Properties

Label 1920.2.k.k.961.3
Level 19201920
Weight 22
Character 1920.961
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(961,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.k (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 961.3
Root 0.7071070.707107i-0.707107 - 0.707107i of defining polynomial
Character χ\chi == 1920.961
Dual form 1920.2.k.k.961.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq3+1.00000iq5+2.00000q71.00000q94.82843iq114.82843iq131.00000q152.82843q17+2.00000iq215.65685q231.00000q251.00000iq277.65685iq296.82843q31+4.82843q33+2.00000iq3510.4853iq37+4.82843q397.65685q41+9.65685iq431.00000iq459.65685q473.00000q492.82843iq51+0.343146iq53+4.82843q55+0.828427iq591.65685iq612.00000q63+4.82843q65+1.65685iq675.65685iq69+2.34315q71+13.3137q731.00000iq759.65685iq77+4.48528q79+1.00000q812.82843iq85+7.65685q87+15.6569q899.65685iq916.82843iq933.65685q97+4.82843iq99+O(q100)q+1.00000i q^{3} +1.00000i q^{5} +2.00000 q^{7} -1.00000 q^{9} -4.82843i q^{11} -4.82843i q^{13} -1.00000 q^{15} -2.82843 q^{17} +2.00000i q^{21} -5.65685 q^{23} -1.00000 q^{25} -1.00000i q^{27} -7.65685i q^{29} -6.82843 q^{31} +4.82843 q^{33} +2.00000i q^{35} -10.4853i q^{37} +4.82843 q^{39} -7.65685 q^{41} +9.65685i q^{43} -1.00000i q^{45} -9.65685 q^{47} -3.00000 q^{49} -2.82843i q^{51} +0.343146i q^{53} +4.82843 q^{55} +0.828427i q^{59} -1.65685i q^{61} -2.00000 q^{63} +4.82843 q^{65} +1.65685i q^{67} -5.65685i q^{69} +2.34315 q^{71} +13.3137 q^{73} -1.00000i q^{75} -9.65685i q^{77} +4.48528 q^{79} +1.00000 q^{81} -2.82843i q^{85} +7.65685 q^{87} +15.6569 q^{89} -9.65685i q^{91} -6.82843i q^{93} -3.65685 q^{97} +4.82843i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q74q94q154q2516q31+8q33+8q398q4116q4712q49+8q558q63+8q65+32q71+8q7316q79+4q81+8q87++8q97+O(q100) 4 q + 8 q^{7} - 4 q^{9} - 4 q^{15} - 4 q^{25} - 16 q^{31} + 8 q^{33} + 8 q^{39} - 8 q^{41} - 16 q^{47} - 12 q^{49} + 8 q^{55} - 8 q^{63} + 8 q^{65} + 32 q^{71} + 8 q^{73} - 16 q^{79} + 4 q^{81} + 8 q^{87}+ \cdots + 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 11 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000i 0.577350i
44 0 0
55 1.00000i 0.447214i
66 0 0
77 2.00000 0.755929 0.377964 0.925820i 0.376624π-0.376624\pi
0.377964 + 0.925820i 0.376624π0.376624\pi
88 0 0
99 −1.00000 −0.333333
1010 0 0
1111 − 4.82843i − 1.45583i −0.685670 0.727913i 0.740491π-0.740491\pi
0.685670 0.727913i 0.259509π-0.259509\pi
1212 0 0
1313 − 4.82843i − 1.33916i −0.742738 0.669582i 0.766473π-0.766473\pi
0.742738 0.669582i 0.233527π-0.233527\pi
1414 0 0
1515 −1.00000 −0.258199
1616 0 0
1717 −2.82843 −0.685994 −0.342997 0.939336i 0.611442π-0.611442\pi
−0.342997 + 0.939336i 0.611442π0.611442\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 2.00000i 0.436436i
2222 0 0
2323 −5.65685 −1.17954 −0.589768 0.807573i 0.700781π-0.700781\pi
−0.589768 + 0.807573i 0.700781π0.700781\pi
2424 0 0
2525 −1.00000 −0.200000
2626 0 0
2727 − 1.00000i − 0.192450i
2828 0 0
2929 − 7.65685i − 1.42184i −0.703272 0.710921i 0.748278π-0.748278\pi
0.703272 0.710921i 0.251722π-0.251722\pi
3030 0 0
3131 −6.82843 −1.22642 −0.613211 0.789919i 0.710122π-0.710122\pi
−0.613211 + 0.789919i 0.710122π0.710122\pi
3232 0 0
3333 4.82843 0.840521
3434 0 0
3535 2.00000i 0.338062i
3636 0 0
3737 − 10.4853i − 1.72377i −0.507104 0.861885i 0.669284π-0.669284\pi
0.507104 0.861885i 0.330716π-0.330716\pi
3838 0 0
3939 4.82843 0.773167
4040 0 0
4141 −7.65685 −1.19580 −0.597900 0.801571i 0.703998π-0.703998\pi
−0.597900 + 0.801571i 0.703998π0.703998\pi
4242 0 0
4343 9.65685i 1.47266i 0.676625 + 0.736328i 0.263442π0.263442\pi
−0.676625 + 0.736328i 0.736558π0.736558\pi
4444 0 0
4545 − 1.00000i − 0.149071i
4646 0 0
4747 −9.65685 −1.40860 −0.704298 0.709904i 0.748738π-0.748738\pi
−0.704298 + 0.709904i 0.748738π0.748738\pi
4848 0 0
4949 −3.00000 −0.428571
5050 0 0
5151 − 2.82843i − 0.396059i
5252 0 0
5353 0.343146i 0.0471347i 0.999722 + 0.0235673i 0.00750241π0.00750241\pi
−0.999722 + 0.0235673i 0.992498π0.992498\pi
5454 0 0
5555 4.82843 0.651065
5656 0 0
5757 0 0
5858 0 0
5959 0.828427i 0.107852i 0.998545 + 0.0539260i 0.0171735π0.0171735\pi
−0.998545 + 0.0539260i 0.982826π0.982826\pi
6060 0 0
6161 − 1.65685i − 0.212138i −0.994359 0.106069i 0.966173π-0.966173\pi
0.994359 0.106069i 0.0338265π-0.0338265\pi
6262 0 0
6363 −2.00000 −0.251976
6464 0 0
6565 4.82843 0.598893
