0.997922i \(-0.479476\pi\)
0.0644324 + 0.997922i \(0.479476\pi\)
\(74\) 0 0
\(75\) 1.22474 1.22474i 0.141421 0.141421i
\(76\) 0 0
\(77\) 8.89898i 1.01413i
\(78\) 0 0
\(79\) 4.89898i 0.551178i −0.961276 0.275589i \(-0.911127\pi\)
0.961276 0.275589i \(-0.0888729\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 12.2474 1.34433 0.672166 0.740400i \(-0.265364\pi\)
0.672166 + 0.740400i \(0.265364\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) −10.8990 10.8990i −1.16849 1.16849i
\(88\) 0 0
\(89\) 9.79796i 1.03858i 0.854598 + 0.519291i \(0.173804\pi\)
−0.854598 + 0.519291i \(0.826196\pi\)
\(90\) 0 0
\(91\) 30.6969i 3.21791i
\(92\) 0 0
\(93\) −9.79796 9.79796i −1.01600 1.01600i
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 9.10102 0.924069 0.462034 0.886862i \(-0.347120\pi\)
0.462034 + 0.886862i \(0.347120\pi\)
\(98\) 0 0
\(99\) 6.00000i 0.603023i
\(100\) 0 0
\(101\) 3.10102i 0.308563i −0.988027 0.154282i \(-0.950694\pi\)
0.988027 0.154282i \(-0.0493063\pi\)
\(102\) 0 0
\(103\) 13.3485i 1.31526i 0.753339 + 0.657632i \(0.228442\pi\)
−0.753339 + 0.657632i \(0.771558\pi\)
\(104\) 0 0
\(105\) −5.44949 + 5.44949i −0.531816 + 0.531816i
\(106\) 0 0
\(107\) −10.4495 −1.01019 −0.505095 0.863064i \(-0.668543\pi\)
−0.505095 + 0.863064i \(0.668543\pi\)
\(108\) 0 0
\(109\) −12.8990 −1.23550 −0.617749 0.786375i \(-0.711955\pi\)
−0.617749 + 0.786375i \(0.711955\pi\)
\(110\) 0 0
\(111\) 7.34847 7.34847i 0.697486 0.697486i
\(112\) 0 0
\(113\) 1.10102i 0.103575i 0.998658 + 0.0517876i \(0.0164919\pi\)
−0.998658 + 0.0517876i \(0.983508\pi\)
\(114\) 0 0
\(115\) 0.449490i 0.0419151i
\(116\) 0 0
\(117\) 20.6969i 1.91343i
\(118\) 0 0
\(119\) −8.89898 −0.815768
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −14.4495 14.4495i −1.30287 1.30287i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.34847i 0.829543i −0.909926 0.414771i \(-0.863862\pi\)
0.909926 0.414771i \(-0.136138\pi\)
\(128\) 0 0
\(129\) −1.89898 1.89898i −0.167196 0.167196i
\(130\) 0 0
\(131\) −19.7980 −1.72976 −0.864878 0.501982i \(-0.832604\pi\)
−0.864878 + 0.501982i \(0.832604\pi\)
\(132\) 0 0
\(133\) −8.89898 −0.771639
\(134\) 0 0
\(135\) −3.67423 + 3.67423i −0.316228 + 0.316228i
\(136\) 0 0
\(137\) 10.8990i 0.931163i 0.885005 + 0.465581i \(0.154155\pi\)
−0.885005 + 0.465581i \(0.845845\pi\)
\(138\) 0 0
\(139\) 2.00000i 0.169638i −0.996396 0.0848189i \(-0.972969\pi\)
0.996396 0.0848189i \(-0.0270312\pi\)
\(140\) 0 0
\(141\) −4.34847 + 4.34847i −0.366207 + 0.366207i
\(142\) 0 0
\(143\) −13.7980 −1.15384
\(144\) 0 0
\(145\) −8.89898 −0.739020
\(146\) 0 0
\(147\) 15.6742 15.6742i 1.29279 1.29279i
\(148\) 0 0
\(149\) 15.7980i 1.29422i 0.762397 + 0.647110i \(0.224022\pi\)
−0.762397 + 0.647110i \(0.775978\pi\)
\(150\) 0 0
\(151\) 15.5959i 1.26918i −0.772850 0.634589i \(-0.781169\pi\)
0.772850 0.634589i \(-0.218831\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −3.55051 3.55051i −0.281574 0.281574i
\(160\) 0 0
\(161\) 2.00000i 0.157622i
\(162\) 0 0
\(163\) 10.4495i 0.818467i 0.912430 + 0.409234i \(0.134204\pi\)
−0.912430 + 0.409234i \(0.865796\pi\)
\(164\) 0 0
\(165\) −2.44949 2.44949i −0.190693 0.190693i
\(166\) 0 0
\(167\) −6.65153 −0.514711 −0.257355 0.966317i \(-0.582851\pi\)
−0.257355 + 0.966317i \(0.582851\pi\)
\(168\) 0 0
\(169\) 34.5959 2.66122
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 11.7980i 0.896982i −0.893787 0.448491i \(-0.851962\pi\)
0.893787 0.448491i \(-0.148038\pi\)
\(174\) 0 0
\(175\) 4.44949i 0.336350i
\(176\) 0 0
\(177\) −13.3485 + 13.3485i −1.00333 + 1.00333i
\(178\) 0 0
\(179\) −13.1010 −0.979216 −0.489608 0.871943i \(-0.662860\pi\)
−0.489608 + 0.871943i \(0.662860\pi\)
\(180\) 0 0
\(181\) 21.5959 1.60521 0.802606 0.596510i \(-0.203446\pi\)
0.802606 + 0.596510i \(0.203446\pi\)
\(182\) 0 0
\(183\) 1.10102 1.10102i 0.0813898 0.0813898i
\(184\) 0 0
\(185\) 6.00000i 0.441129i
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 0 0
