Properties

Label 1920.2.h.l.1151.4
Level $1920$
Weight $2$
Character 1920.1151
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1151,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.4
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1151
Dual form 1920.2.h.l.1151.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61803 + 0.618034i) q^{3} +1.00000i q^{5} -2.00000i q^{7} +(2.23607 + 2.00000i) q^{9} -6.47214 q^{11} +3.23607 q^{13} +(-0.618034 + 1.61803i) q^{15} +5.23607i q^{17} -0.763932i q^{19} +(1.23607 - 3.23607i) q^{21} +8.47214 q^{23} -1.00000 q^{25} +(2.38197 + 4.61803i) q^{27} +0.472136i q^{29} +9.23607i q^{31} +(-10.4721 - 4.00000i) q^{33} +2.00000 q^{35} +5.70820 q^{37} +(5.23607 + 2.00000i) q^{39} +10.4721i q^{41} +3.70820i q^{43} +(-2.00000 + 2.23607i) q^{45} +4.47214 q^{47} +3.00000 q^{49} +(-3.23607 + 8.47214i) q^{51} +4.47214i q^{53} -6.47214i q^{55} +(0.472136 - 1.23607i) q^{57} -2.47214 q^{59} -3.52786 q^{61} +(4.00000 - 4.47214i) q^{63} +3.23607i q^{65} -6.76393i q^{67} +(13.7082 + 5.23607i) q^{69} -4.00000 q^{71} +8.47214 q^{73} +(-1.61803 - 0.618034i) q^{75} +12.9443i q^{77} -14.1803i q^{79} +(1.00000 + 8.94427i) q^{81} +1.70820 q^{83} -5.23607 q^{85} +(-0.291796 + 0.763932i) q^{87} -10.4721i q^{89} -6.47214i q^{91} +(-5.70820 + 14.9443i) q^{93} +0.763932 q^{95} -3.52786 q^{97} +(-14.4721 - 12.9443i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 8 q^{11} + 4 q^{13} + 2 q^{15} - 4 q^{21} + 16 q^{23} - 4 q^{25} + 14 q^{27} - 24 q^{33} + 8 q^{35} - 4 q^{37} + 12 q^{39} - 8 q^{45} + 12 q^{49} - 4 q^{51} - 16 q^{57} + 8 q^{59} - 32 q^{61}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61803 + 0.618034i 0.934172 + 0.356822i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 2.23607 + 2.00000i 0.745356 + 0.666667i
\(10\) 0 0
\(11\) −6.47214 −1.95142 −0.975711 0.219061i \(-0.929701\pi\)
−0.975711 + 0.219061i \(0.929701\pi\)
\(12\) 0 0
\(13\) 3.23607 0.897524 0.448762 0.893651i \(-0.351865\pi\)
0.448762 + 0.893651i \(0.351865\pi\)
\(14\) 0 0
\(15\) −0.618034 + 1.61803i −0.159576 + 0.417775i
\(16\) 0 0
\(17\) 5.23607i 1.26993i 0.772540 + 0.634967i \(0.218986\pi\)
−0.772540 + 0.634967i \(0.781014\pi\)
\(18\) 0 0
\(19\) 0.763932i 0.175258i −0.996153 0.0876290i \(-0.972071\pi\)
0.996153 0.0876290i \(-0.0279290\pi\)
\(20\) 0 0
\(21\) 1.23607 3.23607i 0.269732 0.706168i
\(22\) 0 0
\(23\) 8.47214 1.76656 0.883281 0.468844i \(-0.155329\pi\)
0.883281 + 0.468844i \(0.155329\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 2.38197 + 4.61803i 0.458410 + 0.888741i
\(28\) 0 0
\(29\) 0.472136i 0.0876734i 0.999039 + 0.0438367i \(0.0139581\pi\)
−0.999039 + 0.0438367i \(0.986042\pi\)
\(30\) 0 0
\(31\) 9.23607i 1.65885i 0.558620 + 0.829423i \(0.311331\pi\)
−0.558620 + 0.829423i \(0.688669\pi\)
\(32\) 0 0
\(33\) −10.4721 4.00000i −1.82296 0.696311i
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 5.70820 0.938423 0.469211 0.883086i \(-0.344538\pi\)
0.469211 + 0.883086i \(0.344538\pi\)
\(38\) 0 0
\(39\) 5.23607 + 2.00000i 0.838442 + 0.320256i
\(40\) 0 0
\(41\) 10.4721i 1.63547i 0.575593 + 0.817736i \(0.304771\pi\)
−0.575593 + 0.817736i \(0.695229\pi\)
\(42\) 0 0
\(43\) 3.70820i 0.565496i 0.959194 + 0.282748i \(0.0912460\pi\)
−0.959194 + 0.282748i \(0.908754\pi\)
\(44\) 0 0
\(45\) −2.00000 + 2.23607i −0.298142 + 0.333333i
\(46\) 0 0
\(47\) 4.47214 0.652328 0.326164 0.945313i \(-0.394244\pi\)
0.326164 + 0.945313i \(0.394244\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −3.23607 + 8.47214i −0.453140 + 1.18634i
\(52\) 0 0
\(53\) 4.47214i 0.614295i 0.951662 + 0.307148i \(0.0993745\pi\)
−0.951662 + 0.307148i \(0.900625\pi\)
\(54\) 0 0
\(55\) 6.47214i 0.872703i
\(56\) 0 0
\(57\) 0.472136 1.23607i 0.0625359 0.163721i
\(58\) 0 0
\(59\) −2.47214 −0.321845 −0.160922 0.986967i \(-0.551447\pi\)
−0.160922 + 0.986967i \(0.551447\pi\)
\(60\) 0 0
\(61\) −3.52786 −0.451697 −0.225848 0.974162i \(-0.572515\pi\)
−0.225848 + 0.974162i \(0.572515\pi\)
\(62\) 0 0
\(63\) 4.00000 4.47214i 0.503953 0.563436i
\(64\) 0 0
\(65\) 3.23607i 0.401385i
\(66\) 0 0
\(67\) 6.76393i 0.826346i −0.910653 0.413173i \(-0.864421\pi\)
0.910653 0.413173i \(-0.135579\pi\)
\(68\) 0 0
\(69\) 13.7082 + 5.23607i 1.65027 + 0.630349i
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) 8.47214 0.991589 0.495794 0.868440i \(-0.334877\pi\)
0.495794 + 0.868440i \(0.334877\pi\)
\(74\) 0 0
\(75\) −1.61803 0.618034i −0.186834 0.0713644i
\(76\) 0 0
\(77\) 12.9443i 1.47514i
\(78\) 0 0
\(79\) 14.1803i 1.59541i −0.603046 0.797706i \(-0.706046\pi\)
0.603046 0.797706i \(-0.293954\pi\)
\(80\) 0 0