6666 0 0
6767 1.65685i 0.202417i 0.994865 + 0.101208i 0.0322709π0.0322709\pi
−0.994865 + 0.101208i 0.967729π0.967729\pi
6868 0 0
6969 − 5.65685i − 0.681005i
7070 0 0
7171 2.34315 0.278080 0.139040 0.990287i 0.455598π-0.455598\pi
0.139040 + 0.990287i 0.455598π0.455598\pi
7272 0 0
7373 13.3137 1.55825 0.779126 0.626868i 0.215663π-0.215663\pi
0.779126 + 0.626868i 0.215663π0.215663\pi
7474 0 0
7575 − 1.00000i − 0.115470i
7676 0 0
7777 − 9.65685i − 1.10050i
7878 0 0
7979 4.48528 0.504634 0.252317 0.967645i 0.418807π-0.418807\pi
0.252317 + 0.967645i 0.418807π0.418807\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 − 2.82843i − 0.306786i
8686 0 0
8787 7.65685 0.820901
8888 0 0
8989 15.6569 1.65962 0.829812 0.558044i 0.188448π-0.188448\pi
0.829812 + 0.558044i 0.188448π0.188448\pi
9090 0 0
9191 − 9.65685i − 1.01231i
9292 0 0
9393 − 6.82843i − 0.708075i
9494 0 0
9595 0 0
9696 0 0
9797 −3.65685 −0.371297 −0.185649 0.982616i 0.559439π-0.559439\pi
−0.185649 + 0.982616i 0.559439π0.559439\pi
9898 0 0
9999 4.82843i 0.485275i
100100 0 0
101101 − 17.3137i − 1.72278i −0.507946 0.861389i 0.669595π-0.669595\pi
0.507946 0.861389i 0.330405π-0.330405\pi
102102 0 0
103103 15.6569 1.54272 0.771358 0.636402i 0.219578π-0.219578\pi
0.771358 + 0.636402i 0.219578π0.219578\pi
104104 0 0
105105 −2.00000 −0.195180
106106 0 0
107107 13.6569i 1.32026i 0.751152 + 0.660129i 0.229498π0.229498\pi
−0.751152 + 0.660129i 0.770502π0.770502\pi
108108 0 0
109109 4.00000i 0.383131i 0.981480 + 0.191565i 0.0613564π0.0613564\pi
−0.981480 + 0.191565i 0.938644π0.938644\pi
110110 0 0
111111 10.4853 0.995219
112112 0 0
113113 −3.51472 −0.330637 −0.165318 0.986240i 0.552865π-0.552865\pi
−0.165318 + 0.986240i 0.552865π0.552865\pi
114114 0 0
115115 − 5.65685i − 0.527504i
116116 0 0
117117 4.82843i 0.446388i
118118 0 0
119119 −5.65685 −0.518563
120120 0 0
121121 −12.3137 −1.11943
122122 0 0
123123 − 7.65685i − 0.690395i
124124 0 0
125125 − 1.00000i − 0.0894427i
126126 0 0
127127 −4.34315 −0.385392 −0.192696 0.981259i 0.561723π-0.561723\pi
−0.192696 + 0.981259i 0.561723π0.561723\pi
128128 0 0
129129 −9.65685 −0.850239
130130 0 0
131131 − 2.48528i − 0.217140i −0.994089 0.108570i 0.965373π-0.965373\pi
0.994089 0.108570i 0.0346272π-0.0346272\pi
132132 0 0
133133 0 0
134134 0 0
135135 1.00000 0.0860663
136136 0 0
137137 −6.82843 −0.583392 −0.291696 0.956511i 0.594220π-0.594220\pi
−0.291696 + 0.956511i 0.594220π0.594220\pi
138138 0 0
139139 − 1.65685i − 0.140533i −0.997528 0.0702663i 0.977615π-0.977615\pi
0.997528 0.0702663i 0.0223849π-0.0223849\pi
140140 0 0
141141 − 9.65685i − 0.813254i
142142 0 0
143143 −23.3137 −1.94959
144144 0 0
145145 7.65685 0.635867
146146 0 0
147147 − 3.00000i − 0.247436i
148148 0 0
149149 0.343146i 0.0281116i 0.999901 + 0.0140558i 0.00447425π0.00447425\pi
−0.999901 + 0.0140558i 0.995526π0.995526\pi
150150 0 0
151151 8.48528 0.690522 0.345261 0.938507i 0.387790π-0.387790\pi
0.345261 + 0.938507i 0.387790π0.387790\pi
152152 0 0
153153 2.82843 0.228665
154154 0 0
155155 − 6.82843i − 0.548472i
156156 0 0
157157 5.51472i 0.440122i 0.975486 + 0.220061i 0.0706257π0.0706257\pi
−0.975486 + 0.220061i 0.929374π0.929374\pi
158158 0 0
159159 −0.343146 −0.0272132
160160 0 0
161161 −11.3137 −0.891645
162162 0 0
163163 − 12.0000i − 0.939913i −0.882690 0.469956i 0.844270π-0.844270\pi
0.882690 0.469956i 0.155730π-0.155730\pi
164164 0 0
165165 4.82843i 0.375893i
166166 0 0
167167 10.3431 0.800377 0.400188 0.916433i 0.368945π-0.368945\pi
0.400188 + 0.916433i 0.368945π0.368945\pi
168168 0 0
169169 −10.3137 −0.793362
170170 0 0
171171 0 0
172172 0 0
173173 − 15.6569i − 1.19037i −0.803589 0.595184i 0.797079π-0.797079\pi
0.803589 0.595184i 0.202921π-0.202921\pi
174174 0 0
175175 −2.00000 −0.151186
176176 0 0
177177 −0.828427 −0.0622684
178178 0 0
179179 2.48528i 0.185759i 0.995677 + 0.0928793i 0.0296071π0.0296071\pi
−0.995677 + 0.0928793i 0.970393π0.970393\pi
180180 0 0
181181 − 12.0000i − 0.891953i −0.895045 0.445976i 0.852856π-0.852856\pi
0.895045 0.445976i 0.147144π-0.147144\pi
182182 0 0
183183 1.65685 0.122478
184184 0 0
185185 10.4853 0.770893
186186 0 0
187187 13.6569i 0.998688i
188188 0 0
189189 − 2.00000i − 0.145479i
190190 0 0
191191 −27.3137 −1.97635 −0.988175 0.153328i 0.951001π-0.951001\pi
−0.988175 + 0.153328i 0.951001π0.951001\pi
192192 0 0
193193 22.9706 1.65346 0.826729 0.562601i 0.190199π-0.190199\pi