\(189\) 16.3485 16.3485i 1.18918 1.18918i
\(190\) 0 0
\(191\) 12.8990 0.933337 0.466669 0.884432i \(-0.345454\pi\)
0.466669 + 0.884432i \(0.345454\pi\)
\(192\) 0 0
\(193\) −4.69694 −0.338093 −0.169047 0.985608i \(-0.554069\pi\)
−0.169047 + 0.985608i \(0.554069\pi\)
\(194\) 0 0
\(195\) 8.44949 + 8.44949i 0.605081 + 0.605081i
\(196\) 0 0
\(197\) 8.69694i 0.619631i 0.950797 + 0.309816i \(0.100267\pi\)
−0.950797 + 0.309816i \(0.899733\pi\)
\(198\) 0 0
\(199\) 3.10102i 0.219826i 0.993941 + 0.109913i \(0.0350571\pi\)
−0.993941 + 0.109913i \(0.964943\pi\)
\(200\) 0 0
\(201\) −4.10102 4.10102i −0.289264 0.289264i
\(202\) 0 0
\(203\) 39.5959 2.77909
\(204\) 0 0
\(205\) −11.7980 −0.824005
\(206\) 0 0
\(207\) 1.34847i 0.0937251i
\(208\) 0 0
\(209\) 4.00000i 0.276686i
\(210\) 0 0
\(211\) 9.10102i 0.626540i 0.949664 + 0.313270i \(0.101424\pi\)
−0.949664 + 0.313270i \(0.898576\pi\)
\(212\) 0 0
\(213\) 10.8990 10.8990i 0.746786 0.746786i
\(214\) 0 0
\(215\) −1.55051 −0.105744
\(216\) 0 0
\(217\) 35.5959 2.41641
\(218\) 0 0
\(219\) −1.34847 + 1.34847i −0.0911211 + 0.0911211i
\(220\) 0 0
\(221\) 13.7980i 0.928151i
\(222\) 0 0
\(223\) 7.55051i 0.505620i −0.967516 0.252810i \(-0.918645\pi\)
0.967516 0.252810i \(-0.0813547\pi\)
\(224\) 0 0
\(225\) 3.00000i 0.200000i
\(226\) 0 0
\(227\) −13.1464 −0.872559 −0.436280 0.899811i \(-0.643704\pi\)
−0.436280 + 0.899811i \(0.643704\pi\)
\(228\) 0 0
\(229\) −0.202041 −0.0133512 −0.00667562 0.999978i \(-0.502125\pi\)
−0.00667562 + 0.999978i \(0.502125\pi\)
\(230\) 0 0
\(231\) 10.8990 + 10.8990i 0.717100 + 0.717100i
\(232\) 0 0
\(233\) 7.79796i 0.510861i −0.966827 0.255431i \(-0.917783\pi\)
0.966827 0.255431i \(-0.0822172\pi\)
\(234\) 0 0
\(235\) 3.55051i 0.231610i
\(236\) 0 0
\(237\) 6.00000 + 6.00000i 0.389742 + 0.389742i
\(238\) 0 0
\(239\) −25.7980 −1.66873 −0.834366 0.551211i \(-0.814166\pi\)
−0.834366 + 0.551211i \(0.814166\pi\)
\(240\) 0 0
\(241\) 15.5959 1.00462 0.502311 0.864687i \(-0.332483\pi\)
0.502311 + 0.864687i \(0.332483\pi\)
\(242\) 0 0
\(243\) 11.0227 11.0227i 0.707107 0.707107i
\(244\) 0 0
\(245\) 12.7980i 0.817632i
\(246\) 0 0
\(247\) 13.7980i 0.877943i
\(248\) 0 0
\(249\) −15.0000 + 15.0000i −0.950586 + 0.950586i
\(250\) 0 0
\(251\) 8.20204 0.517708 0.258854 0.965916i \(-0.416655\pi\)
0.258854 + 0.965916i \(0.416655\pi\)
\(252\) 0 0
\(253\) −0.898979 −0.0565184
\(254\) 0 0
\(255\) −2.44949 + 2.44949i −0.153393 + 0.153393i
\(256\) 0 0
\(257\) 1.10102i 0.0686798i −0.999410 0.0343399i \(-0.989067\pi\)
0.999410 0.0343399i \(-0.0109329\pi\)
\(258\) 0 0
\(259\) 26.6969i 1.65887i
\(260\) 0 0
\(261\) 26.6969 1.65250
\(262\) 0 0
\(263\) 7.55051 0.465584 0.232792 0.972526i \(-0.425214\pi\)
0.232792 + 0.972526i \(0.425214\pi\)
\(264\) 0 0
\(265\) −2.89898 −0.178083
\(266\) 0 0
\(267\) −12.0000 12.0000i −0.734388 0.734388i
\(268\) 0 0
\(269\) 17.5959i 1.07284i −0.843951 0.536421i \(-0.819776\pi\)
0.843951 0.536421i \(-0.180224\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i 0.931214 + 0.364474i \(0.118751\pi\)
−0.931214 + 0.364474i \(0.881249\pi\)
\(272\) 0 0
\(273\) −37.5959 37.5959i −2.27541 2.27541i
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 24.0000 1.43684
\(280\) 0 0
\(281\) 21.5959i 1.28830i 0.764897 + 0.644152i \(0.222790\pi\)
−0.764897 + 0.644152i \(0.777210\pi\)
\(282\) 0 0
\(283\) 21.1464i 1.25702i −0.777800 0.628512i \(-0.783664\pi\)
0.777800 0.628512i \(-0.216336\pi\)
\(284\) 0 0
\(285\) −2.44949 + 2.44949i −0.145095 + 0.145095i
\(286\) 0 0
\(287\) 52.4949 3.09868
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −11.1464 + 11.1464i −0.653415 + 0.653415i
\(292\) 0 0
\(293\) 8.20204i 0.479168i 0.970876 + 0.239584i \(0.0770111\pi\)
−0.970876 + 0.239584i \(0.922989\pi\)
\(294\) 0 0
\(295\) 10.8990i 0.634563i
\(296\) 0 0
\(297\) 7.34847 + 7.34847i 0.426401 + 0.426401i
\(298\) 0 0
\(299\) 3.10102 0.179337
\(300\) 0 0