\(81\) 1.00000 + 8.94427i 0.111111 + 0.993808i
\(82\) 0 0
\(83\) 1.70820 0.187500 0.0937499 0.995596i \(-0.470115\pi\)
0.0937499 + 0.995596i \(0.470115\pi\)
\(84\) 0 0
\(85\) −5.23607 −0.567931
\(86\) 0 0
\(87\) −0.291796 + 0.763932i −0.0312838 + 0.0819021i
\(88\) 0 0
\(89\) 10.4721i 1.11004i −0.831836 0.555022i \(-0.812710\pi\)
0.831836 0.555022i \(-0.187290\pi\)
\(90\) 0 0
\(91\) 6.47214i 0.678464i
\(92\) 0 0
\(93\) −5.70820 + 14.9443i −0.591913 + 1.54965i
\(94\) 0 0
\(95\) 0.763932 0.0783778
\(96\) 0 0
\(97\) −3.52786 −0.358200 −0.179100 0.983831i \(-0.557319\pi\)
−0.179100 + 0.983831i \(0.557319\pi\)
\(98\) 0 0
\(99\) −14.4721 12.9443i −1.45450 1.30095i
\(100\) 0 0
\(101\) 9.41641i 0.936968i −0.883472 0.468484i \(-0.844800\pi\)
0.883472 0.468484i \(-0.155200\pi\)
\(102\) 0 0
\(103\) 8.47214i 0.834784i −0.908726 0.417392i \(-0.862944\pi\)
0.908726 0.417392i \(-0.137056\pi\)
\(104\) 0 0
\(105\) 3.23607 + 1.23607i 0.315808 + 0.120628i
\(106\) 0 0
\(107\) −8.76393 −0.847241 −0.423621 0.905840i \(-0.639241\pi\)
−0.423621 + 0.905840i \(0.639241\pi\)
\(108\) 0 0
\(109\) −18.9443 −1.81453 −0.907266 0.420557i \(-0.861835\pi\)
−0.907266 + 0.420557i \(0.861835\pi\)
\(110\) 0 0
\(111\) 9.23607 + 3.52786i 0.876649 + 0.334850i
\(112\) 0 0
\(113\) 19.1246i 1.79909i 0.436826 + 0.899546i \(0.356103\pi\)
−0.436826 + 0.899546i \(0.643897\pi\)
\(114\) 0 0
\(115\) 8.47214i 0.790031i
\(116\) 0 0
\(117\) 7.23607 + 6.47214i 0.668975 + 0.598349i
\(118\) 0 0
\(119\) 10.4721 0.959979
\(120\) 0 0
\(121\) 30.8885 2.80805
\(122\) 0 0
\(123\) −6.47214 + 16.9443i −0.583573 + 1.52781i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 10.0000i 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(128\) 0 0
\(129\) −2.29180 + 6.00000i −0.201781 + 0.528271i
\(130\) 0 0
\(131\) −13.8885 −1.21345 −0.606724 0.794913i \(-0.707517\pi\)
−0.606724 + 0.794913i \(0.707517\pi\)
\(132\) 0 0
\(133\) −1.52786 −0.132483
\(134\) 0 0
\(135\) −4.61803 + 2.38197i −0.397457 + 0.205007i
\(136\) 0 0
\(137\) 12.6525i 1.08097i −0.841352 0.540487i \(-0.818240\pi\)
0.841352 0.540487i \(-0.181760\pi\)
\(138\) 0 0
\(139\) 8.18034i 0.693847i 0.937893 + 0.346924i \(0.112774\pi\)
−0.937893 + 0.346924i \(0.887226\pi\)
\(140\) 0 0
\(141\) 7.23607 + 2.76393i 0.609387 + 0.232765i
\(142\) 0 0
\(143\) −20.9443 −1.75145
\(144\) 0 0
\(145\) −0.472136 −0.0392088
\(146\) 0 0
\(147\) 4.85410 + 1.85410i 0.400360 + 0.152924i
\(148\) 0 0
\(149\) 10.0000i 0.819232i 0.912258 + 0.409616i \(0.134337\pi\)
−0.912258 + 0.409616i \(0.865663\pi\)
\(150\) 0 0
\(151\) 1.23607i 0.100590i 0.998734 + 0.0502949i \(0.0160161\pi\)
−0.998734 + 0.0502949i \(0.983984\pi\)
\(152\) 0 0
\(153\) −10.4721 + 11.7082i −0.846622 + 0.946552i
\(154\) 0 0
\(155\) −9.23607 −0.741859
\(156\) 0 0
\(157\) −1.70820 −0.136330 −0.0681648 0.997674i \(-0.521714\pi\)
−0.0681648 + 0.997674i \(0.521714\pi\)
\(158\) 0 0
\(159\) −2.76393 + 7.23607i −0.219194 + 0.573858i
\(160\) 0 0
\(161\) 16.9443i 1.33540i
\(162\) 0 0
\(163\) 1.23607i 0.0968163i −0.998828 0.0484082i \(-0.984585\pi\)
0.998828 0.0484082i \(-0.0154148\pi\)
\(164\) 0 0
\(165\) 4.00000 10.4721i 0.311400 0.815255i
\(166\) 0 0
\(167\) 14.9443 1.15642 0.578211 0.815887i \(-0.303751\pi\)
0.578211 + 0.815887i \(0.303751\pi\)
\(168\) 0 0
\(169\) −2.52786 −0.194451
\(170\) 0 0
\(171\) 1.52786 1.70820i 0.116839 0.130630i
\(172\) 0 0
\(173\) 11.5279i 0.876447i −0.898866 0.438224i \(-0.855608\pi\)
0.898866 0.438224i \(-0.144392\pi\)
\(174\) 0 0
\(175\) 2.00000i 0.151186i
\(176\) 0 0
\(177\) −4.00000 1.52786i −0.300658 0.114841i
\(178\) 0 0
\(179\) 10.4721 0.782724 0.391362 0.920237i \(-0.372004\pi\)
0.391362 + 0.920237i \(0.372004\pi\)
\(180\) 0 0
\(181\) 13.4164 0.997234 0.498617 0.866822i \(-0.333841\pi\)
0.498617 + 0.866822i \(0.333841\pi\)
\(182\) 0 0
\(183\) −5.70820 2.18034i −0.421963 0.161175i
\(184\) 0 0
\(185\) 5.70820i 0.419675i
\(186\) 0 0
\(187\) 33.8885i 2.47818i
\(188\) 0 0
\(189\) 9.23607 4.76393i 0.671825 0.346525i
\(190\) 0 0
\(191\) −5.52786 −0.399982 −0.199991 0.979798i \(-0.564091\pi\)
−0.199991 + 0.979798i \(0.564091\pi\)
\(192\) 0 0
\(193\) −14.9443 −1.07571 −0.537856 0.843037i \(-0.680766\pi\)
−0.537856 + 0.843037i \(0.680766\pi\)
\(194\) 0 0
\(195\) −2.00000 + 5.23607i −0.143223 + 0.374963i
\(196\) 0 0
\(197\) 10.0000i 0.712470i 0.934396 + 0.356235i \(0.115940\pi\)
−0.934396 + 0.356235i \(0.884060\pi\)
\(198\) 0 0
\(199\) 4.29180i 0.304237i −0.988362 0.152119i \(-0.951390\pi\)
0.988362 0.152119i \(-0.0486096\pi\)
\(200\) 0 0
\(201\) 4.18034 10.9443i 0.294858 0.771949i
\(202\) 0 0
\(203\) 0.944272 0.0662749
\(204\) 0 0
