Properties

Label 1920.2.k.k.961.3
Level $1920$
Weight $2$
Character 1920.961
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(961,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.3
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1920.961
Dual form 1920.2.k.k.961.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +1.00000i q^{5} +2.00000 q^{7} -1.00000 q^{9} -4.82843i q^{11} -4.82843i q^{13} -1.00000 q^{15} -2.82843 q^{17} +2.00000i q^{21} -5.65685 q^{23} -1.00000 q^{25} -1.00000i q^{27} -7.65685i q^{29} -6.82843 q^{31} +4.82843 q^{33} +2.00000i q^{35} -10.4853i q^{37} +4.82843 q^{39} -7.65685 q^{41} +9.65685i q^{43} -1.00000i q^{45} -9.65685 q^{47} -3.00000 q^{49} -2.82843i q^{51} +0.343146i q^{53} +4.82843 q^{55} +0.828427i q^{59} -1.65685i q^{61} -2.00000 q^{63} +4.82843 q^{65} +1.65685i q^{67} -5.65685i q^{69} +2.34315 q^{71} +13.3137 q^{73} -1.00000i q^{75} -9.65685i q^{77} +4.48528 q^{79} +1.00000 q^{81} -2.82843i q^{85} +7.65685 q^{87} +15.6569 q^{89} -9.65685i q^{91} -6.82843i q^{93} -3.65685 q^{97} +4.82843i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} - 4 q^{9} - 4 q^{15} - 4 q^{25} - 16 q^{31} + 8 q^{33} + 8 q^{39} - 8 q^{41} - 16 q^{47} - 12 q^{49} + 8 q^{55} - 8 q^{63} + 8 q^{65} + 32 q^{71} + 8 q^{73} - 16 q^{79} + 4 q^{81} + 8 q^{87}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 4.82843i − 1.45583i −0.685670 0.727913i \(-0.740491\pi\)
0.685670 0.727913i \(-0.259509\pi\)
\(12\) 0 0
\(13\) − 4.82843i − 1.33916i −0.742738 0.669582i \(-0.766473\pi\)
0.742738 0.669582i \(-0.233527\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −2.82843 −0.685994 −0.342997 0.939336i \(-0.611442\pi\)
−0.342997 + 0.939336i \(0.611442\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 0 0
\(23\) −5.65685 −1.17954 −0.589768 0.807573i \(-0.700781\pi\)
−0.589768 + 0.807573i \(0.700781\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) − 7.65685i − 1.42184i −0.703272 0.710921i \(-0.748278\pi\)
0.703272 0.710921i \(-0.251722\pi\)
\(30\) 0 0
\(31\) −6.82843 −1.22642 −0.613211 0.789919i \(-0.710122\pi\)
−0.613211 + 0.789919i \(0.710122\pi\)
\(32\) 0 0
\(33\) 4.82843 0.840521
\(34\) 0 0
\(35\) 2.00000i 0.338062i
\(36\) 0 0
\(37\) − 10.4853i − 1.72377i −0.507104 0.861885i \(-0.669284\pi\)
0.507104 0.861885i \(-0.330716\pi\)
\(38\) 0 0
\(39\) 4.82843 0.773167
\(40\) 0 0
\(41\) −7.65685 −1.19580 −0.597900 0.801571i \(-0.703998\pi\)
−0.597900 + 0.801571i \(0.703998\pi\)
\(42\) 0 0
\(43\) 9.65685i 1.47266i 0.676625 + 0.736328i \(0.263442\pi\)
−0.676625 + 0.736328i \(0.736558\pi\)
\(44\) 0 0
\(45\) − 1.00000i − 0.149071i
\(46\) 0 0
\(47\) −9.65685 −1.40860 −0.704298 0.709904i \(-0.748738\pi\)
−0.704298 + 0.709904i \(0.748738\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) − 2.82843i − 0.396059i
\(52\) 0 0
\(53\) 0.343146i 0.0471347i 0.999722 + 0.0235673i \(0.00750241\pi\)
−0.999722 + 0.0235673i \(0.992498\pi\)
\(54\) 0 0
\(55\) 4.82843 0.651065
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.828427i 0.107852i 0.998545 + 0.0539260i \(0.0171735\pi\)
−0.998545 + 0.0539260i \(0.982826\pi\)
\(60\) 0 0
\(61\) − 1.65685i − 0.212138i −0.994359 0.106069i \(-0.966173\pi\)
0.994359 0.106069i \(-0.0338265\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 4.82843 0.598893
\(66\) 0 0
\(67\) 1.65685i 0.202417i 0.994865 + 0.101208i \(0.0322709\pi\)
−0.994865 + 0.101208i \(0.967729\pi\)
\(68\) 0 0
\(69\) − 5.65685i − 0.681005i
\(70\) 0 0
\(71\) 2.34315 0.278080 0.139040 0.990287i \(-0.455598\pi\)
0.139040 + 0.990287i \(0.455598\pi\)
\(72\) 0 0
\(73\) 13.3137 1.55825 0.779126 0.626868i \(-0.215663\pi\)
0.779126 + 0.626868i \(0.215663\pi\)
\(74\) 0 0
\(75\) − 1.00000i − 0.115470i
\(76\) 0 0
\(77\) − 9.65685i − 1.10050i
\(78\) 0 0
\(79\) 4.48528 0.504634 0.252317 0.967645i \(-0.418807\pi\)
0.252317 + 0.967645i \(0.418807\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) − 2.82843i − 0.306786i
\(86\) 0 0
\(87\) 7.65685 0.820901
\(88\) 0 0
\(89\) 15.6569 1.65962 0.829812 0.558044i \(-0.188448\pi\)
0.829812 + 0.558044i \(0.188448\pi\)
\(90\) 0 0
\(91\) − 9.65685i − 1.01231i