\(301\) 6.89898 0.397651
\(302\) 0 0
\(303\) 3.79796 + 3.79796i 0.218187 + 0.218187i
\(304\) 0 0
\(305\) 0.898979i 0.0514754i
\(306\) 0 0
\(307\) 12.6515i 0.722061i 0.932554 + 0.361030i \(0.117575\pi\)
−0.932554 + 0.361030i \(0.882425\pi\)
\(308\) 0 0
\(309\) −16.3485 16.3485i −0.930032 0.930032i
\(310\) 0 0
\(311\) 24.4949 1.38898 0.694489 0.719503i \(-0.255630\pi\)
0.694489 + 0.719503i \(0.255630\pi\)
\(312\) 0 0
\(313\) −19.7980 −1.11905 −0.559523 0.828815i \(-0.689016\pi\)
−0.559523 + 0.828815i \(0.689016\pi\)
\(314\) 0 0
\(315\) 13.3485i 0.752101i
\(316\) 0 0
\(317\) 8.69694i 0.488469i −0.969716 0.244234i \(-0.921463\pi\)
0.969716 0.244234i \(-0.0785366\pi\)
\(318\) 0 0
\(319\) 17.7980i 0.996494i
\(320\) 0 0
\(321\) 12.7980 12.7980i 0.714312 0.714312i
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 6.89898 0.382687
\(326\) 0 0
\(327\) 15.7980 15.7980i 0.873629 0.873629i
\(328\) 0 0
\(329\) 15.7980i 0.870970i
\(330\) 0 0
\(331\) 22.8990i 1.25864i −0.777146 0.629321i \(-0.783333\pi\)
0.777146 0.629321i \(-0.216667\pi\)
\(332\) 0 0
\(333\) 18.0000i 0.986394i
\(334\) 0 0
\(335\) −3.34847 −0.182946
\(336\) 0 0
\(337\) −23.7980 −1.29636 −0.648179 0.761488i \(-0.724469\pi\)
−0.648179 + 0.761488i \(0.724469\pi\)
\(338\) 0 0
\(339\) −1.34847 1.34847i −0.0732388 0.0732388i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 25.7980i 1.39296i
\(344\) 0 0
\(345\) 0.550510 + 0.550510i 0.0296385 + 0.0296385i
\(346\) 0 0
\(347\) −17.1464 −0.920468 −0.460234 0.887798i \(-0.652235\pi\)
−0.460234 + 0.887798i \(0.652235\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −25.3485 25.3485i −1.35300 1.35300i
\(352\) 0 0
\(353\) 22.4949i 1.19728i −0.801017 0.598641i \(-0.795708\pi\)
0.801017 0.598641i \(-0.204292\pi\)
\(354\) 0 0
\(355\) 8.89898i 0.472309i
\(356\) 0 0
\(357\) 10.8990 10.8990i 0.576835 0.576835i
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) 8.57321 8.57321i 0.449977 0.449977i
\(364\) 0 0
\(365\) 1.10102i 0.0576300i
\(366\) 0 0
\(367\) 0.449490i 0.0234632i −0.999931 0.0117316i \(-0.996266\pi\)
0.999931 0.0117316i \(-0.00373437\pi\)
\(368\) 0 0
\(369\) 35.3939 1.84253
\(370\) 0 0
\(371\) 12.8990 0.669682
\(372\) 0 0
\(373\) −33.5959 −1.73953 −0.869765 0.493466i \(-0.835730\pi\)
−0.869765 + 0.493466i \(0.835730\pi\)
\(374\) 0 0
\(375\) 1.22474 + 1.22474i 0.0632456 + 0.0632456i
\(376\) 0 0
\(377\) 61.3939i 3.16195i
\(378\) 0 0
\(379\) 10.0000i 0.513665i 0.966456 + 0.256833i \(0.0826790\pi\)
−0.966456 + 0.256833i \(0.917321\pi\)
\(380\) 0 0
\(381\) 11.4495 + 11.4495i 0.586575 + 0.586575i
\(382\) 0 0
\(383\) 0.853572 0.0436155 0.0218077 0.999762i \(-0.493058\pi\)
0.0218077 + 0.999762i \(0.493058\pi\)
\(384\) 0 0
\(385\) 8.89898 0.453534
\(386\) 0 0
\(387\) 4.65153 0.236451
\(388\) 0 0
\(389\) 19.7980i 1.00380i 0.864927 + 0.501898i \(0.167365\pi\)
−0.864927 + 0.501898i \(0.832635\pi\)
\(390\) 0 0
\(391\) 0.898979i 0.0454633i
\(392\) 0 0
\(393\) 24.2474 24.2474i 1.22312 1.22312i
\(394\) 0 0
\(395\) 4.89898 0.246494
\(396\) 0 0
\(397\) 10.4949 0.526724 0.263362 0.964697i \(-0.415169\pi\)
0.263362 + 0.964697i \(0.415169\pi\)
\(398\) 0 0
\(399\) 10.8990 10.8990i 0.545631 0.545631i
\(400\) 0 0
\(401\) 23.5959i 1.17832i −0.808015 0.589162i \(-0.799458\pi\)
0.808015 0.589162i \(-0.200542\pi\)
\(402\) 0 0
\(403\) 55.1918i 2.74930i
\(404\) 0 0
\(405\) 9.00000i 0.447214i
\(406\) 0 0
\(407\) −12.0000 −0.594818
\(408\) 0 0
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) −13.3485 13.3485i −0.658431 0.658431i
\(412\) 0 0
\(413\) 48.4949i 2.38628i
\(414\) 0 0
\(415\) 12.2474i 0.601204i
\(416\) 0 0
\(417\) 2.44949 + 2.44949i 0.119952 + 0.119952i
\(418\) 0 0
\(419\) −36.6969 −1.79276 −0.896381 0.443284i \(-0.853813\pi\)
−0.896381 + 0.443284i \(0.853813\pi\)
\(420\) 0 0
\(421\) 12.4949 0.608964 0.304482 0.952518i \(-0.401517\pi\)
0.304482 + 0.952518i \(0.401517\pi\)
\(422\) 0 0
\(423\) 10.6515i 0.517895i