\(205\) −10.4721 −0.731406
\(206\) 0 0
\(207\) 18.9443 + 16.9443i 1.31672 + 1.17771i
\(208\) 0 0
\(209\) 4.94427i 0.342002i
\(210\) 0 0
\(211\) 13.7082i 0.943712i −0.881676 0.471856i \(-0.843584\pi\)
0.881676 0.471856i \(-0.156416\pi\)
\(212\) 0 0
\(213\) −6.47214 2.47214i −0.443463 0.169388i
\(214\) 0 0
\(215\) −3.70820 −0.252897
\(216\) 0 0
\(217\) 18.4721 1.25397
\(218\) 0 0
\(219\) 13.7082 + 5.23607i 0.926315 + 0.353821i
\(220\) 0 0
\(221\) 16.9443i 1.13980i
\(222\) 0 0
\(223\) 14.9443i 1.00074i −0.865811 0.500371i \(-0.833197\pi\)
0.865811 0.500371i \(-0.166803\pi\)
\(224\) 0 0
\(225\) −2.23607 2.00000i −0.149071 0.133333i
\(226\) 0 0
\(227\) 6.29180 0.417601 0.208801 0.977958i \(-0.433044\pi\)
0.208801 + 0.977958i \(0.433044\pi\)
\(228\) 0 0
\(229\) 2.94427 0.194563 0.0972815 0.995257i \(-0.468985\pi\)
0.0972815 + 0.995257i \(0.468985\pi\)
\(230\) 0 0
\(231\) −8.00000 + 20.9443i −0.526361 + 1.37803i
\(232\) 0 0
\(233\) 3.70820i 0.242933i −0.992596 0.121466i \(-0.961240\pi\)
0.992596 0.121466i \(-0.0387596\pi\)
\(234\) 0 0
\(235\) 4.47214i 0.291730i
\(236\) 0 0
\(237\) 8.76393 22.9443i 0.569279 1.49039i
\(238\) 0 0
\(239\) 3.41641 0.220989 0.110495 0.993877i \(-0.464757\pi\)
0.110495 + 0.993877i \(0.464757\pi\)
\(240\) 0 0
\(241\) 5.05573 0.325668 0.162834 0.986653i \(-0.447936\pi\)
0.162834 + 0.986653i \(0.447936\pi\)
\(242\) 0 0
\(243\) −3.90983 + 15.0902i −0.250816 + 0.968035i
\(244\) 0 0
\(245\) 3.00000i 0.191663i
\(246\) 0 0
\(247\) 2.47214i 0.157298i
\(248\) 0 0
\(249\) 2.76393 + 1.05573i 0.175157 + 0.0669040i
\(250\) 0 0
\(251\) 1.52786 0.0964379 0.0482190 0.998837i \(-0.484645\pi\)
0.0482190 + 0.998837i \(0.484645\pi\)
\(252\) 0 0
\(253\) −54.8328 −3.44731
\(254\) 0 0
\(255\) −8.47214 3.23607i −0.530546 0.202650i
\(256\) 0 0
\(257\) 1.23607i 0.0771038i −0.999257 0.0385519i \(-0.987726\pi\)
0.999257 0.0385519i \(-0.0122745\pi\)
\(258\) 0 0
\(259\) 11.4164i 0.709381i
\(260\) 0 0
\(261\) −0.944272 + 1.05573i −0.0584490 + 0.0653479i
\(262\) 0 0
\(263\) −11.8885 −0.733079 −0.366540 0.930402i \(-0.619458\pi\)
−0.366540 + 0.930402i \(0.619458\pi\)
\(264\) 0 0
\(265\) −4.47214 −0.274721
\(266\) 0 0
\(267\) 6.47214 16.9443i 0.396088 1.03697i
\(268\) 0 0
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) 5.81966i 0.353519i −0.984254 0.176760i \(-0.943438\pi\)
0.984254 0.176760i \(-0.0565615\pi\)
\(272\) 0 0
\(273\) 4.00000 10.4721i 0.242091 0.633803i
\(274\) 0 0
\(275\) 6.47214 0.390284
\(276\) 0 0
\(277\) 18.6525 1.12072 0.560359 0.828250i \(-0.310663\pi\)
0.560359 + 0.828250i \(0.310663\pi\)
\(278\) 0 0
\(279\) −18.4721 + 20.6525i −1.10590 + 1.23643i
\(280\) 0 0
\(281\) 14.4721i 0.863335i 0.902033 + 0.431668i \(0.142075\pi\)
−0.902033 + 0.431668i \(0.857925\pi\)
\(282\) 0 0
\(283\) 6.76393i 0.402074i −0.979584 0.201037i \(-0.935569\pi\)
0.979584 0.201037i \(-0.0644312\pi\)
\(284\) 0 0
\(285\) 1.23607 + 0.472136i 0.0732183 + 0.0279669i
\(286\) 0 0
\(287\) 20.9443 1.23630
\(288\) 0 0
\(289\) −10.4164 −0.612730
\(290\) 0 0
\(291\) −5.70820 2.18034i −0.334621 0.127814i
\(292\) 0 0
\(293\) 2.58359i 0.150935i −0.997148 0.0754675i \(-0.975955\pi\)
0.997148 0.0754675i \(-0.0240449\pi\)
\(294\) 0 0
\(295\) 2.47214i 0.143933i
\(296\) 0 0
\(297\) −15.4164 29.8885i −0.894551 1.73431i
\(298\) 0 0
\(299\) 27.4164 1.58553
\(300\) 0 0
\(301\) 7.41641 0.427475
\(302\) 0 0
\(303\) 5.81966 15.2361i 0.334331 0.875289i
\(304\) 0 0
\(305\) 3.52786i 0.202005i
\(306\) 0 0
\(307\) 23.1246i 1.31979i 0.751357 + 0.659896i \(0.229400\pi\)
−0.751357 + 0.659896i \(0.770600\pi\)
\(308\) 0 0
\(309\) 5.23607 13.7082i 0.297870 0.779832i
\(310\) 0 0
\(311\) 20.0000 1.13410 0.567048 0.823685i \(-0.308085\pi\)
0.567048 + 0.823685i \(0.308085\pi\)
\(312\) 0 0
\(313\) −11.8885 −0.671980 −0.335990 0.941866i \(-0.609071\pi\)
−0.335990 + 0.941866i \(0.609071\pi\)
\(314\) 0 0
\(315\) 4.47214 + 4.00000i 0.251976 + 0.225374i
\(316\) 0 0
\(317\) 27.8885i 1.56638i −0.621785 0.783188i \(-0.713592\pi\)
0.621785 0.783188i \(-0.286408\pi\)
\(318\) 0 0
\(319\) 3.05573i 0.171088i
\(320\) 0 0
\(321\) −14.1803 5.41641i −0.791469 0.302314i
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) −3.23607 −0.179505
\(326\) 0 0
\(327\) −30.6525 11.7082i −1.69509 0.647465i
\(328\) 0 0
\(329\) 8.94427i 0.493114i
\(330\) 0 0
\(331\) 7.23607i 0.397730i 0.980027 + 0.198865i \(0.0637256\pi\)
−0.980027 + 0.198865i \(0.936274\pi\)
\(332\) 0 0
\(333\) 12.7639 + 11.4164i 0.699459 + 0.625615i
\(334\) 0 0
\(335\) 6.76393 0.369553
\(336\) 0 0
\(337\) 16.4721 0.897294 0.448647 0.893709i \(-0.351906\pi\)
0.448647 + 0.893709i \(0.351906\pi\)
