Properties

Label 1920.2.k.i
Level $1920$
Weight $2$
Character orbit 1920.k
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(961,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_1 q^{5} + (\beta_{3} - 2) q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + \beta_1 q^{5} + (\beta_{3} - 2) q^{7} - q^{9} + (\beta_{2} + 2 \beta_1) q^{11} - 2 \beta_1 q^{13} - q^{15} - 2 \beta_{3} q^{17} + (\beta_{2} - 4 \beta_1) q^{19} + (\beta_{2} - 2 \beta_1) q^{21} + ( - \beta_{3} - 4) q^{23} - q^{25} - \beta_1 q^{27} + 6 \beta_1 q^{29} + 4 q^{31} + ( - \beta_{3} - 2) q^{33} + (\beta_{2} - 2 \beta_1) q^{35} + (2 \beta_{2} - 2 \beta_1) q^{37} + 2 q^{39} + ( - 2 \beta_{3} - 2) q^{41} + ( - 2 \beta_{2} + 4 \beta_1) q^{43} - \beta_1 q^{45} + (\beta_{3} + 8) q^{47} + ( - 4 \beta_{3} + 5) q^{49} - 2 \beta_{2} q^{51} + ( - 4 \beta_{2} - 2 \beta_1) q^{53} + ( - \beta_{3} - 2) q^{55} + ( - \beta_{3} + 4) q^{57} + (3 \beta_{2} - 6 \beta_1) q^{59} + 4 \beta_1 q^{61} + ( - \beta_{3} + 2) q^{63} + 2 q^{65} + 4 \beta_1 q^{67} + ( - \beta_{2} - 4 \beta_1) q^{69} - 2 \beta_{3} q^{71} + ( - 4 \beta_{3} + 2) q^{73} - \beta_1 q^{75} + 4 \beta_1 q^{77} + 4 q^{79} + q^{81} + (2 \beta_{2} + 8 \beta_1) q^{83} - 2 \beta_{2} q^{85} - 6 q^{87} + ( - 2 \beta_{3} - 6) q^{89} + ( - 2 \beta_{2} + 4 \beta_1) q^{91} + 4 \beta_1 q^{93} + ( - \beta_{3} + 4) q^{95} - 14 q^{97} + ( - \beta_{2} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} - 4 q^{9} - 4 q^{15} - 16 q^{23} - 4 q^{25} + 16 q^{31} - 8 q^{33} + 8 q^{39} - 8 q^{41} + 32 q^{47} + 20 q^{49} - 8 q^{55} + 16 q^{57} + 8 q^{63} + 8 q^{65} + 8 q^{73} + 16 q^{79} + 4 q^{81} - 24 q^{87} - 24 q^{89} + 16 q^{95} - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 1.00000i 0 1.00000i 0 −4.82843 0 −1.00000 0
961.2 0 1.00000i 0 1.00000i 0 0.828427 0 −1.00000 0
961.3 0 1.00000i 0 1.00000i 0 −4.82843 0 −1.00000 0
961.4 0 1.00000i 0 1.00000i 0 0.828427 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.k.i 4
3.b odd 2 1 5760.2.k.n 4
4.b odd 2 1 1920.2.k.l yes 4
8.b even 2 1 inner 1920.2.k.i 4
8.d odd 2 1 1920.2.k.l yes 4
12.b even 2 1 5760.2.k.w 4
16.e even 4 1 3840.2.a.bh 2
16.e even 4 1 3840.2.a.bk 2
16.f odd 4 1 3840.2.a.bc 2
16.f odd 4 1 3840.2.a.bl 2
24.f even 2 1 5760.2.k.w 4
24.h odd 2 1 5760.2.k.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.k.i 4 1.a even 1 1 trivial
1920.2.k.i 4 8.b even 2 1 inner
1920.2.k.l yes 4 4.b odd 2 1
1920.2.k.l yes 4 8.d odd 2 1
3840.2.a.bc 2 16.f odd 4 1
3840.2.a.bh 2 16.e even 4 1
3840.2.a.bk 2 16.e even 4 1
3840.2.a.bl 2 16.f odd 4 1
5760.2.k.n 4 3.b odd 2 1
5760.2.k.n 4 24.h odd 2 1
5760.2.k.w 4 12.b even 2 1
5760.2.k.w 4 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1920, [\chi])\):

\( T_{7}^{2} + 4T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} + 24T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{17}^{2} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 48T^{2} + 64 \) Copy content Toggle raw display
$23$ \( (T^{2} + 8 T + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 72T^{2} + 784 \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 28)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 96T^{2} + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} - 16 T + 56)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 264 T^{2} + 15376 \) Copy content Toggle raw display
$59$ \( T^{4} + 216T^{2} + 1296 \) Copy content Toggle raw display
$61$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 4 T - 124)^{2} \) Copy content Toggle raw display
$79$ \( (T - 4)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 192T^{2} + 1024 \) Copy content Toggle raw display
$89$ \( (T^{2} + 12 T + 4)^{2} \) Copy content Toggle raw display
$97$ \( (T + 14)^{4} \) Copy content Toggle raw display
show more
show less