\(92\) 0 0
\(93\) − 6.82843i − 0.708075i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −3.65685 −0.371297 −0.185649 0.982616i \(-0.559439\pi\)
−0.185649 + 0.982616i \(0.559439\pi\)
\(98\) 0 0
\(99\) 4.82843i 0.485275i
\(100\) 0 0
\(101\) − 17.3137i − 1.72278i −0.507946 0.861389i \(-0.669595\pi\)
0.507946 0.861389i \(-0.330405\pi\)
\(102\) 0 0
\(103\) 15.6569 1.54272 0.771358 0.636402i \(-0.219578\pi\)
0.771358 + 0.636402i \(0.219578\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) 13.6569i 1.32026i 0.751152 + 0.660129i \(0.229498\pi\)
−0.751152 + 0.660129i \(0.770502\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 10.4853 0.995219
\(112\) 0 0
\(113\) −3.51472 −0.330637 −0.165318 0.986240i \(-0.552865\pi\)
−0.165318 + 0.986240i \(0.552865\pi\)
\(114\) 0 0
\(115\) − 5.65685i − 0.527504i
\(116\) 0 0
\(117\) 4.82843i 0.446388i
\(118\) 0 0
\(119\) −5.65685 −0.518563
\(120\) 0 0
\(121\) −12.3137 −1.11943
\(122\) 0 0
\(123\) − 7.65685i − 0.690395i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −4.34315 −0.385392 −0.192696 0.981259i \(-0.561723\pi\)
−0.192696 + 0.981259i \(0.561723\pi\)
\(128\) 0 0
\(129\) −9.65685 −0.850239
\(130\) 0 0
\(131\) − 2.48528i − 0.217140i −0.994089 0.108570i \(-0.965373\pi\)
0.994089 0.108570i \(-0.0346272\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −6.82843 −0.583392 −0.291696 0.956511i \(-0.594220\pi\)
−0.291696 + 0.956511i \(0.594220\pi\)
\(138\) 0 0
\(139\) − 1.65685i − 0.140533i −0.997528 0.0702663i \(-0.977615\pi\)
0.997528 0.0702663i \(-0.0223849\pi\)
\(140\) 0 0
\(141\) − 9.65685i − 0.813254i
\(142\) 0 0
\(143\) −23.3137 −1.94959
\(144\) 0 0
\(145\) 7.65685 0.635867
\(146\) 0 0
\(147\) − 3.00000i − 0.247436i
\(148\) 0 0
\(149\) 0.343146i 0.0281116i 0.999901 + 0.0140558i \(0.00447425\pi\)
−0.999901 + 0.0140558i \(0.995526\pi\)
\(150\) 0 0
\(151\) 8.48528 0.690522 0.345261 0.938507i \(-0.387790\pi\)
0.345261 + 0.938507i \(0.387790\pi\)
\(152\) 0 0
\(153\) 2.82843 0.228665
\(154\) 0 0
\(155\) − 6.82843i − 0.548472i
\(156\) 0 0
\(157\) 5.51472i 0.440122i 0.975486 + 0.220061i \(0.0706257\pi\)
−0.975486 + 0.220061i \(0.929374\pi\)
\(158\) 0 0
\(159\) −0.343146 −0.0272132
\(160\) 0 0
\(161\) −11.3137 −0.891645
\(162\) 0 0
\(163\) − 12.0000i − 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 0 0
\(165\) 4.82843i 0.375893i
\(166\) 0 0
\(167\) 10.3431 0.800377 0.400188 0.916433i \(-0.368945\pi\)
0.400188 + 0.916433i \(0.368945\pi\)
\(168\) 0 0
\(169\) −10.3137 −0.793362
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 15.6569i − 1.19037i −0.803589 0.595184i \(-0.797079\pi\)
0.803589 0.595184i \(-0.202921\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) −0.828427 −0.0622684
\(178\) 0 0
\(179\) 2.48528i 0.185759i 0.995677 + 0.0928793i \(0.0296071\pi\)
−0.995677 + 0.0928793i \(0.970393\pi\)
\(180\) 0 0
\(181\) − 12.0000i − 0.891953i −0.895045 0.445976i \(-0.852856\pi\)
0.895045 0.445976i \(-0.147144\pi\)
\(182\) 0 0
\(183\) 1.65685 0.122478
\(184\) 0 0
\(185\) 10.4853 0.770893
\(186\) 0 0
\(187\) 13.6569i 0.998688i
\(188\) 0 0
\(189\) − 2.00000i − 0.145479i
\(190\) 0 0
\(191\) −27.3137 −1.97635 −0.988175 0.153328i \(-0.951001\pi\)
−0.988175 + 0.153328i \(0.951001\pi\)
\(192\) 0 0
\(193\) 22.9706 1.65346 0.826729 0.562601i \(-0.190199\pi\)
0.826729 + 0.562601i \(0.190199\pi\)
\(194\) 0 0
\(195\) 4.82843i 0.345771i
\(196\) 0 0
\(197\) 21.3137i 1.51854i 0.650776 + 0.759269i \(0.274444\pi\)
−0.650776 + 0.759269i \(0.725556\pi\)
\(198\) 0 0
\(199\) 18.8284 1.33471 0.667356 0.744739i \(-0.267426\pi\)
0.667356 + 0.744739i \(0.267426\pi\)
\(200\) 0 0
\(201\) −1.65685 −0.116865
\(202\) 0 0
\(203\) − 15.3137i − 1.07481i
\(204\) 0 0
\(205\) − 7.65685i − 0.534778i
\(206\) 0 0
\(207\) 5.65685 0.393179
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 25.6569i 1.76629i 0.469099 + 0.883145i \(0.344579\pi\)
−0.469099 + 0.883145i \(0.655421\pi\)
\(212\) 0 0
\(213\) 2.34315i 0.160550i
\(214\) 0 0
\(215\) −9.65685 −0.658592
\(216\) 0 0
\(217\) −13.6569 −0.927088
\(218\) 0 0
\(219\) 13.3137i 0.899657i
\(220\) 0 0
\(221\) 13.6569i 0.918659i
\(222\) 0 0