\(338\) 0 0
\(339\) −11.8197 + 30.9443i −0.641956 + 1.68066i
\(340\) 0 0
\(341\) 59.7771i 3.23711i
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) −5.23607 + 13.7082i −0.281900 + 0.738025i
\(346\) 0 0
\(347\) −15.2361 −0.817915 −0.408957 0.912553i \(-0.634108\pi\)
−0.408957 + 0.912553i \(0.634108\pi\)
\(348\) 0 0
\(349\) 34.9443 1.87052 0.935262 0.353956i \(-0.115164\pi\)
0.935262 + 0.353956i \(0.115164\pi\)
\(350\) 0 0
\(351\) 7.70820 + 14.9443i 0.411433 + 0.797666i
\(352\) 0 0
\(353\) 9.23607i 0.491586i 0.969322 + 0.245793i \(0.0790484\pi\)
−0.969322 + 0.245793i \(0.920952\pi\)
\(354\) 0 0
\(355\) 4.00000i 0.212298i
\(356\) 0 0
\(357\) 16.9443 + 6.47214i 0.896786 + 0.342542i
\(358\) 0 0
\(359\) 4.58359 0.241913 0.120956 0.992658i \(-0.461404\pi\)
0.120956 + 0.992658i \(0.461404\pi\)
\(360\) 0 0
\(361\) 18.4164 0.969285
\(362\) 0 0
\(363\) 49.9787 + 19.0902i 2.62320 + 1.00197i
\(364\) 0 0
\(365\) 8.47214i 0.443452i
\(366\) 0 0
\(367\) 35.3050i 1.84290i 0.388493 + 0.921452i \(0.372996\pi\)
−0.388493 + 0.921452i \(0.627004\pi\)
\(368\) 0 0
\(369\) −20.9443 + 23.4164i −1.09032 + 1.21901i
\(370\) 0 0
\(371\) 8.94427 0.464363
\(372\) 0 0
\(373\) −11.5967 −0.600457 −0.300228 0.953867i \(-0.597063\pi\)
−0.300228 + 0.953867i \(0.597063\pi\)
\(374\) 0 0
\(375\) 0.618034 1.61803i 0.0319151 0.0835549i
\(376\) 0 0
\(377\) 1.52786i 0.0786890i
\(378\) 0 0
\(379\) 21.7082i 1.11508i −0.830152 0.557538i \(-0.811746\pi\)
0.830152 0.557538i \(-0.188254\pi\)
\(380\) 0 0
\(381\) 6.18034 16.1803i 0.316628 0.828944i
\(382\) 0 0
\(383\) −14.9443 −0.763617 −0.381808 0.924242i \(-0.624699\pi\)
−0.381808 + 0.924242i \(0.624699\pi\)
\(384\) 0 0
\(385\) −12.9443 −0.659701
\(386\) 0 0
\(387\) −7.41641 + 8.29180i −0.376997 + 0.421496i
\(388\) 0 0
\(389\) 14.9443i 0.757705i −0.925457 0.378852i \(-0.876319\pi\)
0.925457 0.378852i \(-0.123681\pi\)
\(390\) 0 0
\(391\) 44.3607i 2.24342i
\(392\) 0 0
\(393\) −22.4721 8.58359i −1.13357 0.432985i
\(394\) 0 0
\(395\) 14.1803 0.713490
\(396\) 0 0
\(397\) −20.1803 −1.01282 −0.506411 0.862292i \(-0.669028\pi\)
−0.506411 + 0.862292i \(0.669028\pi\)
\(398\) 0 0
\(399\) −2.47214 0.944272i −0.123762 0.0472727i
\(400\) 0 0
\(401\) 18.8328i 0.940466i −0.882542 0.470233i \(-0.844170\pi\)
0.882542 0.470233i \(-0.155830\pi\)
\(402\) 0 0
\(403\) 29.8885i 1.48885i
\(404\) 0 0
\(405\) −8.94427 + 1.00000i −0.444444 + 0.0496904i
\(406\) 0 0
\(407\) −36.9443 −1.83126
\(408\) 0 0
\(409\) 2.58359 0.127750 0.0638752 0.997958i \(-0.479654\pi\)
0.0638752 + 0.997958i \(0.479654\pi\)
\(410\) 0 0
\(411\) 7.81966 20.4721i 0.385715 1.00982i
\(412\) 0 0
\(413\) 4.94427i 0.243292i
\(414\) 0 0
\(415\) 1.70820i 0.0838524i
\(416\) 0 0
\(417\) −5.05573 + 13.2361i −0.247580 + 0.648173i
\(418\) 0 0
\(419\) 19.0557 0.930933 0.465467 0.885065i \(-0.345887\pi\)
0.465467 + 0.885065i \(0.345887\pi\)
\(420\) 0 0
\(421\) −23.3050 −1.13581 −0.567907 0.823093i \(-0.692247\pi\)
−0.567907 + 0.823093i \(0.692247\pi\)
\(422\) 0 0
\(423\) 10.0000 + 8.94427i 0.486217 + 0.434885i
\(424\) 0 0
\(425\) 5.23607i 0.253987i
\(426\) 0 0
\(427\) 7.05573i 0.341451i
\(428\) 0 0
\(429\) −33.8885 12.9443i −1.63615 0.624955i
\(430\) 0 0
\(431\) −28.0000 −1.34871 −0.674356 0.738406i \(-0.735579\pi\)
−0.674356 + 0.738406i \(0.735579\pi\)
\(432\) 0 0
\(433\) −26.3607 −1.26681 −0.633407 0.773819i \(-0.718344\pi\)
−0.633407 + 0.773819i \(0.718344\pi\)
\(434\) 0 0
\(435\) −0.763932 0.291796i −0.0366277 0.0139906i
\(436\) 0 0
\(437\) 6.47214i 0.309604i
\(438\) 0 0
\(439\) 24.6525i 1.17660i 0.808643 + 0.588299i \(0.200202\pi\)
−0.808643 + 0.588299i \(0.799798\pi\)
\(440\) 0 0
\(441\) 6.70820 + 6.00000i 0.319438 + 0.285714i
\(442\) 0 0
\(443\) −1.34752 −0.0640228 −0.0320114 0.999488i \(-0.510191\pi\)
−0.0320114 + 0.999488i \(0.510191\pi\)
\(444\) 0 0
\(445\) 10.4721 0.496427
\(446\) 0 0
\(447\) −6.18034 + 16.1803i −0.292320 + 0.765304i
\(448\) 0 0
\(449\) 36.9443i 1.74351i −0.489944 0.871754i \(-0.662983\pi\)
0.489944 0.871754i \(-0.337017\pi\)
\(450\) 0 0
\(451\) 67.7771i 3.19150i
\(452\) 0 0
\(453\) −0.763932 + 2.00000i −0.0358927 + 0.0939682i
\(454\) 0 0
\(455\) 6.47214 0.303418
\(456\) 0 0
\(457\) 2.58359 0.120855 0.0604277 0.998173i \(-0.480754\pi\)
0.0604277 + 0.998173i \(0.480754\pi\)
\(458\) 0 0
\(459\) −24.1803 + 12.4721i −1.12864 + 0.582149i
\(460\) 0 0
\(461\) 0.472136i 0.0219896i 0.999940 + 0.0109948i \(0.00349982\pi\)
−0.999940 + 0.0109948i \(0.996500\pi\)
\(462\) 0 0
\(463\) 26.3607i 1.22508i −0.790438 0.612542i \(-0.790147\pi\)
0.790438 0.612542i \(-0.209853\pi\)
\(464\) 0 0
\(465\) −14.9443 5.70820i −0.693024 0.264712i