0.826729 + 0.562601i 0.190199π0.190199\pi
194194 0 0
195195 4.82843i 0.345771i
196196 0 0
197197 21.3137i 1.51854i 0.650776 + 0.759269i 0.274444π0.274444\pi
−0.650776 + 0.759269i 0.725556π0.725556\pi
198198 0 0
199199 18.8284 1.33471 0.667356 0.744739i 0.267426π-0.267426\pi
0.667356 + 0.744739i 0.267426π0.267426\pi
200200 0 0
201201 −1.65685 −0.116865
202202 0 0
203203 − 15.3137i − 1.07481i
204204 0 0
205205 − 7.65685i − 0.534778i
206206 0 0
207207 5.65685 0.393179
208208 0 0
209209 0 0
210210 0 0
211211 25.6569i 1.76629i 0.469099 + 0.883145i 0.344579π0.344579\pi
−0.469099 + 0.883145i 0.655421π0.655421\pi
212212 0 0
213213 2.34315i 0.160550i
214214 0 0
215215 −9.65685 −0.658592
216216 0 0
217217 −13.6569 −0.927088
218218 0 0
219219 13.3137i 0.899657i
220220 0 0
221221 13.6569i 0.918659i
222222 0 0
223223 14.9706 1.00250 0.501252 0.865302i 0.332873π-0.332873\pi
0.501252 + 0.865302i 0.332873π0.332873\pi
224224 0 0
225225 1.00000 0.0666667
226226 0 0
227227 − 6.34315i − 0.421009i −0.977593 0.210505i 0.932489π-0.932489\pi
0.977593 0.210505i 0.0675107π-0.0675107\pi
228228 0 0
229229 − 10.3431i − 0.683494i −0.939792 0.341747i 0.888981π-0.888981\pi
0.939792 0.341747i 0.111019π-0.111019\pi
230230 0 0
231231 9.65685 0.635374
232232 0 0
233233 27.7990 1.82117 0.910586 0.413319i 0.135631π-0.135631\pi
0.910586 + 0.413319i 0.135631π0.135631\pi
234234 0 0
235235 − 9.65685i − 0.629944i
236236 0 0
237237 4.48528i 0.291350i
238238 0 0
239239 −22.6274 −1.46365 −0.731823 0.681495i 0.761330π-0.761330\pi
−0.731823 + 0.681495i 0.761330π0.761330\pi
240240 0 0
241241 −24.6274 −1.58639 −0.793196 0.608967i 0.791584π-0.791584\pi
−0.793196 + 0.608967i 0.791584π0.791584\pi
242242 0 0
243243 1.00000i 0.0641500i
244244 0 0
245245 − 3.00000i − 0.191663i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 − 3.17157i − 0.200188i −0.994978 0.100094i 0.968086π-0.968086\pi
0.994978 0.100094i 0.0319143π-0.0319143\pi
252252 0 0
253253 27.3137i 1.71720i
254254 0 0
255255 2.82843 0.177123
256256 0 0
257257 9.17157 0.572107 0.286053 0.958214i 0.407656π-0.407656\pi
0.286053 + 0.958214i 0.407656π0.407656\pi
258258 0 0
259259 − 20.9706i − 1.30305i
260260 0 0
261261 7.65685i 0.473947i
262262 0 0
263263 18.3431 1.13109 0.565543 0.824719i 0.308666π-0.308666\pi
0.565543 + 0.824719i 0.308666π0.308666\pi
264264 0 0
265265 −0.343146 −0.0210793
266266 0 0
267267 15.6569i 0.958184i
268268 0 0
269269 3.65685i 0.222962i 0.993767 + 0.111481i 0.0355595π0.0355595\pi
−0.993767 + 0.111481i 0.964441π0.964441\pi
270270 0 0
271271 8.48528 0.515444 0.257722 0.966219i 0.417028π-0.417028\pi
0.257722 + 0.966219i 0.417028π0.417028\pi
272272 0 0
273273 9.65685 0.584459
274274 0 0
275275 4.82843i 0.291165i
276276 0 0
277277 − 28.8284i − 1.73213i −0.499929 0.866066i 0.666641π-0.666641\pi
0.499929 0.866066i 0.333359π-0.333359\pi
278278 0 0
279279 6.82843 0.408807
280280 0 0
281281 −22.9706 −1.37031 −0.685154 0.728398i 0.740265π-0.740265\pi
−0.685154 + 0.728398i 0.740265π0.740265\pi
282282 0 0
283283 20.9706i 1.24657i 0.781995 + 0.623285i 0.214202π0.214202\pi
−0.781995 + 0.623285i 0.785798π0.785798\pi
284284 0 0
285285 0 0
286286 0 0
287287 −15.3137 −0.903940
288288 0 0
289289 −9.00000 −0.529412
290290 0 0
291291 − 3.65685i − 0.214369i
292292 0 0
293293 5.31371i 0.310430i 0.987881 + 0.155215i 0.0496071π0.0496071\pi
−0.987881 + 0.155215i 0.950393π0.950393\pi
294294 0 0
295295 −0.828427 −0.0482329
296296 0 0
297297 −4.82843 −0.280174
298298 0 0
299299 27.3137i 1.57959i
300300 0 0
301301 19.3137i 1.11322i
302302 0 0
303303 17.3137 0.994647
304304 0 0
305305 1.65685 0.0948712
306306 0 0
307307 − 4.00000i − 0.228292i −0.993464 0.114146i 0.963587π-0.963587\pi
0.993464 0.114146i 0.0364132π-0.0364132\pi
308308 0 0
309309 15.6569i 0.890687i
310310 0 0
311311 −11.3137 −0.641542 −0.320771 0.947157i 0.603942π-0.603942\pi
−0.320771 + 0.947157i 0.603942π0.603942\pi
312312 0 0
313313 10.9706 0.620093 0.310046 0.950721i 0.399655π-0.399655\pi
0.310046 + 0.950721i 0.399655π0.399655\pi
314314 0 0
315315 − 2.00000i − 0.112687i
316316 0 0
317317 9.31371i 0.523110i 0.965189 + 0.261555i 0.0842353π0.0842353\pi
−0.965189 + 0.261555i 0.915765π0.915765\pi
318318 0 0
319319 −36.9706 −2.06995
320320 0 0
321321 −13.6569 −0.762251
322322 0 0
323323 0 0
324324 0 0
325325 4.82843i 0.267833i
326326 0 0
327327 −4.00000 −0.221201
328328 0 0
329329 −19.3137 −1.06480