\(223\) 14.9706 1.00250 0.501252 0.865302i \(-0.332873\pi\)
0.501252 + 0.865302i \(0.332873\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) − 6.34315i − 0.421009i −0.977593 0.210505i \(-0.932489\pi\)
0.977593 0.210505i \(-0.0675107\pi\)
\(228\) 0 0
\(229\) − 10.3431i − 0.683494i −0.939792 0.341747i \(-0.888981\pi\)
0.939792 0.341747i \(-0.111019\pi\)
\(230\) 0 0
\(231\) 9.65685 0.635374
\(232\) 0 0
\(233\) 27.7990 1.82117 0.910586 0.413319i \(-0.135631\pi\)
0.910586 + 0.413319i \(0.135631\pi\)
\(234\) 0 0
\(235\) − 9.65685i − 0.629944i
\(236\) 0 0
\(237\) 4.48528i 0.291350i
\(238\) 0 0
\(239\) −22.6274 −1.46365 −0.731823 0.681495i \(-0.761330\pi\)
−0.731823 + 0.681495i \(0.761330\pi\)
\(240\) 0 0
\(241\) −24.6274 −1.58639 −0.793196 0.608967i \(-0.791584\pi\)
−0.793196 + 0.608967i \(0.791584\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) − 3.00000i − 0.191663i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 3.17157i − 0.200188i −0.994978 0.100094i \(-0.968086\pi\)
0.994978 0.100094i \(-0.0319143\pi\)
\(252\) 0 0
\(253\) 27.3137i 1.71720i
\(254\) 0 0
\(255\) 2.82843 0.177123
\(256\) 0 0
\(257\) 9.17157 0.572107 0.286053 0.958214i \(-0.407656\pi\)
0.286053 + 0.958214i \(0.407656\pi\)
\(258\) 0 0
\(259\) − 20.9706i − 1.30305i
\(260\) 0 0
\(261\) 7.65685i 0.473947i
\(262\) 0 0
\(263\) 18.3431 1.13109 0.565543 0.824719i \(-0.308666\pi\)
0.565543 + 0.824719i \(0.308666\pi\)
\(264\) 0 0
\(265\) −0.343146 −0.0210793
\(266\) 0 0
\(267\) 15.6569i 0.958184i
\(268\) 0 0
\(269\) 3.65685i 0.222962i 0.993767 + 0.111481i \(0.0355595\pi\)
−0.993767 + 0.111481i \(0.964441\pi\)
\(270\) 0 0
\(271\) 8.48528 0.515444 0.257722 0.966219i \(-0.417028\pi\)
0.257722 + 0.966219i \(0.417028\pi\)
\(272\) 0 0
\(273\) 9.65685 0.584459
\(274\) 0 0
\(275\) 4.82843i 0.291165i
\(276\) 0 0
\(277\) − 28.8284i − 1.73213i −0.499929 0.866066i \(-0.666641\pi\)
0.499929 0.866066i \(-0.333359\pi\)
\(278\) 0 0
\(279\) 6.82843 0.408807
\(280\) 0 0
\(281\) −22.9706 −1.37031 −0.685154 0.728398i \(-0.740265\pi\)
−0.685154 + 0.728398i \(0.740265\pi\)
\(282\) 0 0
\(283\) 20.9706i 1.24657i 0.781995 + 0.623285i \(0.214202\pi\)
−0.781995 + 0.623285i \(0.785798\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.3137 −0.903940
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) − 3.65685i − 0.214369i
\(292\) 0 0
\(293\) 5.31371i 0.310430i 0.987881 + 0.155215i \(0.0496071\pi\)
−0.987881 + 0.155215i \(0.950393\pi\)
\(294\) 0 0
\(295\) −0.828427 −0.0482329
\(296\) 0 0
\(297\) −4.82843 −0.280174
\(298\) 0 0
\(299\) 27.3137i 1.57959i
\(300\) 0 0
\(301\) 19.3137i 1.11322i
\(302\) 0 0
\(303\) 17.3137 0.994647
\(304\) 0 0
\(305\) 1.65685 0.0948712
\(306\) 0 0
\(307\) − 4.00000i − 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 15.6569i 0.890687i
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 0 0
\(313\) 10.9706 0.620093 0.310046 0.950721i \(-0.399655\pi\)
0.310046 + 0.950721i \(0.399655\pi\)
\(314\) 0 0
\(315\) − 2.00000i − 0.112687i
\(316\) 0 0
\(317\) 9.31371i 0.523110i 0.965189 + 0.261555i \(0.0842353\pi\)
−0.965189 + 0.261555i \(0.915765\pi\)
\(318\) 0 0
\(319\) −36.9706 −2.06995
\(320\) 0 0
\(321\) −13.6569 −0.762251
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 4.82843i 0.267833i
\(326\) 0 0
\(327\) −4.00000 −0.221201
\(328\) 0 0
\(329\) −19.3137 −1.06480
\(330\) 0 0
\(331\) − 32.0000i − 1.75888i −0.476011 0.879440i \(-0.657918\pi\)
0.476011 0.879440i \(-0.342082\pi\)
\(332\) 0 0
\(333\) 10.4853i 0.574590i
\(334\) 0 0
\(335\) −1.65685 −0.0905236
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) − 3.51472i − 0.190893i
\(340\) 0 0
\(341\) 32.9706i 1.78546i
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 5.65685 0.304555
\(346\) 0 0
\(347\) − 1.65685i − 0.0889446i −0.999011 0.0444723i \(-0.985839\pi\)
0.999011 0.0444723i \(-0.0141606\pi\)
\(348\) 0 0
\(349\) 36.9706i 1.97899i 0.144571 + 0.989494i \(0.453820\pi\)
−0.144571 + 0.989494i \(0.546180\pi\)
\(350\) 0 0
\(351\) −4.82843 −0.257722
\(352\) 0 0
\(353\) 25.4558 1.35488 0.677439 0.735579i \(-0.263090\pi\)
0.677439 + 0.735579i \(0.263090\pi\)
