Properties

Label 1920.2.k.i
Level 19201920
Weight 22
Character orbit 1920.k
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(961,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.k (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+β1q5+(β32)q7q9+(β2+2β1)q112β1q13q152β3q17+(β24β1)q19+(β22β1)q21++(β22β1)q99+O(q100) q + \beta_1 q^{3} + \beta_1 q^{5} + (\beta_{3} - 2) q^{7} - q^{9} + (\beta_{2} + 2 \beta_1) q^{11} - 2 \beta_1 q^{13} - q^{15} - 2 \beta_{3} q^{17} + (\beta_{2} - 4 \beta_1) q^{19} + (\beta_{2} - 2 \beta_1) q^{21}+ \cdots + ( - \beta_{2} - 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q74q94q1516q234q25+16q318q33+8q398q41+32q47+20q498q55+16q57+8q63+8q65+8q73+16q79+4q81+56q97+O(q100) 4 q - 8 q^{7} - 4 q^{9} - 4 q^{15} - 16 q^{23} - 4 q^{25} + 16 q^{31} - 8 q^{33} + 8 q^{39} - 8 q^{41} + 32 q^{47} + 20 q^{49} - 8 q^{55} + 16 q^{57} + 8 q^{63} + 8 q^{65} + 8 q^{73} + 16 q^{79} + 4 q^{81}+ \cdots - 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ82 \zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== 2ζ83+2ζ8 2\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
β3\beta_{3}== 2ζ83+2ζ8 -2\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+β2)/4 ( \beta_{3} + \beta_{2} ) / 4 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+β2)/4 ( -\beta_{3} + \beta_{2} ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 11 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
961.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 1.00000i 0 1.00000i 0 −4.82843 0 −1.00000 0
961.2 0 1.00000i 0 1.00000i 0 0.828427 0 −1.00000 0
961.3 0 1.00000i 0 1.00000i 0 −4.82843 0 −1.00000 0
961.4 0 1.00000i 0 1.00000i 0 0.828427 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.k.i 4
3.b odd 2 1 5760.2.k.n 4
4.b odd 2 1 1920.2.k.l yes 4
8.b even 2 1 inner 1920.2.k.i 4
8.d odd 2 1 1920.2.k.l yes 4
12.b even 2 1 5760.2.k.w 4
16.e even 4 1 3840.2.a.bh 2
16.e even 4 1 3840.2.a.bk 2
16.f odd 4 1 3840.2.a.bc 2
16.f odd 4 1 3840.2.a.bl 2
24.f even 2 1 5760.2.k.w 4
24.h odd 2 1 5760.2.k.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.k.i 4 1.a even 1 1 trivial
1920.2.k.i 4 8.b even 2 1 inner
1920.2.k.l yes 4 4.b odd 2 1
1920.2.k.l yes 4 8.d odd 2 1
3840.2.a.bc 2 16.f odd 4 1
3840.2.a.bh 2 16.e even 4 1
3840.2.a.bk 2 16.e even 4 1
3840.2.a.bl 2 16.f odd 4 1
5760.2.k.n 4 3.b odd 2 1
5760.2.k.n 4 24.h odd 2 1
5760.2.k.w 4 12.b even 2 1
5760.2.k.w 4 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1920,[χ])S_{2}^{\mathrm{new}}(1920, [\chi]):

T72+4T74 T_{7}^{2} + 4T_{7} - 4 Copy content Toggle raw display
T114+24T112+16 T_{11}^{4} + 24T_{11}^{2} + 16 Copy content Toggle raw display
T17232 T_{17}^{2} - 32 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 (T2+4T4)2 (T^{2} + 4 T - 4)^{2} Copy content Toggle raw display
1111 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
1313 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1717 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
1919 T4+48T2+64 T^{4} + 48T^{2} + 64 Copy content Toggle raw display
2323 (T2+8T+8)2 (T^{2} + 8 T + 8)^{2} Copy content Toggle raw display
2929 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
3131 (T4)4 (T - 4)^{4} Copy content Toggle raw display
3737 T4+72T2+784 T^{4} + 72T^{2} + 784 Copy content Toggle raw display
4141 (T2+4T28)2 (T^{2} + 4 T - 28)^{2} Copy content Toggle raw display
4343 T4+96T2+256 T^{4} + 96T^{2} + 256 Copy content Toggle raw display
4747 (T216T+56)2 (T^{2} - 16 T + 56)^{2} Copy content Toggle raw display
5353 T4+264T2+15376 T^{4} + 264 T^{2} + 15376 Copy content Toggle raw display
5959 T4+216T2+1296 T^{4} + 216T^{2} + 1296 Copy content Toggle raw display
6161 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
6767 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
7171 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
7373 (T24T124)2 (T^{2} - 4 T - 124)^{2} Copy content Toggle raw display
7979 (T4)4 (T - 4)^{4} Copy content Toggle raw display
8383 T4+192T2+1024 T^{4} + 192T^{2} + 1024 Copy content Toggle raw display
8989 (T2+12T+4)2 (T^{2} + 12 T + 4)^{2} Copy content Toggle raw display
9797 (T+14)4 (T + 14)^{4} Copy content Toggle raw display
show more
show less