\(466\) 0 0
\(467\) 34.6525 1.60353 0.801763 0.597643i \(-0.203896\pi\)
0.801763 + 0.597643i \(0.203896\pi\)
\(468\) 0 0
\(469\) −13.5279 −0.624659
\(470\) 0 0
\(471\) −2.76393 1.05573i −0.127355 0.0486454i
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) 0.763932i 0.0350516i
\(476\) 0 0
\(477\) −8.94427 + 10.0000i −0.409530 + 0.457869i
\(478\) 0 0
\(479\) −32.3607 −1.47860 −0.739299 0.673378i \(-0.764843\pi\)
−0.739299 + 0.673378i \(0.764843\pi\)
\(480\) 0 0
\(481\) 18.4721 0.842257
\(482\) 0 0
\(483\) 10.4721 27.4164i 0.476499 1.24749i
\(484\) 0 0
\(485\) 3.52786i 0.160192i
\(486\) 0 0
\(487\) 16.4721i 0.746424i −0.927746 0.373212i \(-0.878256\pi\)
0.927746 0.373212i \(-0.121744\pi\)
\(488\) 0 0
\(489\) 0.763932 2.00000i 0.0345462 0.0904431i
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −2.47214 −0.111339
\(494\) 0 0
\(495\) 12.9443 14.4721i 0.581802 0.650474i
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 17.7082i 0.792728i −0.918093 0.396364i \(-0.870272\pi\)
0.918093 0.396364i \(-0.129728\pi\)
\(500\) 0 0
\(501\) 24.1803 + 9.23607i 1.08030 + 0.412637i
\(502\) 0 0
\(503\) −11.8885 −0.530084 −0.265042 0.964237i \(-0.585386\pi\)
−0.265042 + 0.964237i \(0.585386\pi\)
\(504\) 0 0
\(505\) 9.41641 0.419025
\(506\) 0 0
\(507\) −4.09017 1.56231i −0.181651 0.0693844i
\(508\) 0 0
\(509\) 31.3050i 1.38757i −0.720183 0.693784i \(-0.755942\pi\)
0.720183 0.693784i \(-0.244058\pi\)
\(510\) 0 0
\(511\) 16.9443i 0.749570i
\(512\) 0 0
\(513\) 3.52786 1.81966i 0.155759 0.0803400i
\(514\) 0 0
\(515\) 8.47214 0.373327
\(516\) 0 0
\(517\) −28.9443 −1.27297
\(518\) 0 0
\(519\) 7.12461 18.6525i 0.312736 0.818753i
\(520\) 0 0
\(521\) 20.0000i 0.876216i 0.898922 + 0.438108i \(0.144351\pi\)
−0.898922 + 0.438108i \(0.855649\pi\)
\(522\) 0 0
\(523\) 12.6525i 0.553254i 0.960977 + 0.276627i \(0.0892167\pi\)
−0.960977 + 0.276627i \(0.910783\pi\)
\(524\) 0 0
\(525\) −1.23607 + 3.23607i −0.0539464 + 0.141234i
\(526\) 0 0
\(527\) −48.3607 −2.10662
\(528\) 0 0
\(529\) 48.7771 2.12074
\(530\) 0 0
\(531\) −5.52786 4.94427i −0.239889 0.214563i
\(532\) 0 0
\(533\) 33.8885i 1.46788i
\(534\) 0 0
\(535\) 8.76393i 0.378898i
\(536\) 0 0
\(537\) 16.9443 + 6.47214i 0.731199 + 0.279293i
\(538\) 0 0
\(539\) −19.4164 −0.836324
\(540\) 0 0
\(541\) 26.3607 1.13333 0.566667 0.823947i \(-0.308233\pi\)
0.566667 + 0.823947i \(0.308233\pi\)
\(542\) 0 0
\(543\) 21.7082 + 8.29180i 0.931588 + 0.355835i
\(544\) 0 0
\(545\) 18.9443i 0.811483i
\(546\) 0 0
\(547\) 32.0689i 1.37117i −0.727994 0.685583i \(-0.759547\pi\)
0.727994 0.685583i \(-0.240453\pi\)
\(548\) 0 0
\(549\) −7.88854 7.05573i −0.336675 0.301131i
\(550\) 0 0
\(551\) 0.360680 0.0153655
\(552\) 0 0
\(553\) −28.3607 −1.20602
\(554\) 0 0
\(555\) −3.52786 + 9.23607i −0.149749 + 0.392049i
\(556\) 0 0
\(557\) 36.2492i 1.53593i −0.640492 0.767964i \(-0.721270\pi\)
0.640492 0.767964i \(-0.278730\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 0 0
\(561\) 20.9443 54.8328i 0.884268 2.31504i
\(562\) 0 0
\(563\) 14.0689 0.592933 0.296466 0.955043i \(-0.404192\pi\)
0.296466 + 0.955043i \(0.404192\pi\)
\(564\) 0 0
\(565\) −19.1246 −0.804578
\(566\) 0 0
\(567\) 17.8885 2.00000i 0.751248 0.0839921i
\(568\) 0 0
\(569\) 36.9443i 1.54878i −0.632706 0.774392i \(-0.718056\pi\)
0.632706 0.774392i \(-0.281944\pi\)
\(570\) 0 0
\(571\) 2.65248i 0.111003i −0.998459 0.0555013i \(-0.982324\pi\)
0.998459 0.0555013i \(-0.0176757\pi\)
\(572\) 0 0
\(573\) −8.94427 3.41641i −0.373652 0.142722i
\(574\) 0 0
\(575\) −8.47214 −0.353312
\(576\) 0 0
\(577\) 34.3607 1.43045 0.715227 0.698892i \(-0.246323\pi\)
0.715227 + 0.698892i \(0.246323\pi\)
\(578\) 0 0
\(579\) −24.1803 9.23607i −1.00490 0.383838i
\(580\) 0 0
\(581\) 3.41641i 0.141736i
\(582\) 0 0
\(583\) 28.9443i 1.19875i
\(584\) 0 0
\(585\) −6.47214 + 7.23607i −0.267590 + 0.299175i
\(586\) 0 0
\(587\) −18.6525 −0.769870 −0.384935 0.922944i \(-0.625776\pi\)
−0.384935 + 0.922944i \(0.625776\pi\)
\(588\) 0 0
\(589\) 7.05573 0.290726
\(590\) 0 0
\(591\) −6.18034 + 16.1803i −0.254225 + 0.665570i
\(592\) 0 0
\(593\) 9.23607i 0.379280i 0.981854 + 0.189640i \(0.0607321\pi\)
−0.981854 + 0.189640i \(0.939268\pi\)
\(594\) 0 0
\(595\) 10.4721i 0.429316i
\(596\) 0 0
\(597\) 2.65248 6.94427i 0.108559 0.284210i
\(598\) 0 0
\(599\) 43.4164 1.77395 0.886973 0.461821i \(-0.152804\pi\)
0.886973 + 0.461821i \(0.152804\pi\)
\(600\) 0 0
\(601\) −44.4721 −1.81406 −0.907028 0.421070i \(-0.861655\pi\)
−0.907028 + 0.421070i \(0.861655\pi\)
\(602\) 0 0
\(603\) 13.5279 15.1246i 0.550897 0.615922i
\(604\) 0 0
\(605\) 30.8885i 1.25580i
\(606\) 0 0