330330 0 0
331331 − 32.0000i − 1.75888i −0.476011 0.879440i 0.657918π-0.657918\pi
0.476011 0.879440i 0.342082π-0.342082\pi
332332 0 0
333333 10.4853i 0.574590i
334334 0 0
335335 −1.65685 −0.0905236
336336 0 0
337337 14.0000 0.762629 0.381314 0.924445i 0.375472π-0.375472\pi
0.381314 + 0.924445i 0.375472π0.375472\pi
338338 0 0
339339 − 3.51472i − 0.190893i
340340 0 0
341341 32.9706i 1.78546i
342342 0 0
343343 −20.0000 −1.07990
344344 0 0
345345 5.65685 0.304555
346346 0 0
347347 − 1.65685i − 0.0889446i −0.999011 0.0444723i 0.985839π-0.985839\pi
0.999011 0.0444723i 0.0141606π-0.0141606\pi
348348 0 0
349349 36.9706i 1.97899i 0.144571 + 0.989494i 0.453820π0.453820\pi
−0.144571 + 0.989494i 0.546180π0.546180\pi
350350 0 0
351351 −4.82843 −0.257722
352352 0 0
353353 25.4558 1.35488 0.677439 0.735579i 0.263090π-0.263090\pi
0.677439 + 0.735579i 0.263090π0.263090\pi
354354 0 0
355355 2.34315i 0.124361i
356356 0 0
357357 − 5.65685i − 0.299392i
358358 0 0
359359 −16.9706 −0.895672 −0.447836 0.894116i 0.647805π-0.647805\pi
−0.447836 + 0.894116i 0.647805π0.647805\pi
360360 0 0
361361 19.0000 1.00000
362362 0 0
363363 − 12.3137i − 0.646302i
364364 0 0
365365 13.3137i 0.696871i
366366 0 0
367367 25.3137 1.32136 0.660682 0.750666i 0.270267π-0.270267\pi
0.660682 + 0.750666i 0.270267π0.270267\pi
368368 0 0
369369 7.65685 0.398600
370370 0 0
371371 0.686292i 0.0356305i
372372 0 0
373373 − 13.5147i − 0.699766i −0.936793 0.349883i 0.886221π-0.886221\pi
0.936793 0.349883i 0.113779π-0.113779\pi
374374 0 0
375375 1.00000 0.0516398
376376 0 0
377377 −36.9706 −1.90408
378378 0 0
379379 − 32.2843i − 1.65833i −0.559003 0.829166i 0.688816π-0.688816\pi
0.559003 0.829166i 0.311184π-0.311184\pi
380380 0 0
381381 − 4.34315i − 0.222506i
382382 0 0
383383 −17.6569 −0.902223 −0.451112 0.892468i 0.648972π-0.648972\pi
−0.451112 + 0.892468i 0.648972π0.648972\pi
384384 0 0
385385 9.65685 0.492159
386386 0 0
387387 − 9.65685i − 0.490885i
388388 0 0
389389 9.31371i 0.472224i 0.971726 + 0.236112i 0.0758732π0.0758732\pi
−0.971726 + 0.236112i 0.924127π0.924127\pi
390390 0 0
391391 16.0000 0.809155
392392 0 0
393393 2.48528 0.125366
394394 0 0
395395 4.48528i 0.225679i
396396 0 0
397397 10.4853i 0.526241i 0.964763 + 0.263121i 0.0847517π0.0847517\pi
−0.964763 + 0.263121i 0.915248π0.915248\pi
398398 0 0
399399 0 0
400400 0 0
401401 −8.62742 −0.430833 −0.215416 0.976522i 0.569111π-0.569111\pi
−0.215416 + 0.976522i 0.569111π0.569111\pi
402402 0 0
403403 32.9706i 1.64238i
404404 0 0
405405 1.00000i 0.0496904i
406406 0 0
407407 −50.6274 −2.50951
408408 0 0
409409 25.3137 1.25168 0.625841 0.779951i 0.284756π-0.284756\pi
0.625841 + 0.779951i 0.284756π0.284756\pi
410410 0 0
411411 − 6.82843i − 0.336821i
412412 0 0
413413 1.65685i 0.0815285i
414414 0 0
415415 0 0
416416 0 0
417417 1.65685 0.0811365
418418 0 0
419419 14.4853i 0.707652i 0.935311 + 0.353826i 0.115120π0.115120\pi
−0.935311 + 0.353826i 0.884880π0.884880\pi
420420 0 0
421421 16.9706i 0.827095i 0.910483 + 0.413547i 0.135710π0.135710\pi
−0.910483 + 0.413547i 0.864290π0.864290\pi
422422 0 0
423423 9.65685 0.469532
424424 0 0
425425 2.82843 0.137199
426426 0 0
427427 − 3.31371i − 0.160362i
428428 0 0
429429 − 23.3137i − 1.12560i
430430 0 0
431431 10.3431 0.498212 0.249106 0.968476i 0.419863π-0.419863\pi
0.249106 + 0.968476i 0.419863π0.419863\pi
432432 0 0
433433 12.6274 0.606835 0.303417 0.952858i 0.401872π-0.401872\pi
0.303417 + 0.952858i 0.401872π0.401872\pi
434434 0 0
435435 7.65685i 0.367118i
436436 0 0
437437 0 0
438438 0 0
439439 6.14214 0.293148 0.146574 0.989200i 0.453175π-0.453175\pi
0.146574 + 0.989200i 0.453175π0.453175\pi
440440 0 0
441441 3.00000 0.142857
442442 0 0
443443 6.34315i 0.301372i 0.988582 + 0.150686i 0.0481482π0.0481482\pi
−0.988582 + 0.150686i 0.951852π0.951852\pi
444444 0 0
445445 15.6569i 0.742206i
446446 0 0
447447 −0.343146 −0.0162302
448448 0 0
449449 −21.3137 −1.00586 −0.502928 0.864328i 0.667744π-0.667744\pi
−0.502928 + 0.864328i 0.667744π0.667744\pi
450450 0 0
451451 36.9706i 1.74088i
452452 0 0
453453 8.48528i 0.398673i
454454 0 0
455455 9.65685 0.452720
456456 0 0
457457 −18.9706 −0.887405 −0.443703 0.896174i 0.646335π-0.646335\pi
−0.443703 + 0.896174i 0.646335π0.646335\pi
458458 0 0
459459 2.82843i 0.132020i
460460 0 0
461461 − 8.34315i − 0.388579i −0.980944 0.194290i 0.937760π-0.937760\pi
0.980944 0.194290i 0.0622401π-0.0622401\pi