\(354\) 0 0
\(355\) 2.34315i 0.124361i
\(356\) 0 0
\(357\) − 5.65685i − 0.299392i
\(358\) 0 0
\(359\) −16.9706 −0.895672 −0.447836 0.894116i \(-0.647805\pi\)
−0.447836 + 0.894116i \(0.647805\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) − 12.3137i − 0.646302i
\(364\) 0 0
\(365\) 13.3137i 0.696871i
\(366\) 0 0
\(367\) 25.3137 1.32136 0.660682 0.750666i \(-0.270267\pi\)
0.660682 + 0.750666i \(0.270267\pi\)
\(368\) 0 0
\(369\) 7.65685 0.398600
\(370\) 0 0
\(371\) 0.686292i 0.0356305i
\(372\) 0 0
\(373\) − 13.5147i − 0.699766i −0.936793 0.349883i \(-0.886221\pi\)
0.936793 0.349883i \(-0.113779\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −36.9706 −1.90408
\(378\) 0 0
\(379\) − 32.2843i − 1.65833i −0.559003 0.829166i \(-0.688816\pi\)
0.559003 0.829166i \(-0.311184\pi\)
\(380\) 0 0
\(381\) − 4.34315i − 0.222506i
\(382\) 0 0
\(383\) −17.6569 −0.902223 −0.451112 0.892468i \(-0.648972\pi\)
−0.451112 + 0.892468i \(0.648972\pi\)
\(384\) 0 0
\(385\) 9.65685 0.492159
\(386\) 0 0
\(387\) − 9.65685i − 0.490885i
\(388\) 0 0
\(389\) 9.31371i 0.472224i 0.971726 + 0.236112i \(0.0758732\pi\)
−0.971726 + 0.236112i \(0.924127\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 2.48528 0.125366
\(394\) 0 0
\(395\) 4.48528i 0.225679i
\(396\) 0 0
\(397\) 10.4853i 0.526241i 0.964763 + 0.263121i \(0.0847517\pi\)
−0.964763 + 0.263121i \(0.915248\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.62742 −0.430833 −0.215416 0.976522i \(-0.569111\pi\)
−0.215416 + 0.976522i \(0.569111\pi\)
\(402\) 0 0
\(403\) 32.9706i 1.64238i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) −50.6274 −2.50951
\(408\) 0 0
\(409\) 25.3137 1.25168 0.625841 0.779951i \(-0.284756\pi\)
0.625841 + 0.779951i \(0.284756\pi\)
\(410\) 0 0
\(411\) − 6.82843i − 0.336821i
\(412\) 0 0
\(413\) 1.65685i 0.0815285i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.65685 0.0811365
\(418\) 0 0
\(419\) 14.4853i 0.707652i 0.935311 + 0.353826i \(0.115120\pi\)
−0.935311 + 0.353826i \(0.884880\pi\)
\(420\) 0 0
\(421\) 16.9706i 0.827095i 0.910483 + 0.413547i \(0.135710\pi\)
−0.910483 + 0.413547i \(0.864290\pi\)
\(422\) 0 0
\(423\) 9.65685 0.469532
\(424\) 0 0
\(425\) 2.82843 0.137199
\(426\) 0 0
\(427\) − 3.31371i − 0.160362i
\(428\) 0 0
\(429\) − 23.3137i − 1.12560i
\(430\) 0 0
\(431\) 10.3431 0.498212 0.249106 0.968476i \(-0.419863\pi\)
0.249106 + 0.968476i \(0.419863\pi\)
\(432\) 0 0
\(433\) 12.6274 0.606835 0.303417 0.952858i \(-0.401872\pi\)
0.303417 + 0.952858i \(0.401872\pi\)
\(434\) 0 0
\(435\) 7.65685i 0.367118i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 6.14214 0.293148 0.146574 0.989200i \(-0.453175\pi\)
0.146574 + 0.989200i \(0.453175\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) 6.34315i 0.301372i 0.988582 + 0.150686i \(0.0481482\pi\)
−0.988582 + 0.150686i \(0.951852\pi\)
\(444\) 0 0
\(445\) 15.6569i 0.742206i
\(446\) 0 0
\(447\) −0.343146 −0.0162302
\(448\) 0 0
\(449\) −21.3137 −1.00586 −0.502928 0.864328i \(-0.667744\pi\)
−0.502928 + 0.864328i \(0.667744\pi\)
\(450\) 0 0
\(451\) 36.9706i 1.74088i
\(452\) 0 0
\(453\) 8.48528i 0.398673i
\(454\) 0 0
\(455\) 9.65685 0.452720
\(456\) 0 0
\(457\) −18.9706 −0.887405 −0.443703 0.896174i \(-0.646335\pi\)
−0.443703 + 0.896174i \(0.646335\pi\)
\(458\) 0 0
\(459\) 2.82843i 0.132020i
\(460\) 0 0
\(461\) − 8.34315i − 0.388579i −0.980944 0.194290i \(-0.937760\pi\)
0.980944 0.194290i \(-0.0622401\pi\)
\(462\) 0 0
\(463\) −20.6274 −0.958637 −0.479319 0.877641i \(-0.659116\pi\)
−0.479319 + 0.877641i \(0.659116\pi\)
\(464\) 0 0
\(465\) 6.82843 0.316661
\(466\) 0 0
\(467\) − 35.3137i − 1.63412i −0.576550 0.817062i \(-0.695601\pi\)
0.576550 0.817062i \(-0.304399\pi\)
\(468\) 0 0
\(469\) 3.31371i 0.153013i
\(470\) 0 0
\(471\) −5.51472 −0.254105
\(472\) 0 0
\(473\) 46.6274 2.14393
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.343146i − 0.0157116i
\(478\) 0 0
\(479\) 21.6569 0.989527 0.494763 0.869028i \(-0.335255\pi\)
0.494763 + 0.869028i \(0.335255\pi\)
\(480\) 0 0
\(481\) −50.6274 −2.30841
\(482\) 0 0
\(483\) − 11.3137i − 0.514792i
\(484\) 0 0
\(485\) − 3.65685i − 0.166049i