\(607\) 12.4721i 0.506228i 0.967436 + 0.253114i \(0.0814548\pi\)
−0.967436 + 0.253114i \(0.918545\pi\)
\(608\) 0 0
\(609\) 1.52786 + 0.583592i 0.0619122 + 0.0236483i
\(610\) 0 0
\(611\) 14.4721 0.585480
\(612\) 0 0
\(613\) −15.2361 −0.615379 −0.307689 0.951487i \(-0.599556\pi\)
−0.307689 + 0.951487i \(0.599556\pi\)
\(614\) 0 0
\(615\) −16.9443 6.47214i −0.683259 0.260982i
\(616\) 0 0
\(617\) 1.23607i 0.0497622i −0.999690 0.0248811i \(-0.992079\pi\)
0.999690 0.0248811i \(-0.00792072\pi\)
\(618\) 0 0
\(619\) 1.34752i 0.0541616i 0.999633 + 0.0270808i \(0.00862114\pi\)
−0.999633 + 0.0270808i \(0.991379\pi\)
\(620\) 0 0
\(621\) 20.1803 + 39.1246i 0.809809 + 1.57002i
\(622\) 0 0
\(623\) −20.9443 −0.839115
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −3.05573 + 8.00000i −0.122034 + 0.319489i
\(628\) 0 0
\(629\) 29.8885i 1.19173i
\(630\) 0 0
\(631\) 15.7082i 0.625334i −0.949863 0.312667i \(-0.898778\pi\)
0.949863 0.312667i \(-0.101222\pi\)
\(632\) 0 0
\(633\) 8.47214 22.1803i 0.336737 0.881589i
\(634\) 0 0
\(635\) 10.0000 0.396838
\(636\) 0 0
\(637\) 9.70820 0.384653
\(638\) 0 0
\(639\) −8.94427 8.00000i −0.353830 0.316475i
\(640\) 0 0
\(641\) 25.3050i 0.999485i −0.866174 0.499743i \(-0.833428\pi\)
0.866174 0.499743i \(-0.166572\pi\)
\(642\) 0 0
\(643\) 19.7082i 0.777216i 0.921403 + 0.388608i \(0.127044\pi\)
−0.921403 + 0.388608i \(0.872956\pi\)
\(644\) 0 0
\(645\) −6.00000 2.29180i −0.236250 0.0902394i
\(646\) 0 0
\(647\) 35.8885 1.41092 0.705462 0.708748i \(-0.250739\pi\)
0.705462 + 0.708748i \(0.250739\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 29.8885 + 11.4164i 1.17142 + 0.447444i
\(652\) 0 0
\(653\) 36.4721i 1.42726i −0.700520 0.713632i \(-0.747049\pi\)
0.700520 0.713632i \(-0.252951\pi\)
\(654\) 0 0
\(655\) 13.8885i 0.542670i
\(656\) 0 0
\(657\) 18.9443 + 16.9443i 0.739086 + 0.661059i
\(658\) 0 0
\(659\) −5.52786 −0.215335 −0.107668 0.994187i \(-0.534338\pi\)
−0.107668 + 0.994187i \(0.534338\pi\)
\(660\) 0 0
\(661\) 31.5279 1.22629 0.613146 0.789970i \(-0.289904\pi\)
0.613146 + 0.789970i \(0.289904\pi\)
\(662\) 0 0
\(663\) −10.4721 + 27.4164i −0.406704 + 1.06477i
\(664\) 0 0
\(665\) 1.52786i 0.0592480i
\(666\) 0 0
\(667\) 4.00000i 0.154881i
\(668\) 0 0
\(669\) 9.23607 24.1803i 0.357087 0.934866i
\(670\) 0 0
\(671\) 22.8328 0.881451
\(672\) 0 0
\(673\) 9.41641 0.362976 0.181488 0.983393i \(-0.441909\pi\)
0.181488 + 0.983393i \(0.441909\pi\)
\(674\) 0 0
\(675\) −2.38197 4.61803i −0.0916819 0.177748i
\(676\) 0 0
\(677\) 30.3607i 1.16686i 0.812165 + 0.583428i \(0.198289\pi\)
−0.812165 + 0.583428i \(0.801711\pi\)
\(678\) 0 0
\(679\) 7.05573i 0.270774i
\(680\) 0 0
\(681\) 10.1803 + 3.88854i 0.390111 + 0.149009i
\(682\) 0 0
\(683\) −32.7639 −1.25368 −0.626839 0.779149i \(-0.715651\pi\)
−0.626839 + 0.779149i \(0.715651\pi\)
\(684\) 0 0
\(685\) 12.6525 0.483426
\(686\) 0 0
\(687\) 4.76393 + 1.81966i 0.181755 + 0.0694244i
\(688\) 0 0
\(689\) 14.4721i 0.551344i
\(690\) 0 0
\(691\) 34.0689i 1.29604i 0.761623 + 0.648021i \(0.224403\pi\)
−0.761623 + 0.648021i \(0.775597\pi\)
\(692\) 0 0
\(693\) −25.8885 + 28.9443i −0.983424 + 1.09950i
\(694\) 0 0
\(695\) −8.18034 −0.310298
\(696\) 0 0
\(697\) −54.8328 −2.07694
\(698\) 0 0
\(699\) 2.29180 6.00000i 0.0866837 0.226941i
\(700\) 0 0
\(701\) 35.8885i 1.35549i 0.735296 + 0.677746i \(0.237043\pi\)
−0.735296 + 0.677746i \(0.762957\pi\)
\(702\) 0 0
\(703\) 4.36068i 0.164466i
\(704\) 0 0
\(705\) −2.76393 + 7.23607i −0.104096 + 0.272526i
\(706\) 0 0
\(707\) −18.8328 −0.708281
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 28.3607 31.7082i 1.06361 1.18915i
\(712\) 0 0
\(713\) 78.2492i 2.93046i
\(714\) 0 0
\(715\) 20.9443i 0.783271i
\(716\) 0 0
\(717\) 5.52786 + 2.11146i 0.206442 + 0.0788538i
\(718\) 0 0
\(719\) 36.9443 1.37779 0.688894 0.724862i \(-0.258096\pi\)
0.688894 + 0.724862i \(0.258096\pi\)
\(720\) 0 0
\(721\) −16.9443 −0.631038
\(722\) 0 0
\(723\) 8.18034 + 3.12461i 0.304230 + 0.116206i
\(724\) 0 0
\(725\) 0.472136i 0.0175347i
\(726\) 0 0
\(727\) 49.4164i 1.83275i 0.400317 + 0.916377i \(0.368900\pi\)
−0.400317 + 0.916377i \(0.631100\pi\)
\(728\) 0 0
\(729\) −15.6525 + 22.0000i −0.579721 + 0.814815i
\(730\) 0 0
\(731\) −19.4164 −0.718142
\(732\) 0 0
\(733\) 8.76393 0.323703 0.161852 0.986815i \(-0.448253\pi\)
0.161852 + 0.986815i \(0.448253\pi\)
\(734\) 0 0
\(735\) −1.85410 + 4.85410i −0.0683896 + 0.179046i
\(736\) 0 0
\(737\) 43.7771i 1.61255i
\(738\) 0 0
\(739\) 30.6525i 1.12757i −0.825922 0.563785i \(-0.809345\pi\)
0.825922 0.563785i \(-0.190655\pi\)
\(740\) 0 0
\(741\) 1.52786 4.00000i 0.0561275 0.146944i
\(742\) 0 0