462462 0 0
463463 −20.6274 −0.958637 −0.479319 0.877641i 0.659116π-0.659116\pi
−0.479319 + 0.877641i 0.659116π0.659116\pi
464464 0 0
465465 6.82843 0.316661
466466 0 0
467467 − 35.3137i − 1.63412i −0.576550 0.817062i 0.695601π-0.695601\pi
0.576550 0.817062i 0.304399π-0.304399\pi
468468 0 0
469469 3.31371i 0.153013i
470470 0 0
471471 −5.51472 −0.254105
472472 0 0
473473 46.6274 2.14393
474474 0 0
475475 0 0
476476 0 0
477477 − 0.343146i − 0.0157116i
478478 0 0
479479 21.6569 0.989527 0.494763 0.869028i 0.335255π-0.335255\pi
0.494763 + 0.869028i 0.335255π0.335255\pi
480480 0 0
481481 −50.6274 −2.30841
482482 0 0
483483 − 11.3137i − 0.514792i
484484 0 0
485485 − 3.65685i − 0.166049i
486486 0 0
487487 30.9706 1.40341 0.701705 0.712468i 0.252422π-0.252422\pi
0.701705 + 0.712468i 0.252422π0.252422\pi
488488 0 0
489489 12.0000 0.542659
490490 0 0
491491 − 32.8284i − 1.48153i −0.671766 0.740763i 0.734464π-0.734464\pi
0.671766 0.740763i 0.265536π-0.265536\pi
492492 0 0
493493 21.6569i 0.975376i
494494 0 0
495495 −4.82843 −0.217022
496496 0 0
497497 4.68629 0.210209
498498 0 0
499499 − 38.6274i − 1.72920i −0.502460 0.864600i 0.667572π-0.667572\pi
0.502460 0.864600i 0.332428π-0.332428\pi
500500 0 0
501501 10.3431i 0.462098i
502502 0 0
503503 1.65685 0.0738755 0.0369377 0.999318i 0.488240π-0.488240\pi
0.0369377 + 0.999318i 0.488240π0.488240\pi
504504 0 0
505505 17.3137 0.770450
506506 0 0
507507 − 10.3137i − 0.458048i
508508 0 0
509509 − 18.0000i − 0.797836i −0.916987 0.398918i 0.869386π-0.869386\pi
0.916987 0.398918i 0.130614π-0.130614\pi
510510 0 0
511511 26.6274 1.17793
512512 0 0
513513 0 0
514514 0 0
515515 15.6569i 0.689923i
516516 0 0
517517 46.6274i 2.05067i
518518 0 0
519519 15.6569 0.687260
520520 0 0
521521 −17.3137 −0.758527 −0.379264 0.925289i 0.623823π-0.623823\pi
−0.379264 + 0.925289i 0.623823π0.623823\pi
522522 0 0
523523 29.9411i 1.30923i 0.755961 + 0.654617i 0.227170π0.227170\pi
−0.755961 + 0.654617i 0.772830π0.772830\pi
524524 0 0
525525 − 2.00000i − 0.0872872i
526526 0 0
527527 19.3137 0.841318
528528 0 0
529529 9.00000 0.391304
530530 0 0
531531 − 0.828427i − 0.0359507i
532532 0 0
533533 36.9706i 1.60137i
534534 0 0
535535 −13.6569 −0.590437
536536 0 0
537537 −2.48528 −0.107248
538538 0 0
539539 14.4853i 0.623925i
540540 0 0
541541 12.0000i 0.515920i 0.966156 + 0.257960i 0.0830503π0.0830503\pi
−0.966156 + 0.257960i 0.916950π0.916950\pi
542542 0 0
543543 12.0000 0.514969
544544 0 0
545545 −4.00000 −0.171341
546546 0 0
547547 − 14.3431i − 0.613269i −0.951827 0.306634i 0.900797π-0.900797\pi
0.951827 0.306634i 0.0992029π-0.0992029\pi
548548 0 0
549549 1.65685i 0.0707128i
550550 0 0
551551 0 0
552552 0 0
553553 8.97056 0.381467
554554 0 0
555555 10.4853i 0.445075i
556556 0 0
557557 − 12.3431i − 0.522996i −0.965204 0.261498i 0.915784π-0.915784\pi
0.965204 0.261498i 0.0842165π-0.0842165\pi
558558 0 0
559559 46.6274 1.97213
560560 0 0
561561 −13.6569 −0.576593
562562 0 0
563563 − 4.97056i − 0.209484i −0.994499 0.104742i 0.966598π-0.966598\pi
0.994499 0.104742i 0.0334017π-0.0334017\pi
564564 0 0
565565 − 3.51472i − 0.147865i
566566 0 0
567567 2.00000 0.0839921
568568 0 0
569569 −17.3137 −0.725828 −0.362914 0.931823i 0.618218π-0.618218\pi
−0.362914 + 0.931823i 0.618218π0.618218\pi
570570 0 0
571571 6.62742i 0.277349i 0.990338 + 0.138674i 0.0442841π0.0442841\pi
−0.990338 + 0.138674i 0.955716π0.955716\pi
572572 0 0
573573 − 27.3137i − 1.14105i
574574 0 0
575575 5.65685 0.235907
576576 0 0
577577 −38.9706 −1.62237 −0.811183 0.584793i 0.801176π-0.801176\pi
−0.811183 + 0.584793i 0.801176π0.801176\pi
578578 0 0
579579 22.9706i 0.954624i
580580 0 0
581581 0 0
582582 0 0
583583 1.65685 0.0686199
584584 0 0
585585 −4.82843 −0.199631
586586 0 0
587587 18.3431i 0.757103i 0.925580 + 0.378551i 0.123578π0.123578\pi
−0.925580 + 0.378551i 0.876422π0.876422\pi
588588 0 0
589589 0 0
590590 0 0
591591 −21.3137 −0.876729
592592 0 0
593593 −0.201010 −0.00825450 −0.00412725 0.999991i 0.501314π-0.501314\pi
−0.00412725 + 0.999991i 0.501314π0.501314\pi
594594 0 0
595595 − 5.65685i − 0.231908i
596596 0 0
597597 18.8284i 0.770596i
598598 0 0
599599 −34.3431 −1.40322 −0.701611 0.712560i 0.747536π-0.747536\pi
−0.701611 + 0.712560i 0.747536π0.747536\pi
600600 0 0
601601 −39.9411 −1.62923 −0.814616 0.580000i 0.803052π-0.803052\pi
−0.814616 + 0.580000i 0.803052π0.803052\pi
602602 0 0