\(424\) 0 0
\(425\) 2.00000i 0.0970143i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) 16.8990 16.8990i 0.815890 0.815890i
\(430\) 0 0
\(431\) 32.4949 1.56522 0.782612 0.622510i \(-0.213887\pi\)
0.782612 + 0.622510i \(0.213887\pi\)
\(432\) 0 0
\(433\) 18.8990 0.908227 0.454113 0.890944i \(-0.349956\pi\)
0.454113 + 0.890944i \(0.349956\pi\)
\(434\) 0 0
\(435\) 10.8990 10.8990i 0.522566 0.522566i
\(436\) 0 0
\(437\) 0.898979i 0.0430040i
\(438\) 0 0
\(439\) 20.4949i 0.978168i 0.872237 + 0.489084i \(0.162669\pi\)
−0.872237 + 0.489084i \(0.837331\pi\)
\(440\) 0 0
\(441\) 38.3939i 1.82828i
\(442\) 0 0
\(443\) −0.247449 −0.0117566 −0.00587832 0.999983i \(-0.501871\pi\)
−0.00587832 + 0.999983i \(0.501871\pi\)
\(444\) 0 0
\(445\) −9.79796 −0.464468
\(446\) 0 0
\(447\) −19.3485 19.3485i −0.915151 0.915151i
\(448\) 0 0
\(449\) 13.5959i 0.641631i 0.947142 + 0.320816i \(0.103957\pi\)
−0.947142 + 0.320816i \(0.896043\pi\)
\(450\) 0 0
\(451\) 23.5959i 1.11109i
\(452\) 0 0
\(453\) 19.1010 + 19.1010i 0.897444 + 0.897444i
\(454\) 0 0
\(455\) −30.6969 −1.43909
\(456\) 0 0
\(457\) −8.20204 −0.383675 −0.191838 0.981427i \(-0.561445\pi\)
−0.191838 + 0.981427i \(0.561445\pi\)
\(458\) 0 0
\(459\) 7.34847 7.34847i 0.342997 0.342997i
\(460\) 0 0
\(461\) 26.2929i 1.22458i 0.790633 + 0.612290i \(0.209752\pi\)
−0.790633 + 0.612290i \(0.790248\pi\)
\(462\) 0 0
\(463\) 37.8434i 1.75873i 0.476148 + 0.879365i \(0.342033\pi\)
−0.476148 + 0.879365i \(0.657967\pi\)
\(464\) 0 0
\(465\) 9.79796 9.79796i 0.454369 0.454369i
\(466\) 0 0
\(467\) 21.1464 0.978540 0.489270 0.872132i \(-0.337263\pi\)
0.489270 + 0.872132i \(0.337263\pi\)
\(468\) 0 0
\(469\) 14.8990 0.687971
\(470\) 0 0
\(471\) 12.2474 12.2474i 0.564333 0.564333i
\(472\) 0 0
\(473\) 3.10102i 0.142585i
\(474\) 0 0
\(475\) 2.00000i 0.0917663i
\(476\) 0 0
\(477\) 8.69694 0.398205
\(478\) 0 0
\(479\) 17.3939 0.794747 0.397373 0.917657i \(-0.369922\pi\)
0.397373 + 0.917657i \(0.369922\pi\)
\(480\) 0 0
\(481\) 41.3939 1.88740
\(482\) 0 0
\(483\) −2.44949 2.44949i −0.111456 0.111456i
\(484\) 0 0
\(485\) 9.10102i 0.413256i
\(486\) 0 0
\(487\) 2.65153i 0.120152i 0.998194 + 0.0600762i \(0.0191344\pi\)
−0.998194 + 0.0600762i \(0.980866\pi\)
\(488\) 0 0
\(489\) −12.7980 12.7980i −0.578744 0.578744i
\(490\) 0 0
\(491\) −15.7980 −0.712952 −0.356476 0.934304i \(-0.616022\pi\)
−0.356476 + 0.934304i \(0.616022\pi\)
\(492\) 0 0
\(493\) 17.7980 0.801580
\(494\) 0 0
\(495\) 6.00000 0.269680
\(496\) 0 0
\(497\) 39.5959i 1.77612i
\(498\) 0 0
\(499\) 31.3939i 1.40538i −0.711495 0.702691i \(-0.751981\pi\)
0.711495 0.702691i \(-0.248019\pi\)
\(500\) 0 0
\(501\) 8.14643 8.14643i 0.363956 0.363956i
\(502\) 0 0
\(503\) −36.9444 −1.64727 −0.823634 0.567121i \(-0.808057\pi\)
−0.823634 + 0.567121i \(0.808057\pi\)
\(504\) 0 0
\(505\) 3.10102 0.137994
\(506\) 0 0
\(507\) −42.3712 + 42.3712i −1.88177 + 1.88177i
\(508\) 0 0
\(509\) 7.10102i 0.314747i 0.987539 + 0.157374i \(0.0503027\pi\)
−0.987539 + 0.157374i \(0.949697\pi\)
\(510\) 0 0
\(511\) 4.89898i 0.216718i
\(512\) 0 0
\(513\) 7.34847 7.34847i 0.324443 0.324443i
\(514\) 0 0
\(515\) −13.3485 −0.588204
\(516\) 0 0
\(517\) 7.10102 0.312303
\(518\) 0 0
\(519\) 14.4495 + 14.4495i 0.634262 + 0.634262i
\(520\) 0 0
\(521\) 25.7980i 1.13023i 0.825012 + 0.565115i \(0.191168\pi\)
−0.825012 + 0.565115i \(0.808832\pi\)
\(522\) 0 0
\(523\) 15.7526i 0.688811i 0.938821 + 0.344405i \(0.111919\pi\)
−0.938821 + 0.344405i \(0.888081\pi\)
\(524\) 0 0
\(525\) −5.44949 5.44949i −0.237835 0.237835i
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) −22.7980 −0.991216
\(530\) 0 0
\(531\) 32.6969i 1.41893i
\(532\) 0 0
\(533\) 81.3939i 3.52556i
\(534\) 0 0
\(535\) 10.4495i 0.451771i
\(536\) 0 0
\(537\) 16.0454 16.0454i 0.692410 0.692410i
\(538\) 0 0
\(539\) −25.5959 −1.10249
\(540\) 0 0
\(541\) −26.0000 −1.11783 −0.558914 0.829226i \(-0.688782\pi\)
−0.558914 + 0.829226i \(0.688782\pi\)