\(743\) −33.4164 −1.22593 −0.612965 0.790110i \(-0.710023\pi\)
−0.612965 + 0.790110i \(0.710023\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) 3.81966 + 3.41641i 0.139754 + 0.125000i
\(748\) 0 0
\(749\) 17.5279i 0.640454i
\(750\) 0 0
\(751\) 16.0689i 0.586362i 0.956057 + 0.293181i \(0.0947138\pi\)
−0.956057 + 0.293181i \(0.905286\pi\)
\(752\) 0 0
\(753\) 2.47214 + 0.944272i 0.0900896 + 0.0344112i
\(754\) 0 0
\(755\) −1.23607 −0.0449851
\(756\) 0 0
\(757\) 7.59675 0.276108 0.138054 0.990425i \(-0.455915\pi\)
0.138054 + 0.990425i \(0.455915\pi\)
\(758\) 0 0
\(759\) −88.7214 33.8885i −3.22038 1.23008i
\(760\) 0 0
\(761\) 20.0000i 0.724999i −0.931984 0.362500i \(-0.881923\pi\)
0.931984 0.362500i \(-0.118077\pi\)
\(762\) 0 0
\(763\) 37.8885i 1.37166i
\(764\) 0 0
\(765\) −11.7082 10.4721i −0.423311 0.378621i
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 14.3607 0.517859 0.258930 0.965896i \(-0.416630\pi\)
0.258930 + 0.965896i \(0.416630\pi\)
\(770\) 0 0
\(771\) 0.763932 2.00000i 0.0275123 0.0720282i
\(772\) 0 0
\(773\) 46.0000i 1.65451i −0.561830 0.827253i \(-0.689903\pi\)
0.561830 0.827253i \(-0.310097\pi\)
\(774\) 0 0
\(775\) 9.23607i 0.331769i
\(776\) 0 0
\(777\) 7.05573 18.4721i 0.253123 0.662684i
\(778\) 0 0
\(779\) 8.00000 0.286630
\(780\) 0 0
\(781\) 25.8885 0.926365
\(782\) 0 0
\(783\) −2.18034 + 1.12461i −0.0779190 + 0.0401903i
\(784\) 0 0
\(785\) 1.70820i 0.0609684i
\(786\) 0 0
\(787\) 7.70820i 0.274768i 0.990518 + 0.137384i \(0.0438694\pi\)
−0.990518 + 0.137384i \(0.956131\pi\)
\(788\) 0 0
\(789\) −19.2361 7.34752i −0.684822 0.261579i
\(790\) 0 0
\(791\) 38.2492 1.35999
\(792\) 0 0
\(793\) −11.4164 −0.405409
\(794\) 0 0
\(795\) −7.23607 2.76393i −0.256637 0.0980266i
\(796\) 0 0
\(797\) 30.9443i 1.09610i −0.836445 0.548051i \(-0.815370\pi\)
0.836445 0.548051i \(-0.184630\pi\)
\(798\) 0 0
\(799\) 23.4164i 0.828413i
\(800\) 0 0
\(801\) 20.9443 23.4164i 0.740029 0.827378i
\(802\) 0 0
\(803\) −54.8328 −1.93501
\(804\) 0 0
\(805\) 16.9443 0.597207
\(806\) 0 0
\(807\) −8.65248 + 22.6525i −0.304582 + 0.797405i
\(808\) 0 0
\(809\) 45.3050i 1.59284i 0.604746 + 0.796419i \(0.293275\pi\)
−0.604746 + 0.796419i \(0.706725\pi\)
\(810\) 0 0
\(811\) 36.7639i 1.29096i −0.763779 0.645478i \(-0.776658\pi\)
0.763779 0.645478i \(-0.223342\pi\)
\(812\) 0 0
\(813\) 3.59675 9.41641i 0.126143 0.330248i
\(814\) 0 0
\(815\) 1.23607 0.0432976
\(816\) 0 0
\(817\) 2.83282 0.0991077
\(818\) 0 0
\(819\) 12.9443 14.4721i 0.452309 0.505697i
\(820\) 0 0
\(821\) 12.1115i 0.422693i −0.977411 0.211346i \(-0.932215\pi\)
0.977411 0.211346i \(-0.0677848\pi\)
\(822\) 0 0
\(823\) 26.3607i 0.918876i −0.888210 0.459438i \(-0.848051\pi\)
0.888210 0.459438i \(-0.151949\pi\)
\(824\) 0 0
\(825\) 10.4721 + 4.00000i 0.364593 + 0.139262i
\(826\) 0 0
\(827\) −13.1246 −0.456387 −0.228194 0.973616i \(-0.573282\pi\)
−0.228194 + 0.973616i \(0.573282\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 30.1803 + 11.5279i 1.04694 + 0.399897i
\(832\) 0 0
\(833\) 15.7082i 0.544257i
\(834\) 0 0
\(835\) 14.9443i 0.517168i
\(836\) 0 0
\(837\) −42.6525 + 22.0000i −1.47429 + 0.760431i
\(838\) 0 0
\(839\) 30.4721 1.05201 0.526007 0.850480i \(-0.323688\pi\)
0.526007 + 0.850480i \(0.323688\pi\)
\(840\) 0 0
\(841\) 28.7771 0.992313
\(842\) 0 0
\(843\) −8.94427 + 23.4164i −0.308057 + 0.806504i
\(844\) 0 0
\(845\) 2.52786i 0.0869612i
\(846\) 0 0
\(847\) 61.7771i 2.12269i
\(848\) 0 0
\(849\) 4.18034 10.9443i 0.143469 0.375606i
\(850\) 0 0
\(851\) 48.3607 1.65778
\(852\) 0 0
\(853\) −41.1246 −1.40808 −0.704040 0.710160i \(-0.748622\pi\)
−0.704040 + 0.710160i \(0.748622\pi\)
\(854\) 0 0
\(855\) 1.70820 + 1.52786i 0.0584193 + 0.0522518i
\(856\) 0 0
\(857\) 50.7639i 1.73406i −0.498253 0.867031i \(-0.666025\pi\)
0.498253 0.867031i \(-0.333975\pi\)
\(858\) 0 0
\(859\) 36.1803i 1.23446i 0.786784 + 0.617229i \(0.211745\pi\)
−0.786784 + 0.617229i \(0.788255\pi\)
\(860\) 0 0
\(861\) 33.8885 + 12.9443i 1.15492 + 0.441140i
\(862\) 0 0
\(863\) 10.3607 0.352682 0.176341 0.984329i \(-0.443574\pi\)
0.176341 + 0.984329i \(0.443574\pi\)
\(864\) 0 0
\(865\) 11.5279 0.391959
\(866\) 0 0
\(867\) −16.8541 6.43769i −0.572395 0.218636i
\(868\) 0 0
\(869\) 91.7771i 3.11332i
\(870\) 0 0
\(871\) 21.8885i 0.741665i
\(872\) 0 0
\(873\) −7.88854 7.05573i −0.266987 0.238800i
\(874\) 0 0
\(875\) −2.00000 −0.0676123
\(876\) 0 0
\(877\) 6.29180 0.212459 0.106229 0.994342i \(-0.466122\pi\)
0.106229 + 0.994342i \(0.466122\pi\)
\(878\) 0 0
\(879\) 1.59675 4.18034i 0.0538570 0.140999i
\(880\) 0 0
\(881\) 0.360680i 0.0121516i −0.999982 0.00607581i \(-0.998066\pi\)
