Properties

Label 1920.2.m.m
Level 19201920
Weight 22
Character orbit 1920.m
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(959,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.959");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+(β2+β1+1)q5+(β2+β1)q7+(β3+1)q9+β3q11+(β2β1)q13+(β3+β12)q15++(β3+8)q99+O(q100) q + \beta_1 q^{3} + ( - \beta_{2} + \beta_1 + 1) q^{5} + (\beta_{2} + \beta_1) q^{7} + ( - \beta_{3} + 1) q^{9} + \beta_{3} q^{11} + ( - \beta_{2} - \beta_1) q^{13} + ( - \beta_{3} + \beta_1 - 2) q^{15}+ \cdots + (\beta_{3} + 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q5+4q98q15+16q19+16q2112q25+24q2916q39+4q45+4q4916q5124q6964q7116q7528q8132q91+16q95+32q99+O(q100) 4 q + 4 q^{5} + 4 q^{9} - 8 q^{15} + 16 q^{19} + 16 q^{21} - 12 q^{25} + 24 q^{29} - 16 q^{39} + 4 q^{45} + 4 q^{49} - 16 q^{51} - 24 q^{69} - 64 q^{71} - 16 q^{75} - 28 q^{81} - 32 q^{91} + 16 q^{95} + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ83ζ82+ζ8 -\zeta_{8}^{3} - \zeta_{8}^{2} + \zeta_{8} Copy content Toggle raw display
β2\beta_{2}== ζ83+ζ82+ζ8 -\zeta_{8}^{3} + \zeta_{8}^{2} + \zeta_{8} Copy content Toggle raw display
β3\beta_{3}== 2ζ83+2ζ8 2\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+β2+β1)/4 ( \beta_{3} + \beta_{2} + \beta_1 ) / 4 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== (β2β1)/2 ( \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3β2β1)/4 ( \beta_{3} - \beta_{2} - \beta_1 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
959.1
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
0 −1.41421 1.00000i 0 1.00000 2.00000i 0 −2.82843 0 1.00000 + 2.82843i 0
959.2 0 −1.41421 + 1.00000i 0 1.00000 + 2.00000i 0 −2.82843 0 1.00000 2.82843i 0
959.3 0 1.41421 1.00000i 0 1.00000 2.00000i 0 2.82843 0 1.00000 2.82843i 0
959.4 0 1.41421 + 1.00000i 0 1.00000 + 2.00000i 0 2.82843 0 1.00000 + 2.82843i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
24.f even 2 1 inner
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.m.m yes 4
3.b odd 2 1 1920.2.m.j yes 4
4.b odd 2 1 1920.2.m.n yes 4
5.b even 2 1 inner 1920.2.m.m yes 4
8.b even 2 1 1920.2.m.i 4
8.d odd 2 1 1920.2.m.j yes 4
12.b even 2 1 1920.2.m.i 4
15.d odd 2 1 1920.2.m.j yes 4
20.d odd 2 1 1920.2.m.n yes 4
24.f even 2 1 inner 1920.2.m.m yes 4
24.h odd 2 1 1920.2.m.n yes 4
40.e odd 2 1 1920.2.m.j yes 4
40.f even 2 1 1920.2.m.i 4
60.h even 2 1 1920.2.m.i 4
120.i odd 2 1 1920.2.m.n yes 4
120.m even 2 1 inner 1920.2.m.m yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.m.i 4 8.b even 2 1
1920.2.m.i 4 12.b even 2 1
1920.2.m.i 4 40.f even 2 1
1920.2.m.i 4 60.h even 2 1
1920.2.m.j yes 4 3.b odd 2 1
1920.2.m.j yes 4 8.d odd 2 1
1920.2.m.j yes 4 15.d odd 2 1
1920.2.m.j yes 4 40.e odd 2 1
1920.2.m.m yes 4 1.a even 1 1 trivial
1920.2.m.m yes 4 5.b even 2 1 inner
1920.2.m.m yes 4 24.f even 2 1 inner
1920.2.m.m yes 4 120.m even 2 1 inner
1920.2.m.n yes 4 4.b odd 2 1
1920.2.m.n yes 4 20.d odd 2 1
1920.2.m.n yes 4 24.h odd 2 1
1920.2.m.n yes 4 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1920,[χ])S_{2}^{\mathrm{new}}(1920, [\chi]):

T728 T_{7}^{2} - 8 Copy content Toggle raw display
T1328 T_{13}^{2} - 8 Copy content Toggle raw display
T1728 T_{17}^{2} - 8 Copy content Toggle raw display
T194 T_{19} - 4 Copy content Toggle raw display
T296 T_{29} - 6 Copy content Toggle raw display
T83272 T_{83}^{2} - 72 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T42T2+9 T^{4} - 2T^{2} + 9 Copy content Toggle raw display
55 (T22T+5)2 (T^{2} - 2 T + 5)^{2} Copy content Toggle raw display
77 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1111 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
1313 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1717 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1919 (T4)4 (T - 4)^{4} Copy content Toggle raw display
2323 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
2929 (T6)4 (T - 6)^{4} Copy content Toggle raw display
3131 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
3737 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
4141 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
4343 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
4747 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
5353 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
5959 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
6161 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
6767 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
7171 (T+16)4 (T + 16)^{4} Copy content Toggle raw display
7373 (T2+256)2 (T^{2} + 256)^{2} Copy content Toggle raw display
7979 (T2+200)2 (T^{2} + 200)^{2} Copy content Toggle raw display
8383 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
show more
show less