\(486\) 0 0
\(487\) 30.9706 1.40341 0.701705 0.712468i \(-0.252422\pi\)
0.701705 + 0.712468i \(0.252422\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) − 32.8284i − 1.48153i −0.671766 0.740763i \(-0.734464\pi\)
0.671766 0.740763i \(-0.265536\pi\)
\(492\) 0 0
\(493\) 21.6569i 0.975376i
\(494\) 0 0
\(495\) −4.82843 −0.217022
\(496\) 0 0
\(497\) 4.68629 0.210209
\(498\) 0 0
\(499\) − 38.6274i − 1.72920i −0.502460 0.864600i \(-0.667572\pi\)
0.502460 0.864600i \(-0.332428\pi\)
\(500\) 0 0
\(501\) 10.3431i 0.462098i
\(502\) 0 0
\(503\) 1.65685 0.0738755 0.0369377 0.999318i \(-0.488240\pi\)
0.0369377 + 0.999318i \(0.488240\pi\)
\(504\) 0 0
\(505\) 17.3137 0.770450
\(506\) 0 0
\(507\) − 10.3137i − 0.458048i
\(508\) 0 0
\(509\) − 18.0000i − 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) 0 0
\(511\) 26.6274 1.17793
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.6569i 0.689923i
\(516\) 0 0
\(517\) 46.6274i 2.05067i
\(518\) 0 0
\(519\) 15.6569 0.687260
\(520\) 0 0
\(521\) −17.3137 −0.758527 −0.379264 0.925289i \(-0.623823\pi\)
−0.379264 + 0.925289i \(0.623823\pi\)
\(522\) 0 0
\(523\) 29.9411i 1.30923i 0.755961 + 0.654617i \(0.227170\pi\)
−0.755961 + 0.654617i \(0.772830\pi\)
\(524\) 0 0
\(525\) − 2.00000i − 0.0872872i
\(526\) 0 0
\(527\) 19.3137 0.841318
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) − 0.828427i − 0.0359507i
\(532\) 0 0
\(533\) 36.9706i 1.60137i
\(534\) 0 0
\(535\) −13.6569 −0.590437
\(536\) 0 0
\(537\) −2.48528 −0.107248
\(538\) 0 0
\(539\) 14.4853i 0.623925i
\(540\) 0 0
\(541\) 12.0000i 0.515920i 0.966156 + 0.257960i \(0.0830503\pi\)
−0.966156 + 0.257960i \(0.916950\pi\)
\(542\) 0 0
\(543\) 12.0000 0.514969
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) − 14.3431i − 0.613269i −0.951827 0.306634i \(-0.900797\pi\)
0.951827 0.306634i \(-0.0992029\pi\)
\(548\) 0 0
\(549\) 1.65685i 0.0707128i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 8.97056 0.381467
\(554\) 0 0
\(555\) 10.4853i 0.445075i
\(556\) 0 0
\(557\) − 12.3431i − 0.522996i −0.965204 0.261498i \(-0.915784\pi\)
0.965204 0.261498i \(-0.0842165\pi\)
\(558\) 0 0
\(559\) 46.6274 1.97213
\(560\) 0 0
\(561\) −13.6569 −0.576593
\(562\) 0 0
\(563\) − 4.97056i − 0.209484i −0.994499 0.104742i \(-0.966598\pi\)
0.994499 0.104742i \(-0.0334017\pi\)
\(564\) 0 0
\(565\) − 3.51472i − 0.147865i
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) −17.3137 −0.725828 −0.362914 0.931823i \(-0.618218\pi\)
−0.362914 + 0.931823i \(0.618218\pi\)
\(570\) 0 0
\(571\) 6.62742i 0.277349i 0.990338 + 0.138674i \(0.0442841\pi\)
−0.990338 + 0.138674i \(0.955716\pi\)
\(572\) 0 0
\(573\) − 27.3137i − 1.14105i
\(574\) 0 0
\(575\) 5.65685 0.235907
\(576\) 0 0
\(577\) −38.9706 −1.62237 −0.811183 0.584793i \(-0.801176\pi\)
−0.811183 + 0.584793i \(0.801176\pi\)
\(578\) 0 0
\(579\) 22.9706i 0.954624i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.65685 0.0686199
\(584\) 0 0
\(585\) −4.82843 −0.199631
\(586\) 0 0
\(587\) 18.3431i 0.757103i 0.925580 + 0.378551i \(0.123578\pi\)
−0.925580 + 0.378551i \(0.876422\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −21.3137 −0.876729
\(592\) 0 0
\(593\) −0.201010 −0.00825450 −0.00412725 0.999991i \(-0.501314\pi\)
−0.00412725 + 0.999991i \(0.501314\pi\)
\(594\) 0 0
\(595\) − 5.65685i − 0.231908i
\(596\) 0 0
\(597\) 18.8284i 0.770596i
\(598\) 0 0
\(599\) −34.3431 −1.40322 −0.701611 0.712560i \(-0.747536\pi\)
−0.701611 + 0.712560i \(0.747536\pi\)
\(600\) 0 0
\(601\) −39.9411 −1.62923 −0.814616 0.580000i \(-0.803052\pi\)
−0.814616 + 0.580000i \(0.803052\pi\)
\(602\) 0 0
\(603\) − 1.65685i − 0.0674723i
\(604\) 0 0
\(605\) − 12.3137i − 0.500623i
\(606\) 0 0
\(607\) −20.6274 −0.837241 −0.418621 0.908161i \(-0.637486\pi\)
−0.418621 + 0.908161i \(0.637486\pi\)
\(608\) 0 0
\(609\) 15.3137 0.620543
\(610\) 0 0
\(611\) 46.6274i 1.88634i
\(612\) 0 0
\(613\) − 26.4853i − 1.06973i −0.844937 0.534865i \(-0.820362\pi\)
0.844937 0.534865i \(-0.179638\pi\)
\(614\) 0 0
\(615\) 7.65685 0.308754
\(616\) 0 0
\(617\) −2.82843 −0.113868 −0.0569341 0.998378i \(-0.518132\pi\)
−0.0569341 + 0.998378i \(0.518132\pi\)