0.999982 0.00607581i \(-0.00193400\pi\)
\(882\) 0 0
\(883\) 58.5410i 1.97006i 0.172377 + 0.985031i \(0.444855\pi\)
−0.172377 + 0.985031i \(0.555145\pi\)
\(884\) 0 0
\(885\) 1.52786 4.00000i 0.0513586 0.134459i
\(886\) 0 0
\(887\) −4.83282 −0.162270 −0.0811350 0.996703i \(-0.525855\pi\)
−0.0811350 + 0.996703i \(0.525855\pi\)
\(888\) 0 0
\(889\) −20.0000 −0.670778
\(890\) 0 0
\(891\) −6.47214 57.8885i −0.216825 1.93934i
\(892\) 0 0
\(893\) 3.41641i 0.114326i
\(894\) 0 0
\(895\) 10.4721i 0.350045i
\(896\) 0 0
\(897\) 44.3607 + 16.9443i 1.48116 + 0.565753i
\(898\) 0 0
\(899\) −4.36068 −0.145437
\(900\) 0 0
\(901\) −23.4164 −0.780114
\(902\) 0 0
\(903\) 12.0000 + 4.58359i 0.399335 + 0.152532i
\(904\) 0 0
\(905\) 13.4164i 0.445976i
\(906\) 0 0
\(907\) 49.5967i 1.64683i 0.567437 + 0.823416i \(0.307935\pi\)
−0.567437 + 0.823416i \(0.692065\pi\)
\(908\) 0 0
\(909\) 18.8328 21.0557i 0.624645 0.698374i
\(910\) 0 0
\(911\) 24.9443 0.826441 0.413220 0.910631i \(-0.364404\pi\)
0.413220 + 0.910631i \(0.364404\pi\)
\(912\) 0 0
\(913\) −11.0557 −0.365891
\(914\) 0 0
\(915\) 2.18034 5.70820i 0.0720798 0.188707i
\(916\) 0 0
\(917\) 27.7771i 0.917280i
\(918\) 0 0
\(919\) 8.29180i 0.273521i −0.990604 0.136761i \(-0.956331\pi\)
0.990604 0.136761i \(-0.0436691\pi\)
\(920\) 0 0
\(921\) −14.2918 + 37.4164i −0.470931 + 1.23291i
\(922\) 0 0
\(923\) −12.9443 −0.426066
\(924\) 0 0
\(925\) −5.70820 −0.187685
\(926\) 0 0
\(927\) 16.9443 18.9443i 0.556523 0.622212i
\(928\) 0 0
\(929\) 33.8885i 1.11185i 0.831233 + 0.555924i \(0.187635\pi\)
−0.831233 + 0.555924i \(0.812365\pi\)
\(930\) 0 0
\(931\) 2.29180i 0.0751106i
\(932\) 0 0
\(933\) 32.3607 + 12.3607i 1.05944 + 0.404670i
\(934\) 0 0
\(935\) 33.8885 1.10827
\(936\) 0 0
\(937\) 0.111456 0.00364111 0.00182056 0.999998i \(-0.499420\pi\)
0.00182056 + 0.999998i \(0.499420\pi\)
\(938\) 0 0
\(939\) −19.2361 7.34752i −0.627745 0.239777i
\(940\) 0 0
\(941\) 15.5279i 0.506194i 0.967441 + 0.253097i \(0.0814492\pi\)
−0.967441 + 0.253097i \(0.918551\pi\)
\(942\) 0 0
\(943\) 88.7214i 2.88916i
\(944\) 0 0
\(945\) 4.76393 + 9.23607i 0.154971 + 0.300449i
\(946\) 0 0
\(947\) −24.7639 −0.804720 −0.402360 0.915482i \(-0.631810\pi\)
−0.402360 + 0.915482i \(0.631810\pi\)
\(948\) 0 0
\(949\) 27.4164 0.889974
\(950\) 0 0
\(951\) 17.2361 45.1246i 0.558918 1.46327i
\(952\) 0 0
\(953\) 33.5967i 1.08831i 0.838986 + 0.544153i \(0.183149\pi\)
−0.838986 + 0.544153i \(0.816851\pi\)
\(954\) 0 0
\(955\) 5.52786i 0.178877i
\(956\) 0 0
\(957\) 1.88854 4.94427i 0.0610480 0.159826i
\(958\) 0 0
\(959\) −25.3050 −0.817140
\(960\) 0 0
\(961\) −54.3050 −1.75177
\(962\) 0 0
\(963\) −19.5967 17.5279i −0.631496 0.564828i
\(964\) 0 0
\(965\) 14.9443i 0.481073i
\(966\) 0 0
\(967\) 23.5279i 0.756605i 0.925682 + 0.378303i \(0.123492\pi\)
−0.925682 + 0.378303i \(0.876508\pi\)
\(968\) 0 0
\(969\) 6.47214 + 2.47214i 0.207915 + 0.0794164i
\(970\) 0 0
\(971\) −9.52786 −0.305764 −0.152882 0.988244i \(-0.548855\pi\)
−0.152882 + 0.988244i \(0.548855\pi\)
\(972\) 0 0
\(973\) 16.3607 0.524499
\(974\) 0 0
\(975\) −5.23607 2.00000i −0.167688 0.0640513i
\(976\) 0 0
\(977\) 8.29180i 0.265278i 0.991164 + 0.132639i \(0.0423451\pi\)
−0.991164 + 0.132639i \(0.957655\pi\)
\(978\) 0 0
\(979\) 67.7771i 2.16617i
\(980\) 0 0
\(981\) −42.3607 37.8885i −1.35247 1.20969i
\(982\) 0 0
\(983\) 36.2492 1.15617 0.578085 0.815976i \(-0.303800\pi\)
0.578085 + 0.815976i \(0.303800\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 0 0
\(987\) 5.52786 14.4721i 0.175954 0.460653i
\(988\) 0 0
\(989\) 31.4164i 0.998984i
\(990\) 0 0
\(991\) 5.23607i 0.166329i 0.996536 + 0.0831646i \(0.0265027\pi\)
−0.996536 + 0.0831646i \(0.973497\pi\)
\(992\) 0 0
\(993\) −4.47214 + 11.7082i −0.141919 + 0.371549i
\(994\) 0 0
\(995\) 4.29180 0.136059
\(996\) 0 0
\(997\) 56.1803 1.77925 0.889625 0.456693i \(-0.150966\pi\)
0.889625 + 0.456693i \(0.150966\pi\)
\(998\) 0 0
\(999\) 13.5967 + 26.3607i 0.430182 + 0.834015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.h.l.1151.4 yes 4
3.2 odd 2 1920.2.h.f.1151.2 yes 4
4.3 odd 2 1920.2.h.f.1151.1 yes 4
8.3 odd 2 1920.2.h.k.1151.4 yes 4
8.5 even 2 1920.2.h.e.1151.1 4
12.11 even 2 inner 1920.2.h.l.1151.3 yes 4
24.5 odd 2 1920.2.h.k.1151.3 yes 4
24.11 even 2 1920.2.h.e.1151.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.h.e.1151.1 4 8.5 even 2
1920.2.h.e.1151.2 yes 4 24.11 even 2
1920.2.h.f.1151.1 yes 4 4.3 odd 2
1920.2.h.f.1151.2 yes 4 3.2 odd 2
1920.2.h.k.1151.3 yes 4 24.5 odd 2
1920.2.h.k.1151.4 yes 4 8.3 odd 2
1920.2.h.l.1151.3 yes 4 12.11 even 2 inner
1920.2.h.l.1151.4 yes 4 1.1 even 1 trivial