\(542\) 0 0
\(543\) −26.4495 + 26.4495i −1.13506 + 1.13506i
\(544\) 0 0
\(545\) 12.8990i 0.552532i
\(546\) 0 0
\(547\) 26.0454i 1.11362i 0.830639 + 0.556811i \(0.187975\pi\)
−0.830639 + 0.556811i \(0.812025\pi\)
\(548\) 0 0
\(549\) 2.69694i 0.115103i
\(550\) 0 0
\(551\) 17.7980 0.758219
\(552\) 0 0
\(553\) −21.7980 −0.926944
\(554\) 0 0
\(555\) 7.34847 + 7.34847i 0.311925 + 0.311925i
\(556\) 0 0
\(557\) 6.00000i 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) 10.6969i 0.452432i
\(560\) 0 0
\(561\) 4.89898 + 4.89898i 0.206835 + 0.206835i
\(562\) 0 0
\(563\) −13.5505 −0.571086 −0.285543 0.958366i \(-0.592174\pi\)
−0.285543 + 0.958366i \(0.592174\pi\)
\(564\) 0 0
\(565\) −1.10102 −0.0463203
\(566\) 0 0
\(567\) 40.0454i 1.68175i
\(568\) 0 0
\(569\) 29.5959i 1.24073i −0.784315 0.620363i \(-0.786985\pi\)
0.784315 0.620363i \(-0.213015\pi\)
\(570\) 0 0
\(571\) 0.696938i 0.0291660i 0.999894 + 0.0145830i \(0.00464207\pi\)
−0.999894 + 0.0145830i \(0.995358\pi\)
\(572\) 0 0
\(573\) −15.7980 + 15.7980i −0.659969 + 0.659969i
\(574\) 0 0
\(575\) 0.449490 0.0187450
\(576\) 0 0
\(577\) 7.79796 0.324633 0.162317 0.986739i \(-0.448103\pi\)
0.162317 + 0.986739i \(0.448103\pi\)
\(578\) 0 0
\(579\) 5.75255 5.75255i 0.239068 0.239068i
\(580\) 0 0
\(581\) 54.4949i 2.26083i
\(582\) 0 0
\(583\) 5.79796i 0.240127i
\(584\) 0 0
\(585\) −20.6969 −0.855713
\(586\) 0 0
\(587\) 20.2474 0.835702 0.417851 0.908516i \(-0.362783\pi\)
0.417851 + 0.908516i \(0.362783\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −10.6515 10.6515i −0.438145 0.438145i
\(592\) 0 0
\(593\) 40.6969i 1.67122i 0.549321 + 0.835611i \(0.314886\pi\)
−0.549321 + 0.835611i \(0.685114\pi\)
\(594\) 0 0
\(595\) 8.89898i 0.364823i
\(596\) 0 0
\(597\) −3.79796 3.79796i −0.155440 0.155440i
\(598\) 0 0
\(599\) 17.3939 0.710695 0.355347 0.934734i \(-0.384363\pi\)
0.355347 + 0.934734i \(0.384363\pi\)
\(600\) 0 0
\(601\) −5.79796 −0.236504 −0.118252 0.992984i \(-0.537729\pi\)
−0.118252 + 0.992984i \(0.537729\pi\)
\(602\) 0 0
\(603\) 10.0454 0.409081
\(604\) 0 0
\(605\) 7.00000i 0.284590i
\(606\) 0 0
\(607\) 22.6515i 0.919397i 0.888075 + 0.459699i \(0.152043\pi\)
−0.888075 + 0.459699i \(0.847957\pi\)
\(608\) 0 0
\(609\) −48.4949 + 48.4949i −1.96511 + 1.96511i
\(610\) 0 0
\(611\) −24.4949 −0.990957
\(612\) 0 0
\(613\) −42.4949 −1.71635 −0.858176 0.513355i \(-0.828402\pi\)
−0.858176 + 0.513355i \(0.828402\pi\)
\(614\) 0 0
\(615\) 14.4495 14.4495i 0.582660 0.582660i
\(616\) 0 0
\(617\) 46.0000i 1.85189i 0.377658 + 0.925945i \(0.376729\pi\)
−0.377658 + 0.925945i \(0.623271\pi\)
\(618\) 0 0
\(619\) 7.79796i 0.313426i −0.987644 0.156713i \(-0.949910\pi\)
0.987644 0.156713i \(-0.0500898\pi\)
\(620\) 0 0
\(621\) −1.65153 1.65153i −0.0662736 0.0662736i
\(622\) 0 0
\(623\) 43.5959 1.74663
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 4.89898 + 4.89898i 0.195646 + 0.195646i
\(628\) 0 0
\(629\) 12.0000i 0.478471i
\(630\) 0 0
\(631\) 16.0000i 0.636950i −0.947931 0.318475i \(-0.896829\pi\)
0.947931 0.318475i \(-0.103171\pi\)
\(632\) 0 0
\(633\) −11.1464 11.1464i −0.443031 0.443031i
\(634\) 0 0
\(635\) 9.34847 0.370983
\(636\) 0 0
\(637\) 88.2929 3.49829
\(638\) 0 0
\(639\) 26.6969i 1.05611i
\(640\) 0 0
\(641\) 6.00000i 0.236986i 0.992955 + 0.118493i \(0.0378063\pi\)
−0.992955 + 0.118493i \(0.962194\pi\)
\(642\) 0 0
\(643\) 8.65153i 0.341183i −0.985342 0.170592i \(-0.945432\pi\)
0.985342 0.170592i \(-0.0545679\pi\)
\(644\) 0 0
\(645\) 1.89898 1.89898i 0.0747722 0.0747722i
\(646\) 0 0
\(647\) −5.75255 −0.226156 −0.113078 0.993586i \(-0.536071\pi\)
−0.113078 + 0.993586i \(0.536071\pi\)
\(648\) 0 0
\(649\) 21.7980 0.855645
\(650\) 0 0
\(651\) −43.5959 + 43.5959i −1.70866 + 1.70866i
\(652\) 0 0
\(653\) 10.8990i 0.426510i 0.976997 + 0.213255i \(0.0684065\pi\)
−0.976997 + 0.213255i \(0.931593\pi\)
\(654\) 0 0
\(655\) 19.7980i 0.773570i
\(656\) 0 0
\(657\) 3.30306i 0.128865i