\(618\) 0 0
\(619\) 11.0294i 0.443311i 0.975125 + 0.221655i \(0.0711460\pi\)
−0.975125 + 0.221655i \(0.928854\pi\)
\(620\) 0 0
\(621\) 5.65685i 0.227002i
\(622\) 0 0
\(623\) 31.3137 1.25456
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 29.6569i 1.18250i
\(630\) 0 0
\(631\) −36.4853 −1.45246 −0.726228 0.687454i \(-0.758728\pi\)
−0.726228 + 0.687454i \(0.758728\pi\)
\(632\) 0 0
\(633\) −25.6569 −1.01977
\(634\) 0 0
\(635\) − 4.34315i − 0.172352i
\(636\) 0 0
\(637\) 14.4853i 0.573928i
\(638\) 0 0
\(639\) −2.34315 −0.0926934
\(640\) 0 0
\(641\) 12.3431 0.487525 0.243762 0.969835i \(-0.421618\pi\)
0.243762 + 0.969835i \(0.421618\pi\)
\(642\) 0 0
\(643\) 2.62742i 0.103615i 0.998657 + 0.0518076i \(0.0164983\pi\)
−0.998657 + 0.0518076i \(0.983502\pi\)
\(644\) 0 0
\(645\) − 9.65685i − 0.380238i
\(646\) 0 0
\(647\) 17.6569 0.694163 0.347081 0.937835i \(-0.387173\pi\)
0.347081 + 0.937835i \(0.387173\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 0 0
\(651\) − 13.6569i − 0.535254i
\(652\) 0 0
\(653\) 29.3137i 1.14713i 0.819159 + 0.573567i \(0.194441\pi\)
−0.819159 + 0.573567i \(0.805559\pi\)
\(654\) 0 0
\(655\) 2.48528 0.0971080
\(656\) 0 0
\(657\) −13.3137 −0.519417
\(658\) 0 0
\(659\) − 39.1716i − 1.52591i −0.646453 0.762954i \(-0.723748\pi\)
0.646453 0.762954i \(-0.276252\pi\)
\(660\) 0 0
\(661\) − 36.9706i − 1.43799i −0.695016 0.718994i \(-0.744603\pi\)
0.695016 0.718994i \(-0.255397\pi\)
\(662\) 0 0
\(663\) −13.6569 −0.530388
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 43.3137i 1.67711i
\(668\) 0 0
\(669\) 14.9706i 0.578795i
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 33.3137 1.28415 0.642075 0.766642i \(-0.278074\pi\)
0.642075 + 0.766642i \(0.278074\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) − 5.31371i − 0.204222i −0.994773 0.102111i \(-0.967440\pi\)
0.994773 0.102111i \(-0.0325598\pi\)
\(678\) 0 0
\(679\) −7.31371 −0.280674
\(680\) 0 0
\(681\) 6.34315 0.243070
\(682\) 0 0
\(683\) − 19.3137i − 0.739019i −0.929227 0.369509i \(-0.879526\pi\)
0.929227 0.369509i \(-0.120474\pi\)
\(684\) 0 0
\(685\) − 6.82843i − 0.260901i
\(686\) 0 0
\(687\) 10.3431 0.394616
\(688\) 0 0
\(689\) 1.65685 0.0631211
\(690\) 0 0
\(691\) 38.6274i 1.46946i 0.678362 + 0.734728i \(0.262690\pi\)
−0.678362 + 0.734728i \(0.737310\pi\)
\(692\) 0 0
\(693\) 9.65685i 0.366834i
\(694\) 0 0
\(695\) 1.65685 0.0628481
\(696\) 0 0
\(697\) 21.6569 0.820312
\(698\) 0 0
\(699\) 27.7990i 1.05145i
\(700\) 0 0
\(701\) − 42.0000i − 1.58632i −0.609015 0.793159i \(-0.708435\pi\)
0.609015 0.793159i \(-0.291565\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 9.65685 0.363698
\(706\) 0 0
\(707\) − 34.6274i − 1.30230i
\(708\) 0 0
\(709\) − 20.2843i − 0.761792i −0.924618 0.380896i \(-0.875616\pi\)
0.924618 0.380896i \(-0.124384\pi\)
\(710\) 0 0
\(711\) −4.48528 −0.168211
\(712\) 0 0
\(713\) 38.6274 1.44661
\(714\) 0 0
\(715\) − 23.3137i − 0.871883i
\(716\) 0 0
\(717\) − 22.6274i − 0.845036i
\(718\) 0 0
\(719\) 44.2843 1.65152 0.825762 0.564018i \(-0.190745\pi\)
0.825762 + 0.564018i \(0.190745\pi\)
\(720\) 0 0
\(721\) 31.3137 1.16618
\(722\) 0 0
\(723\) − 24.6274i − 0.915903i
\(724\) 0 0
\(725\) 7.65685i 0.284368i
\(726\) 0 0
\(727\) −17.0294 −0.631587 −0.315793 0.948828i \(-0.602271\pi\)
−0.315793 + 0.948828i \(0.602271\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 27.3137i − 1.01023i
\(732\) 0 0
\(733\) − 17.7990i − 0.657421i −0.944431 0.328710i \(-0.893386\pi\)
0.944431 0.328710i \(-0.106614\pi\)
\(734\) 0 0
\(735\) 3.00000 0.110657
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) − 25.9411i − 0.954260i −0.878833 0.477130i \(-0.841677\pi\)
0.878833 0.477130i \(-0.158323\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28.9706 −1.06283 −0.531413 0.847113i \(-0.678339\pi\)
−0.531413 + 0.847113i \(0.678339\pi\)
\(744\) 0 0
\(745\) −0.343146 −0.0125719
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 27.3137i 0.998021i
\(750\) 0 0
\(751\) −5.45584 −0.199087 −0.0995433 0.995033i \(-0.531738\pi\)
−0.0995433 + 0.995033i \(0.531738\pi\)
\(752\) 0 0
\(753\) 3.17157 0.115579