603603 − 1.65685i − 0.0674723i
604604 0 0
605605 − 12.3137i − 0.500623i
606606 0 0
607607 −20.6274 −0.837241 −0.418621 0.908161i 0.637486π-0.637486\pi
−0.418621 + 0.908161i 0.637486π0.637486\pi
608608 0 0
609609 15.3137 0.620543
610610 0 0
611611 46.6274i 1.88634i
612612 0 0
613613 − 26.4853i − 1.06973i −0.844937 0.534865i 0.820362π-0.820362\pi
0.844937 0.534865i 0.179638π-0.179638\pi
614614 0 0
615615 7.65685 0.308754
616616 0 0
617617 −2.82843 −0.113868 −0.0569341 0.998378i 0.518132π-0.518132\pi
−0.0569341 + 0.998378i 0.518132π0.518132\pi
618618 0 0
619619 11.0294i 0.443311i 0.975125 + 0.221655i 0.0711460π0.0711460\pi
−0.975125 + 0.221655i 0.928854π0.928854\pi
620620 0 0
621621 5.65685i 0.227002i
622622 0 0
623623 31.3137 1.25456
624624 0 0
625625 1.00000 0.0400000
626626 0 0
627627 0 0
628628 0 0
629629 29.6569i 1.18250i
630630 0 0
631631 −36.4853 −1.45246 −0.726228 0.687454i 0.758728π-0.758728\pi
−0.726228 + 0.687454i 0.758728π0.758728\pi
632632 0 0
633633 −25.6569 −1.01977
634634 0 0
635635 − 4.34315i − 0.172352i
636636 0 0
637637 14.4853i 0.573928i
638638 0 0
639639 −2.34315 −0.0926934
640640 0 0
641641 12.3431 0.487525 0.243762 0.969835i 0.421618π-0.421618\pi
0.243762 + 0.969835i 0.421618π0.421618\pi
642642 0 0
643643 2.62742i 0.103615i 0.998657 + 0.0518076i 0.0164983π0.0164983\pi
−0.998657 + 0.0518076i 0.983502π0.983502\pi
644644 0 0
645645 − 9.65685i − 0.380238i
646646 0 0
647647 17.6569 0.694163 0.347081 0.937835i 0.387173π-0.387173\pi
0.347081 + 0.937835i 0.387173π0.387173\pi
648648 0 0
649649 4.00000 0.157014
650650 0 0
651651 − 13.6569i − 0.535254i
652652 0 0
653653 29.3137i 1.14713i 0.819159 + 0.573567i 0.194441π0.194441\pi
−0.819159 + 0.573567i 0.805559π0.805559\pi
654654 0 0
655655 2.48528 0.0971080
656656 0 0
657657 −13.3137 −0.519417
658658 0 0
659659 − 39.1716i − 1.52591i −0.646453 0.762954i 0.723748π-0.723748\pi
0.646453 0.762954i 0.276252π-0.276252\pi
660660 0 0
661661 − 36.9706i − 1.43799i −0.695016 0.718994i 0.744603π-0.744603\pi
0.695016 0.718994i 0.255397π-0.255397\pi
662662 0 0
663663 −13.6569 −0.530388
664664 0 0
665665 0 0
666666 0 0
667667 43.3137i 1.67711i
668668 0 0
669669 14.9706i 0.578795i
670670 0 0
671671 −8.00000 −0.308837
672672 0 0
673673 33.3137 1.28415 0.642075 0.766642i 0.278074π-0.278074\pi
0.642075 + 0.766642i 0.278074π0.278074\pi
674674 0 0
675675 1.00000i 0.0384900i
676676 0 0
677677 − 5.31371i − 0.204222i −0.994773 0.102111i 0.967440π-0.967440\pi
0.994773 0.102111i 0.0325598π-0.0325598\pi
678678 0 0
679679 −7.31371 −0.280674
680680 0 0
681681 6.34315 0.243070
682682 0 0
683683 − 19.3137i − 0.739019i −0.929227 0.369509i 0.879526π-0.879526\pi
0.929227 0.369509i 0.120474π-0.120474\pi
684684 0 0
685685 − 6.82843i − 0.260901i
686686 0 0
687687 10.3431 0.394616
688688 0 0
689689 1.65685 0.0631211
690690 0 0
691691 38.6274i 1.46946i 0.678362 + 0.734728i 0.262690π0.262690\pi
−0.678362 + 0.734728i 0.737310π0.737310\pi
692692 0 0
693693 9.65685i 0.366834i
694694 0 0
695695 1.65685 0.0628481
696696 0 0
697697 21.6569 0.820312
698698 0 0
699699 27.7990i 1.05145i
700700 0 0
701701 − 42.0000i − 1.58632i −0.609015 0.793159i 0.708435π-0.708435\pi
0.609015 0.793159i 0.291565π-0.291565\pi
702702 0 0
703703 0 0
704704 0 0
705705 9.65685 0.363698
706706 0 0
707707 − 34.6274i − 1.30230i
708708 0 0
709709 − 20.2843i − 0.761792i −0.924618 0.380896i 0.875616π-0.875616\pi
0.924618 0.380896i 0.124384π-0.124384\pi
710710 0 0
711711 −4.48528 −0.168211
712712 0 0
713713 38.6274 1.44661
714714 0 0
715715 − 23.3137i − 0.871883i
716716 0 0
717717 − 22.6274i − 0.845036i
718718 0 0
719719 44.2843 1.65152 0.825762 0.564018i 0.190745π-0.190745\pi
0.825762 + 0.564018i 0.190745π0.190745\pi
720720 0 0
721721 31.3137 1.16618
722722 0 0
723723 − 24.6274i − 0.915903i
724724 0 0
725725 7.65685i 0.284368i
726726 0 0
727727 −17.0294 −0.631587 −0.315793 0.948828i 0.602271π-0.602271\pi
−0.315793 + 0.948828i 0.602271π0.602271\pi
728728 0 0
729729 −1.00000 −0.0370370
730730 0 0
731731 − 27.3137i − 1.01023i
732732 0 0
733733 − 17.7990i − 0.657421i −0.944431 0.328710i 0.893386π-0.893386\pi
0.944431 0.328710i 0.106614π-0.106614\pi
734734 0 0
735735 3.00000 0.110657
736736 0 0
737737 8.00000 0.294684
738738 0 0
739739 − 25.9411i − 0.954260i −0.878833 0.477130i 0.841677π-0.841677\pi
0.878833 0.477130i 0.158323π-0.158323\pi
740740 0 0
741741 0 0
742742 0 0