\(658\) 0 0
\(659\) 14.4949 0.564641 0.282321 0.959320i \(-0.408896\pi\)
0.282321 + 0.959320i \(0.408896\pi\)
\(660\) 0 0
\(661\) −16.8990 −0.657294 −0.328647 0.944453i \(-0.606593\pi\)
−0.328647 + 0.944453i \(0.606593\pi\)
\(662\) 0 0
\(663\) −16.8990 16.8990i −0.656302 0.656302i
\(664\) 0 0
\(665\) 8.89898i 0.345088i
\(666\) 0 0
\(667\) 4.00000i 0.154881i
\(668\) 0 0
\(669\) 9.24745 + 9.24745i 0.357527 + 0.357527i
\(670\) 0 0
\(671\) −1.79796 −0.0694094
\(672\) 0 0
\(673\) −32.6969 −1.26037 −0.630187 0.776443i \(-0.717022\pi\)
−0.630187 + 0.776443i \(0.717022\pi\)
\(674\) 0 0
\(675\) −3.67423 3.67423i −0.141421 0.141421i
\(676\) 0 0
\(677\) 16.6969i 0.641715i 0.947127 + 0.320858i \(0.103971\pi\)
−0.947127 + 0.320858i \(0.896029\pi\)
\(678\) 0 0
\(679\) 40.4949i 1.55405i
\(680\) 0 0
\(681\) 16.1010 16.1010i 0.616992 0.616992i
\(682\) 0 0
\(683\) 19.3485 0.740349 0.370174 0.928962i \(-0.379298\pi\)
0.370174 + 0.928962i \(0.379298\pi\)
\(684\) 0 0
\(685\) −10.8990 −0.416429
\(686\) 0 0
\(687\) 0.247449 0.247449i 0.00944076 0.00944076i
\(688\) 0 0
\(689\) 20.0000i 0.761939i
\(690\) 0 0
\(691\) 8.69694i 0.330847i 0.986223 + 0.165424i \(0.0528991\pi\)
−0.986223 + 0.165424i \(0.947101\pi\)
\(692\) 0 0
\(693\) −26.6969 −1.01413
\(694\) 0 0
\(695\) 2.00000 0.0758643
\(696\) 0 0
\(697\) 23.5959 0.893759
\(698\) 0 0
\(699\) 9.55051 + 9.55051i 0.361233 + 0.361233i
\(700\) 0 0
\(701\) 15.3939i 0.581419i 0.956811 + 0.290709i \(0.0938913\pi\)
−0.956811 + 0.290709i \(0.906109\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 0 0
\(705\) −4.34847 4.34847i −0.163773 0.163773i
\(706\) 0 0
\(707\) −13.7980 −0.518926
\(708\) 0 0
\(709\) 24.2020 0.908927 0.454463 0.890765i \(-0.349831\pi\)
0.454463 + 0.890765i \(0.349831\pi\)
\(710\) 0 0
\(711\) −14.6969 −0.551178
\(712\) 0 0
\(713\) 3.59592i 0.134668i
\(714\) 0 0
\(715\) 13.7980i 0.516014i
\(716\) 0 0
\(717\) 31.5959 31.5959i 1.17997 1.17997i
\(718\) 0 0
\(719\) −25.3939 −0.947032 −0.473516 0.880785i \(-0.657015\pi\)
−0.473516 + 0.880785i \(0.657015\pi\)
\(720\) 0 0
\(721\) 59.3939 2.21194
\(722\) 0 0
\(723\) −19.1010 + 19.1010i −0.710375 + 0.710375i
\(724\) 0 0
\(725\) 8.89898i 0.330500i
\(726\) 0 0
\(727\) 31.1464i 1.15516i −0.816335 0.577579i \(-0.803998\pi\)
0.816335 0.577579i \(-0.196002\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 3.10102 0.114695
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 15.6742 + 15.6742i 0.578153 + 0.578153i
\(736\) 0 0
\(737\) 6.69694i 0.246685i
\(738\) 0 0
\(739\) 15.7980i 0.581137i 0.956854 + 0.290569i \(0.0938445\pi\)
−0.956854 + 0.290569i \(0.906156\pi\)
\(740\) 0 0
\(741\) −16.8990 16.8990i −0.620800 0.620800i
\(742\) 0 0
\(743\) −35.1464 −1.28940 −0.644699 0.764437i \(-0.723017\pi\)
−0.644699 + 0.764437i \(0.723017\pi\)
\(744\) 0 0
\(745\) −15.7980 −0.578792
\(746\) 0 0
\(747\) 36.7423i 1.34433i
\(748\) 0 0
\(749\) 46.4949i 1.69889i
\(750\) 0 0
\(751\) 49.3939i 1.80241i −0.433395 0.901204i \(-0.642684\pi\)
0.433395 0.901204i \(-0.357316\pi\)
\(752\) 0 0
\(753\) −10.0454 + 10.0454i −0.366075 + 0.366075i
\(754\) 0 0
\(755\) 15.5959 0.567594
\(756\) 0 0
\(757\) −39.3939 −1.43179 −0.715897 0.698205i \(-0.753982\pi\)
−0.715897 + 0.698205i \(0.753982\pi\)
\(758\) 0 0
\(759\) 1.10102 1.10102i 0.0399645 0.0399645i
\(760\) 0 0
\(761\) 14.2020i 0.514824i −0.966302 0.257412i \(-0.917130\pi\)
0.966302 0.257412i \(-0.0828697\pi\)
\(762\) 0 0
\(763\) 57.3939i 2.07780i
\(764\) 0 0
\(765\) 6.00000i 0.216930i
\(766\) 0 0
\(767\) −75.1918 −2.71502
\(768\) 0 0
\(769\) −12.2020 −0.440017 −0.220008 0.975498i \(-0.570608\pi\)
−0.220008 + 0.975498i \(0.570608\pi\)
\(770\) 0 0
\(771\) 1.34847 + 1.34847i 0.0485639 + 0.0485639i
\(772\) 0 0
\(773\) 4.69694i 0.168937i −0.996426 0.0844686i \(-0.973081\pi\)
0.996426 0.0844686i \(-0.0269193\pi\)
\(774\) 0 0
\(775\) 8.00000i 0.287368i
\(776\) 0 0
\(777\) −32.6969 32.6969i −1.17300 1.17300i