\(754\) 0 0
\(755\) 8.48528i 0.308811i
\(756\) 0 0
\(757\) − 17.5147i − 0.636583i −0.947993 0.318292i \(-0.896891\pi\)
0.947993 0.318292i \(-0.103109\pi\)
\(758\) 0 0
\(759\) −27.3137 −0.991425
\(760\) 0 0
\(761\) −10.6863 −0.387378 −0.193689 0.981063i \(-0.562045\pi\)
−0.193689 + 0.981063i \(0.562045\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 0 0
\(765\) 2.82843i 0.102262i
\(766\) 0 0
\(767\) 4.00000 0.144432
\(768\) 0 0
\(769\) −9.31371 −0.335861 −0.167930 0.985799i \(-0.553708\pi\)
−0.167930 + 0.985799i \(0.553708\pi\)
\(770\) 0 0
\(771\) 9.17157i 0.330306i
\(772\) 0 0
\(773\) − 51.2548i − 1.84351i −0.387775 0.921754i \(-0.626756\pi\)
0.387775 0.921754i \(-0.373244\pi\)
\(774\) 0 0
\(775\) 6.82843 0.245284
\(776\) 0 0
\(777\) 20.9706 0.752315
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) − 11.3137i − 0.404836i
\(782\) 0 0
\(783\) −7.65685 −0.273634
\(784\) 0 0
\(785\) −5.51472 −0.196829
\(786\) 0 0
\(787\) − 39.3137i − 1.40138i −0.713465 0.700691i \(-0.752875\pi\)
0.713465 0.700691i \(-0.247125\pi\)
\(788\) 0 0
\(789\) 18.3431i 0.653033i
\(790\) 0 0
\(791\) −7.02944 −0.249938
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 0 0
\(795\) − 0.343146i − 0.0121701i
\(796\) 0 0
\(797\) − 10.9706i − 0.388597i −0.980942 0.194299i \(-0.937757\pi\)
0.980942 0.194299i \(-0.0622431\pi\)
\(798\) 0 0
\(799\) 27.3137 0.966290
\(800\) 0 0
\(801\) −15.6569 −0.553208
\(802\) 0 0
\(803\) − 64.2843i − 2.26854i
\(804\) 0 0
\(805\) − 11.3137i − 0.398756i
\(806\) 0 0
\(807\) −3.65685 −0.128727
\(808\) 0 0
\(809\) −12.3431 −0.433962 −0.216981 0.976176i \(-0.569621\pi\)
−0.216981 + 0.976176i \(0.569621\pi\)
\(810\) 0 0
\(811\) 43.5980i 1.53093i 0.643476 + 0.765466i \(0.277492\pi\)
−0.643476 + 0.765466i \(0.722508\pi\)
\(812\) 0 0
\(813\) 8.48528i 0.297592i
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 9.65685i 0.337438i
\(820\) 0 0
\(821\) 1.02944i 0.0359276i 0.999839 + 0.0179638i \(0.00571836\pi\)
−0.999839 + 0.0179638i \(0.994282\pi\)
\(822\) 0 0
\(823\) −38.2843 −1.33451 −0.667253 0.744831i \(-0.732530\pi\)
−0.667253 + 0.744831i \(0.732530\pi\)
\(824\) 0 0
\(825\) −4.82843 −0.168104
\(826\) 0 0
\(827\) 16.6863i 0.580239i 0.956990 + 0.290120i \(0.0936951\pi\)
−0.956990 + 0.290120i \(0.906305\pi\)
\(828\) 0 0
\(829\) − 29.9411i − 1.03990i −0.854197 0.519949i \(-0.825951\pi\)
0.854197 0.519949i \(-0.174049\pi\)
\(830\) 0 0
\(831\) 28.8284 1.00005
\(832\) 0 0
\(833\) 8.48528 0.293998
\(834\) 0 0
\(835\) 10.3431i 0.357939i
\(836\) 0 0
\(837\) 6.82843i 0.236025i
\(838\) 0 0
\(839\) 44.2843 1.52886 0.764431 0.644705i \(-0.223020\pi\)
0.764431 + 0.644705i \(0.223020\pi\)
\(840\) 0 0
\(841\) −29.6274 −1.02164
\(842\) 0 0
\(843\) − 22.9706i − 0.791148i
\(844\) 0 0
\(845\) − 10.3137i − 0.354802i
\(846\) 0 0
\(847\) −24.6274 −0.846208
\(848\) 0 0
\(849\) −20.9706 −0.719708
\(850\) 0 0
\(851\) 59.3137i 2.03325i
\(852\) 0 0
\(853\) − 18.4853i − 0.632924i −0.948605 0.316462i \(-0.897505\pi\)
0.948605 0.316462i \(-0.102495\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.14214 0.209811 0.104906 0.994482i \(-0.466546\pi\)
0.104906 + 0.994482i \(0.466546\pi\)
\(858\) 0 0
\(859\) − 54.9117i − 1.87356i −0.349915 0.936781i \(-0.613790\pi\)
0.349915 0.936781i \(-0.386210\pi\)
\(860\) 0 0
\(861\) − 15.3137i − 0.521890i
\(862\) 0 0
\(863\) 10.3431 0.352085 0.176042 0.984383i \(-0.443670\pi\)
0.176042 + 0.984383i \(0.443670\pi\)
\(864\) 0 0
\(865\) 15.6569 0.532349
\(866\) 0 0
\(867\) − 9.00000i − 0.305656i
\(868\) 0 0
\(869\) − 21.6569i − 0.734658i
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) 3.65685 0.123766
\(874\) 0 0
\(875\) − 2.00000i − 0.0676123i
\(876\) 0 0
\(877\) − 2.48528i − 0.0839220i −0.999119 0.0419610i \(-0.986639\pi\)
0.999119 0.0419610i \(-0.0133605\pi\)
\(878\) 0 0
\(879\) −5.31371 −0.179227
\(880\) 0 0
\(881\) 35.6569 1.20131 0.600655 0.799508i \(-0.294907\pi\)
0.600655 + 0.799508i \(0.294907\pi\)
\(882\) 0 0
\(883\) 37.9411i 1.27682i 0.769696 + 0.638410i \(0.220408\pi\)
−0.769696 + 0.638410i \(0.779592\pi\)
\(884\) 0 0
\(885\) − 0.828427i − 0.0278473i
\(886\) 0 0