743743 −28.9706 −1.06283 −0.531413 0.847113i 0.678339π-0.678339\pi
−0.531413 + 0.847113i 0.678339π0.678339\pi
744744 0 0
745745 −0.343146 −0.0125719
746746 0 0
747747 0 0
748748 0 0
749749 27.3137i 0.998021i
750750 0 0
751751 −5.45584 −0.199087 −0.0995433 0.995033i 0.531738π-0.531738\pi
−0.0995433 + 0.995033i 0.531738π0.531738\pi
752752 0 0
753753 3.17157 0.115579
754754 0 0
755755 8.48528i 0.308811i
756756 0 0
757757 − 17.5147i − 0.636583i −0.947993 0.318292i 0.896891π-0.896891\pi
0.947993 0.318292i 0.103109π-0.103109\pi
758758 0 0
759759 −27.3137 −0.991425
760760 0 0
761761 −10.6863 −0.387378 −0.193689 0.981063i 0.562045π-0.562045\pi
−0.193689 + 0.981063i 0.562045π0.562045\pi
762762 0 0
763763 8.00000i 0.289619i
764764 0 0
765765 2.82843i 0.102262i
766766 0 0
767767 4.00000 0.144432
768768 0 0
769769 −9.31371 −0.335861 −0.167930 0.985799i 0.553708π-0.553708\pi
−0.167930 + 0.985799i 0.553708π0.553708\pi
770770 0 0
771771 9.17157i 0.330306i
772772 0 0
773773 − 51.2548i − 1.84351i −0.387775 0.921754i 0.626756π-0.626756\pi
0.387775 0.921754i 0.373244π-0.373244\pi
774774 0 0
775775 6.82843 0.245284
776776 0 0
777777 20.9706 0.752315
778778 0 0
779779 0 0
780780 0 0
781781 − 11.3137i − 0.404836i
782782 0 0
783783 −7.65685 −0.273634
784784 0 0
785785 −5.51472 −0.196829
786786 0 0
787787 − 39.3137i − 1.40138i −0.713465 0.700691i 0.752875π-0.752875\pi
0.713465 0.700691i 0.247125π-0.247125\pi
788788 0 0
789789 18.3431i 0.653033i
790790 0 0
791791 −7.02944 −0.249938
792792 0 0
793793 −8.00000 −0.284088
794794 0 0
795795 − 0.343146i − 0.0121701i
796796 0 0
797797 − 10.9706i − 0.388597i −0.980942 0.194299i 0.937757π-0.937757\pi
0.980942 0.194299i 0.0622431π-0.0622431\pi
798798 0 0
799799 27.3137 0.966290
800800 0 0
801801 −15.6569 −0.553208
802802 0 0
803803 − 64.2843i − 2.26854i
804804 0 0
805805 − 11.3137i − 0.398756i
806806 0 0
807807 −3.65685 −0.128727
808808 0 0
809809 −12.3431 −0.433962 −0.216981 0.976176i 0.569621π-0.569621\pi
−0.216981 + 0.976176i 0.569621π0.569621\pi
810810 0 0
811811 43.5980i 1.53093i 0.643476 + 0.765466i 0.277492π0.277492\pi
−0.643476 + 0.765466i 0.722508π0.722508\pi
812812 0 0
813813 8.48528i 0.297592i
814814 0 0
815815 12.0000 0.420342
816816 0 0
817817 0 0
818818 0 0
819819 9.65685i 0.337438i
820820 0 0
821821 1.02944i 0.0359276i 0.999839 + 0.0179638i 0.00571836π0.00571836\pi
−0.999839 + 0.0179638i 0.994282π0.994282\pi
822822 0 0
823823 −38.2843 −1.33451 −0.667253 0.744831i 0.732530π-0.732530\pi
−0.667253 + 0.744831i 0.732530π0.732530\pi
824824 0 0
825825 −4.82843 −0.168104
826826 0 0
827827 16.6863i 0.580239i 0.956990 + 0.290120i 0.0936951π0.0936951\pi
−0.956990 + 0.290120i 0.906305π0.906305\pi
828828 0 0
829829 − 29.9411i − 1.03990i −0.854197 0.519949i 0.825951π-0.825951\pi
0.854197 0.519949i 0.174049π-0.174049\pi
830830 0 0
831831 28.8284 1.00005
832832 0 0
833833 8.48528 0.293998
834834 0 0
835835 10.3431i 0.357939i
836836 0 0
837837 6.82843i 0.236025i
838838 0 0
839839 44.2843 1.52886 0.764431 0.644705i 0.223020π-0.223020\pi
0.764431 + 0.644705i 0.223020π0.223020\pi
840840 0 0
841841 −29.6274 −1.02164
842842 0 0
843843 − 22.9706i − 0.791148i
844844 0 0
845845 − 10.3137i − 0.354802i
846846 0 0
847847 −24.6274 −0.846208
848848 0 0
849849 −20.9706 −0.719708
850850 0 0
851851 59.3137i 2.03325i
852852 0 0
853853 − 18.4853i − 0.632924i −0.948605 0.316462i 0.897505π-0.897505\pi
0.948605 0.316462i 0.102495π-0.102495\pi
854854 0 0
855855 0 0
856856 0 0
857857 6.14214 0.209811 0.104906 0.994482i 0.466546π-0.466546\pi
0.104906 + 0.994482i 0.466546π0.466546\pi
858858 0 0
859859 − 54.9117i − 1.87356i −0.349915 0.936781i 0.613790π-0.613790\pi
0.349915 0.936781i 0.386210π-0.386210\pi
860860 0 0
861861 − 15.3137i − 0.521890i
862862 0 0
863863 10.3431 0.352085 0.176042 0.984383i 0.443670π-0.443670\pi
0.176042 + 0.984383i 0.443670π0.443670\pi
864864 0 0
865865 15.6569 0.532349
866866 0 0
867867 − 9.00000i − 0.305656i
868868 0 0
869869 − 21.6569i − 0.734658i
870870 0 0
871871 8.00000 0.271070
872872 0 0
873873 3.65685 0.123766
874874 0 0
875875 − 2.00000i − 0.0676123i
876876 0 0
877877 − 2.48528i − 0.0839220i −0.999119 0.0419610i 0.986639π-0.986639\pi
0.999119 0.0419610i 0.0133605π-0.0133605\pi
878878 0 0
879879 −5.31371 −0.179227
880880 0 0
881881 35.6569 1.20131 0.600655 0.799508i 0.294907π-0.294907\pi
0.600655 + 0.799508i 0.294907π0.294907\pi
882882 0 0