\(778\) 0 0
\(779\) 23.5959 0.845411
\(780\) 0 0
\(781\) −17.7980 −0.636861
\(782\) 0 0
\(783\) −32.6969 + 32.6969i −1.16849 + 1.16849i
\(784\) 0 0
\(785\) 10.0000i 0.356915i
\(786\) 0 0
\(787\) 21.1464i 0.753789i −0.926256 0.376894i \(-0.876992\pi\)
0.926256 0.376894i \(-0.123008\pi\)
\(788\) 0 0
\(789\) −9.24745 + 9.24745i −0.329218 + 0.329218i
\(790\) 0 0
\(791\) 4.89898 0.174188
\(792\) 0 0
\(793\) 6.20204 0.220241
\(794\) 0 0
\(795\) 3.55051 3.55051i 0.125924 0.125924i
\(796\) 0 0
\(797\) 10.8990i 0.386062i 0.981193 + 0.193031i \(0.0618317\pi\)
−0.981193 + 0.193031i \(0.938168\pi\)
\(798\) 0 0
\(799\) 7.10102i 0.251216i
\(800\) 0 0
\(801\) 29.3939 1.03858
\(802\) 0 0
\(803\) 2.20204 0.0777083
\(804\) 0 0
\(805\) −2.00000 −0.0704907
\(806\) 0 0
\(807\) 21.5505 + 21.5505i 0.758614 + 0.758614i
\(808\) 0 0
\(809\) 47.5959i 1.67338i −0.547674 0.836692i \(-0.684487\pi\)
0.547674 0.836692i \(-0.315513\pi\)
\(810\) 0 0
\(811\) 50.4949i 1.77312i −0.462618 0.886558i \(-0.653090\pi\)
0.462618 0.886558i \(-0.346910\pi\)
\(812\) 0 0
\(813\) −14.6969 14.6969i −0.515444 0.515444i
\(814\) 0 0
\(815\) −10.4495 −0.366030
\(816\) 0 0
\(817\) 3.10102 0.108491
\(818\) 0 0
\(819\) 92.0908 3.21791
\(820\) 0 0
\(821\) 1.59592i 0.0556979i −0.999612 0.0278490i \(-0.991134\pi\)
0.999612 0.0278490i \(-0.00886575\pi\)
\(822\) 0 0
\(823\) 12.4495i 0.433962i −0.976176 0.216981i \(-0.930379\pi\)
0.976176 0.216981i \(-0.0696210\pi\)
\(824\) 0 0
\(825\) 2.44949 2.44949i 0.0852803 0.0852803i
\(826\) 0 0
\(827\) 33.1464 1.15261 0.576307 0.817233i \(-0.304493\pi\)
0.576307 + 0.817233i \(0.304493\pi\)
\(828\) 0 0
\(829\) 24.4949 0.850743 0.425371 0.905019i \(-0.360143\pi\)
0.425371 + 0.905019i \(0.360143\pi\)
\(830\) 0 0
\(831\) 2.44949 2.44949i 0.0849719 0.0849719i
\(832\) 0 0
\(833\) 25.5959i 0.886846i
\(834\) 0 0
\(835\) 6.65153i 0.230186i
\(836\) 0 0
\(837\) −29.3939 + 29.3939i −1.01600 + 1.01600i
\(838\) 0 0
\(839\) −1.79796 −0.0620724 −0.0310362 0.999518i \(-0.509881\pi\)
−0.0310362 + 0.999518i \(0.509881\pi\)
\(840\) 0 0
\(841\) −50.1918 −1.73075
\(842\) 0 0
\(843\) −26.4495 26.4495i −0.910969 0.910969i
\(844\) 0 0
\(845\) 34.5959i 1.19014i
\(846\) 0 0
\(847\) 31.1464i 1.07020i
\(848\) 0 0
\(849\) 25.8990 + 25.8990i 0.888851 + 0.888851i
\(850\) 0 0
\(851\) 2.69694 0.0924499
\(852\) 0 0
\(853\) 41.1010 1.40727 0.703636 0.710561i \(-0.251559\pi\)
0.703636 + 0.710561i \(0.251559\pi\)
\(854\) 0 0
\(855\) 6.00000i 0.205196i
\(856\) 0 0
\(857\) 20.6969i 0.706994i 0.935436 + 0.353497i \(0.115008\pi\)
−0.935436 + 0.353497i \(0.884992\pi\)
\(858\) 0 0
\(859\) 1.59592i 0.0544520i 0.999629 + 0.0272260i \(0.00866738\pi\)
−0.999629 + 0.0272260i \(0.991333\pi\)
\(860\) 0 0
\(861\) −64.2929 + 64.2929i −2.19109 + 2.19109i
\(862\) 0 0
\(863\) −8.94439 −0.304470 −0.152235 0.988344i \(-0.548647\pi\)
−0.152235 + 0.988344i \(0.548647\pi\)
\(864\) 0 0
\(865\) 11.7980 0.401143
\(866\) 0 0
\(867\) −15.9217 + 15.9217i −0.540729 + 0.540729i
\(868\) 0 0
\(869\) 9.79796i 0.332373i
\(870\) 0 0
\(871\) 23.1010i 0.782748i
\(872\) 0 0
\(873\) 27.3031i 0.924069i
\(874\) 0 0
\(875\) −4.44949 −0.150420
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) 0 0
\(879\) −10.0454 10.0454i −0.338823 0.338823i
\(880\) 0 0
\(881\) 27.7980i 0.936537i 0.883586 + 0.468269i \(0.155122\pi\)
−0.883586 + 0.468269i \(0.844878\pi\)
\(882\) 0 0
\(883\) 13.5505i 0.456011i −0.973660 0.228005i \(-0.926780\pi\)
0.973660 0.228005i \(-0.0732204\pi\)
\(884\) 0 0
\(885\) −13.3485 13.3485i −0.448704 0.448704i
\(886\) 0 0
\(887\) 12.8536 0.431581 0.215790 0.976440i \(-0.430767\pi\)
0.215790 + 0.976440i \(0.430767\pi\)
\(888\) 0 0
\(889\) −41.5959 −1.39508
\(890\) 0 0
\(891\) −18.0000 −0.603023
\(892\) 0 0
\(893\) 7.10102i 0.237627i
\(894\) 0 0
\(895\) 13.1010i 0.437919i
\(896\) 0 0
\(897\) −3.79796 + 3.79796i −0.126810 + 0.126810i
\(898\) 0 0
\(899\) −71.1918 −2.37438
\(900\) 0 0