\(887\) 39.5980 1.32957 0.664785 0.747035i \(-0.268523\pi\)
0.664785 + 0.747035i \(0.268523\pi\)
\(888\) 0 0
\(889\) −8.68629 −0.291329
\(890\) 0 0
\(891\) − 4.82843i − 0.161758i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −2.48528 −0.0830738
\(896\) 0 0
\(897\) −27.3137 −0.911978
\(898\) 0 0
\(899\) 52.2843i 1.74378i
\(900\) 0 0
\(901\) − 0.970563i − 0.0323341i
\(902\) 0 0
\(903\) −19.3137 −0.642720
\(904\) 0 0
\(905\) 12.0000 0.398893
\(906\) 0 0
\(907\) − 12.9706i − 0.430680i −0.976539 0.215340i \(-0.930914\pi\)
0.976539 0.215340i \(-0.0690860\pi\)
\(908\) 0 0
\(909\) 17.3137i 0.574259i
\(910\) 0 0
\(911\) 35.3137 1.17000 0.584998 0.811035i \(-0.301095\pi\)
0.584998 + 0.811035i \(0.301095\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.65685i 0.0547739i
\(916\) 0 0
\(917\) − 4.97056i − 0.164142i
\(918\) 0 0
\(919\) −44.4853 −1.46743 −0.733717 0.679455i \(-0.762216\pi\)
−0.733717 + 0.679455i \(0.762216\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 0 0
\(923\) − 11.3137i − 0.372395i
\(924\) 0 0
\(925\) 10.4853i 0.344754i
\(926\) 0 0
\(927\) −15.6569 −0.514239
\(928\) 0 0
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) − 11.3137i − 0.370394i
\(934\) 0 0
\(935\) −13.6569 −0.446627
\(936\) 0 0
\(937\) −13.3137 −0.434940 −0.217470 0.976067i \(-0.569780\pi\)
−0.217470 + 0.976067i \(0.569780\pi\)
\(938\) 0 0
\(939\) 10.9706i 0.358011i
\(940\) 0 0
\(941\) − 35.2548i − 1.14927i −0.818408 0.574637i \(-0.805143\pi\)
0.818408 0.574637i \(-0.194857\pi\)
\(942\) 0 0
\(943\) 43.3137 1.41049
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) 45.9411i 1.49289i 0.665449 + 0.746443i \(0.268240\pi\)
−0.665449 + 0.746443i \(0.731760\pi\)
\(948\) 0 0
\(949\) − 64.2843i − 2.08676i
\(950\) 0 0
\(951\) −9.31371 −0.302018
\(952\) 0 0
\(953\) 33.1716 1.07453 0.537266 0.843413i \(-0.319457\pi\)
0.537266 + 0.843413i \(0.319457\pi\)
\(954\) 0 0
\(955\) − 27.3137i − 0.883851i
\(956\) 0 0
\(957\) − 36.9706i − 1.19509i
\(958\) 0 0
\(959\) −13.6569 −0.441003
\(960\) 0 0
\(961\) 15.6274 0.504110
\(962\) 0 0
\(963\) − 13.6569i − 0.440086i
\(964\) 0 0
\(965\) 22.9706i 0.739449i
\(966\) 0 0
\(967\) −56.9117 −1.83016 −0.915078 0.403276i \(-0.867871\pi\)
−0.915078 + 0.403276i \(0.867871\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 15.8579i − 0.508903i −0.967086 0.254452i \(-0.918105\pi\)
0.967086 0.254452i \(-0.0818949\pi\)
\(972\) 0 0
\(973\) − 3.31371i − 0.106233i
\(974\) 0 0
\(975\) −4.82843 −0.154633
\(976\) 0 0
\(977\) −26.8284 −0.858317 −0.429159 0.903229i \(-0.641190\pi\)
−0.429159 + 0.903229i \(0.641190\pi\)
\(978\) 0 0
\(979\) − 75.5980i − 2.41612i
\(980\) 0 0
\(981\) − 4.00000i − 0.127710i
\(982\) 0 0
\(983\) −19.0294 −0.606945 −0.303472 0.952840i \(-0.598146\pi\)
−0.303472 + 0.952840i \(0.598146\pi\)
\(984\) 0 0
\(985\) −21.3137 −0.679111
\(986\) 0 0
\(987\) − 19.3137i − 0.614762i
\(988\) 0 0
\(989\) − 54.6274i − 1.73705i
\(990\) 0 0
\(991\) 15.5147 0.492841 0.246421 0.969163i \(-0.420746\pi\)
0.246421 + 0.969163i \(0.420746\pi\)
\(992\) 0 0
\(993\) 32.0000 1.01549
\(994\) 0 0
\(995\) 18.8284i 0.596901i
\(996\) 0 0
\(997\) − 12.1421i − 0.384545i −0.981342 0.192273i \(-0.938414\pi\)
0.981342 0.192273i \(-0.0615858\pi\)
\(998\) 0 0
\(999\) −10.4853 −0.331740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.k.k.961.3 yes 4
3.2 odd 2 5760.2.k.x.2881.2 4
4.3 odd 2 1920.2.k.j.961.2 4
8.3 odd 2 1920.2.k.j.961.3 yes 4
8.5 even 2 inner 1920.2.k.k.961.2 yes 4
12.11 even 2 5760.2.k.m.2881.1 4
16.3 odd 4 3840.2.a.bm.1.2 2
16.5 even 4 3840.2.a.bj.1.2 2
16.11 odd 4 3840.2.a.bd.1.1 2
16.13 even 4 3840.2.a.bg.1.1 2
24.5 odd 2 5760.2.k.x.2881.3 4
24.11 even 2 5760.2.k.m.2881.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.j.961.2 4 4.3 odd 2
1920.2.k.j.961.3 yes 4 8.3 odd 2
1920.2.k.k.961.2 yes 4 8.5 even 2 inner
1920.2.k.k.961.3 yes 4 1.1 even 1 trivial
3840.2.a.bd.1.1 2 16.11 odd 4
3840.2.a.bg.1.1 2 16.13 even 4
3840.2.a.bj.1.2 2 16.5 even 4
3840.2.a.bm.1.2 2 16.3 odd 4
5760.2.k.m.2881.1 4 12.11 even 2
5760.2.k.m.2881.4 4 24.11 even 2
5760.2.k.x.2881.2 4 3.2 odd 2
5760.2.k.x.2881.3 4 24.5 odd 2