883883 37.9411i 1.27682i 0.769696 + 0.638410i 0.220408π0.220408\pi
−0.769696 + 0.638410i 0.779592π0.779592\pi
884884 0 0
885885 − 0.828427i − 0.0278473i
886886 0 0
887887 39.5980 1.32957 0.664785 0.747035i 0.268523π-0.268523\pi
0.664785 + 0.747035i 0.268523π0.268523\pi
888888 0 0
889889 −8.68629 −0.291329
890890 0 0
891891 − 4.82843i − 0.161758i
892892 0 0
893893 0 0
894894 0 0
895895 −2.48528 −0.0830738
896896 0 0
897897 −27.3137 −0.911978
898898 0 0
899899 52.2843i 1.74378i
900900 0 0
901901 − 0.970563i − 0.0323341i
902902 0 0
903903 −19.3137 −0.642720
904904 0 0
905905 12.0000 0.398893
906906 0 0
907907 − 12.9706i − 0.430680i −0.976539 0.215340i 0.930914π-0.930914\pi
0.976539 0.215340i 0.0690860π-0.0690860\pi
908908 0 0
909909 17.3137i 0.574259i
910910 0 0
911911 35.3137 1.17000 0.584998 0.811035i 0.301095π-0.301095\pi
0.584998 + 0.811035i 0.301095π0.301095\pi
912912 0 0
913913 0 0
914914 0 0
915915 1.65685i 0.0547739i
916916 0 0
917917 − 4.97056i − 0.164142i
918918 0 0
919919 −44.4853 −1.46743 −0.733717 0.679455i 0.762216π-0.762216\pi
−0.733717 + 0.679455i 0.762216π0.762216\pi
920920 0 0
921921 4.00000 0.131804
922922 0 0
923923 − 11.3137i − 0.372395i
924924 0 0
925925 10.4853i 0.344754i
926926 0 0
927927 −15.6569 −0.514239
928928 0 0
929929 6.00000 0.196854 0.0984268 0.995144i 0.468619π-0.468619\pi
0.0984268 + 0.995144i 0.468619π0.468619\pi
930930 0 0
931931 0 0
932932 0 0
933933 − 11.3137i − 0.370394i
934934 0 0
935935 −13.6569 −0.446627
936936 0 0
937937 −13.3137 −0.434940 −0.217470 0.976067i 0.569780π-0.569780\pi
−0.217470 + 0.976067i 0.569780π0.569780\pi
938938 0 0
939939 10.9706i 0.358011i
940940 0 0
941941 − 35.2548i − 1.14927i −0.818408 0.574637i 0.805143π-0.805143\pi
0.818408 0.574637i 0.194857π-0.194857\pi
942942 0 0
943943 43.3137 1.41049
944944 0 0
945945 2.00000 0.0650600
946946 0 0
947947 45.9411i 1.49289i 0.665449 + 0.746443i 0.268240π0.268240\pi
−0.665449 + 0.746443i 0.731760π0.731760\pi
948948 0 0
949949 − 64.2843i − 2.08676i
950950 0 0
951951 −9.31371 −0.302018
952952 0 0
953953 33.1716 1.07453 0.537266 0.843413i 0.319457π-0.319457\pi
0.537266 + 0.843413i 0.319457π0.319457\pi
954954 0 0
955955 − 27.3137i − 0.883851i
956956 0 0
957957 − 36.9706i − 1.19509i
958958 0 0
959959 −13.6569 −0.441003
960960 0 0
961961 15.6274 0.504110
962962 0 0
963963 − 13.6569i − 0.440086i
964964 0 0
965965 22.9706i 0.739449i
966966 0 0
967967 −56.9117 −1.83016 −0.915078 0.403276i 0.867871π-0.867871\pi
−0.915078 + 0.403276i 0.867871π0.867871\pi
968968 0 0
969969 0 0
970970 0 0
971971 − 15.8579i − 0.508903i −0.967086 0.254452i 0.918105π-0.918105\pi
0.967086 0.254452i 0.0818949π-0.0818949\pi
972972 0 0
973973 − 3.31371i − 0.106233i
974974 0 0
975975 −4.82843 −0.154633
976976 0 0
977977 −26.8284 −0.858317 −0.429159 0.903229i 0.641190π-0.641190\pi
−0.429159 + 0.903229i 0.641190π0.641190\pi
978978 0 0
979979 − 75.5980i − 2.41612i
980980 0 0
981981 − 4.00000i − 0.127710i
982982 0 0
983983 −19.0294 −0.606945 −0.303472 0.952840i 0.598146π-0.598146\pi
−0.303472 + 0.952840i 0.598146π0.598146\pi
984984 0 0
985985 −21.3137 −0.679111
986986 0 0
987987 − 19.3137i − 0.614762i
988988 0 0
989989 − 54.6274i − 1.73705i
990990 0 0
991991 15.5147 0.492841 0.246421 0.969163i 0.420746π-0.420746\pi
0.246421 + 0.969163i 0.420746π0.420746\pi
992992 0 0
993993 32.0000 1.01549
994994 0 0
995995 18.8284i 0.596901i
996996 0 0
997997 − 12.1421i − 0.384545i −0.981342 0.192273i 0.938414π-0.938414\pi
0.981342 0.192273i 0.0615858π-0.0615858\pi
998998 0 0
999999 −10.4853 −0.331740
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.k.k.961.3 yes 4
3.2 odd 2 5760.2.k.x.2881.2 4
4.3 odd 2 1920.2.k.j.961.2 4
8.3 odd 2 1920.2.k.j.961.3 yes 4
8.5 even 2 inner 1920.2.k.k.961.2 yes 4
12.11 even 2 5760.2.k.m.2881.1 4
16.3 odd 4 3840.2.a.bm.1.2 2
16.5 even 4 3840.2.a.bj.1.2 2
16.11 odd 4 3840.2.a.bd.1.1 2
16.13 even 4 3840.2.a.bg.1.1 2
24.5 odd 2 5760.2.k.x.2881.3 4
24.11 even 2 5760.2.k.m.2881.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.j.961.2 4 4.3 odd 2
1920.2.k.j.961.3 yes 4 8.3 odd 2
1920.2.k.k.961.2 yes 4 8.5 even 2 inner
1920.2.k.k.961.3 yes 4 1.1 even 1 trivial
3840.2.a.bd.1.1 2 16.11 odd 4
3840.2.a.bg.1.1 2 16.13 even 4
3840.2.a.bj.1.2 2 16.5 even 4
3840.2.a.bm.1.2 2 16.3 odd 4
5760.2.k.m.2881.1 4 12.11 even 2
5760.2.k.m.2881.4 4 24.11 even 2
5760.2.k.x.2881.2 4 3.2 odd 2
5760.2.k.x.2881.3 4 24.5 odd 2