\(901\) 5.79796 0.193158
\(902\) 0 0
\(903\) −8.44949 + 8.44949i −0.281181 + 0.281181i
\(904\) 0 0
\(905\) 21.5959i 0.717873i
\(906\) 0 0
\(907\) 50.9444i 1.69158i 0.533515 + 0.845790i \(0.320871\pi\)
−0.533515 + 0.845790i \(0.679129\pi\)
\(908\) 0 0
\(909\) −9.30306 −0.308563
\(910\) 0 0
\(911\) −14.6969 −0.486931 −0.243466 0.969910i \(-0.578284\pi\)
−0.243466 + 0.969910i \(0.578284\pi\)
\(912\) 0 0
\(913\) 24.4949 0.810663
\(914\) 0 0
\(915\) 1.10102 + 1.10102i 0.0363986 + 0.0363986i
\(916\) 0 0
\(917\) 88.0908i 2.90902i
\(918\) 0 0
\(919\) 4.49490i 0.148273i −0.997248 0.0741365i \(-0.976380\pi\)
0.997248 0.0741365i \(-0.0236200\pi\)
\(920\) 0 0
\(921\) −15.4949 15.4949i −0.510574 0.510574i
\(922\) 0 0
\(923\) 61.3939 2.02080
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) 40.0454 1.31526
\(928\) 0 0
\(929\) 34.0000i 1.11550i −0.830008 0.557752i \(-0.811664\pi\)
0.830008 0.557752i \(-0.188336\pi\)
\(930\) 0 0
\(931\) 25.5959i 0.838872i
\(932\) 0 0
\(933\) −30.0000 + 30.0000i −0.982156 + 0.982156i
\(934\) 0 0
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) −46.4949 −1.51892 −0.759461 0.650553i \(-0.774537\pi\)
−0.759461 + 0.650553i \(0.774537\pi\)
\(938\) 0 0
\(939\) 24.2474 24.2474i 0.791286 0.791286i
\(940\) 0 0
\(941\) 24.4949i 0.798511i 0.916840 + 0.399255i \(0.130731\pi\)
−0.916840 + 0.399255i \(0.869269\pi\)
\(942\) 0 0
\(943\) 5.30306i 0.172691i
\(944\) 0 0
\(945\) 16.3485 + 16.3485i 0.531816 + 0.531816i
\(946\) 0 0
\(947\) −1.55051 −0.0503848 −0.0251924 0.999683i \(-0.508020\pi\)
−0.0251924 + 0.999683i \(0.508020\pi\)
\(948\) 0 0
\(949\) −7.59592 −0.246574
\(950\) 0 0
\(951\) 10.6515 + 10.6515i 0.345400 + 0.345400i
\(952\) 0 0
\(953\) 1.10102i 0.0356656i 0.999841 + 0.0178328i \(0.00567665\pi\)
−0.999841 + 0.0178328i \(0.994323\pi\)
\(954\) 0 0
\(955\) 12.8990i 0.417401i
\(956\) 0 0
\(957\) −21.7980 21.7980i −0.704628 0.704628i
\(958\) 0 0
\(959\) 48.4949 1.56598
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) 31.3485i 1.01019i
\(964\) 0 0
\(965\) 4.69694i 0.151200i
\(966\) 0 0
\(967\) 30.2474i 0.972692i −0.873766 0.486346i \(-0.838329\pi\)
0.873766 0.486346i \(-0.161671\pi\)
\(968\) 0 0
\(969\) 4.89898 4.89898i 0.157378 0.157378i
\(970\) 0 0
\(971\) 39.7980 1.27718 0.638589 0.769548i \(-0.279519\pi\)
0.638589 + 0.769548i \(0.279519\pi\)
\(972\) 0 0
\(973\) −8.89898 −0.285288
\(974\) 0 0
\(975\) −8.44949 + 8.44949i −0.270600 + 0.270600i
\(976\) 0 0
\(977\) 33.1918i 1.06190i 0.847403 + 0.530950i \(0.178165\pi\)
−0.847403 + 0.530950i \(0.821835\pi\)
\(978\) 0 0
\(979\) 19.5959i 0.626288i
\(980\) 0 0
\(981\) 38.6969i 1.23550i
\(982\) 0 0
\(983\) 52.0454 1.65999 0.829995 0.557770i \(-0.188343\pi\)
0.829995 + 0.557770i \(0.188343\pi\)
\(984\) 0 0
\(985\) −8.69694 −0.277108
\(986\) 0 0
\(987\) 19.3485 + 19.3485i 0.615869 + 0.615869i
\(988\) 0 0
\(989\) 0.696938i 0.0221614i
\(990\) 0 0
\(991\) 31.1918i 0.990841i −0.868653 0.495421i \(-0.835014\pi\)
0.868653 0.495421i \(-0.164986\pi\)
\(992\) 0 0
\(993\) 28.0454 + 28.0454i 0.889994 + 0.889994i
\(994\) 0 0
\(995\) −3.10102 −0.0983090
\(996\) 0 0
\(997\) −46.0908 −1.45971 −0.729855 0.683602i \(-0.760413\pi\)
−0.729855 + 0.683602i \(0.760413\pi\)
\(998\) 0 0
\(999\) −22.0454 22.0454i −0.697486 0.697486i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.h.i.1151.2 yes 4
3.2 odd 2 1920.2.h.g.1151.4 yes 4
4.3 odd 2 1920.2.h.g.1151.3 4
8.3 odd 2 1920.2.h.j.1151.2 yes 4
8.5 even 2 1920.2.h.h.1151.3 yes 4
12.11 even 2 inner 1920.2.h.i.1151.1 yes 4
24.5 odd 2 1920.2.h.j.1151.1 yes 4
24.11 even 2 1920.2.h.h.1151.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.h.g.1151.3 4 4.3 odd 2
1920.2.h.g.1151.4 yes 4 3.2 odd 2
1920.2.h.h.1151.3 yes 4 8.5 even 2
1920.2.h.h.1151.4 yes 4 24.11 even 2
1920.2.h.i.1151.1 yes 4 12.11 even 2 inner
1920.2.h.i.1151.2 yes 4 1.1 even 1 trivial
1920.2.h.j.1151.1 yes 4 24.5 odd 2
1920.2.h.j.1151.2 yes 4 8.3 odd 2