Properties

Label 1920.2.m.n.959.2
Level $1920$
Weight $2$
Character 1920.959
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(959,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.959");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 959.2
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1920.959
Dual form 1920.2.m.n.959.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 + 1.00000i) q^{3} +(1.00000 - 2.00000i) q^{5} -2.82843 q^{7} +(1.00000 - 2.82843i) q^{9} -2.82843i q^{11} -2.82843 q^{13} +(0.585786 + 3.82843i) q^{15} -2.82843 q^{17} -4.00000 q^{19} +(4.00000 - 2.82843i) q^{21} +6.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} +(1.41421 + 5.00000i) q^{27} +6.00000 q^{29} +2.82843i q^{31} +(2.82843 + 4.00000i) q^{33} +(-2.82843 + 5.65685i) q^{35} +8.48528 q^{37} +(4.00000 - 2.82843i) q^{39} +5.65685i q^{41} -2.00000i q^{43} +(-4.65685 - 4.82843i) q^{45} +10.0000i q^{47} +1.00000 q^{49} +(4.00000 - 2.82843i) q^{51} -4.00000i q^{53} +(-5.65685 - 2.82843i) q^{55} +(5.65685 - 4.00000i) q^{57} -2.82843i q^{59} +5.65685i q^{61} +(-2.82843 + 8.00000i) q^{63} +(-2.82843 + 5.65685i) q^{65} -10.0000i q^{67} +(-6.00000 - 8.48528i) q^{69} +16.0000 q^{71} +16.0000i q^{73} +(8.24264 + 2.65685i) q^{75} +8.00000i q^{77} +14.1421i q^{79} +(-7.00000 - 5.65685i) q^{81} +8.48528 q^{83} +(-2.82843 + 5.65685i) q^{85} +(-8.48528 + 6.00000i) q^{87} +8.00000 q^{91} +(-2.82843 - 4.00000i) q^{93} +(-4.00000 + 8.00000i) q^{95} -8.00000i q^{97} +(-8.00000 - 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{9} + 8 q^{15} - 16 q^{19} + 16 q^{21} - 12 q^{25} + 24 q^{29} + 16 q^{39} + 4 q^{45} + 4 q^{49} + 16 q^{51} - 24 q^{69} + 64 q^{71} + 16 q^{75} - 28 q^{81} + 32 q^{91} - 16 q^{95} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 + 1.00000i −0.816497 + 0.577350i
\(4\) 0 0
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) −2.82843 −1.06904 −0.534522 0.845154i \(-0.679509\pi\)
−0.534522 + 0.845154i \(0.679509\pi\)
\(8\) 0 0
\(9\) 1.00000 2.82843i 0.333333 0.942809i
\(10\) 0 0
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) 0.585786 + 3.82843i 0.151249 + 0.988496i
\(16\) 0 0
\(17\) −2.82843 −0.685994 −0.342997 0.939336i \(-0.611442\pi\)
−0.342997 + 0.939336i \(0.611442\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 4.00000 2.82843i 0.872872 0.617213i
\(22\) 0 0
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 1.41421 + 5.00000i 0.272166 + 0.962250i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 2.82843i 0.508001i 0.967204 + 0.254000i \(0.0817464\pi\)
−0.967204 + 0.254000i \(0.918254\pi\)
\(32\) 0 0
\(33\) 2.82843 + 4.00000i 0.492366 + 0.696311i
\(34\) 0 0
\(35\) −2.82843 + 5.65685i −0.478091 + 0.956183i
\(36\) 0 0
\(37\) 8.48528 1.39497 0.697486 0.716599i \(-0.254302\pi\)
0.697486 + 0.716599i \(0.254302\pi\)
\(38\) 0 0
\(39\) 4.00000 2.82843i 0.640513 0.452911i
\(40\) 0 0
\(41\) 5.65685i 0.883452i 0.897150 + 0.441726i \(0.145634\pi\)
−0.897150 + 0.441726i \(0.854366\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i −0.988304 0.152499i \(-0.951268\pi\)
0.988304 0.152499i \(-0.0487319\pi\)
\(44\) 0 0
\(45\) −4.65685 4.82843i −0.694203 0.719779i
\(46\) 0 0
\(47\) 10.0000i 1.45865i 0.684167 + 0.729325i \(0.260166\pi\)
−0.684167 + 0.729325i \(0.739834\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 4.00000 2.82843i 0.560112 0.396059i
\(52\) 0 0
\(53\) 4.00000i 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) −5.65685 2.82843i −0.762770 0.381385i
\(56\) 0 0
\(57\) 5.65685 4.00000i 0.749269 0.529813i
\(58\) 0 0
\(59\) 2.82843i 0.368230i −0.982905 0.184115i \(-0.941058\pi\)
0.982905 0.184115i \(-0.0589419\pi\)
\(60\) 0 0
\(61\) 5.65685i 0.724286i 0.932123 + 0.362143i \(0.117955\pi\)
−0.932123 + 0.362143i \(0.882045\pi\)
\(62\) 0 0
\(63\) −2.82843 + 8.00000i −0.356348 + 1.00791i
\(64\) 0 0
\(65\) −2.82843 + 5.65685i −0.350823 + 0.701646i
\(66\) 0 0
\(67\) 10.0000i 1.22169i −0.791748 0.610847i \(-0.790829\pi\)
0.791748 0.610847i \(-0.209171\pi\)
\(68\) 0 0
\(69\) −6.00000 8.48528i −0.722315 1.02151i
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) 16.0000i 1.87266i 0.351123 + 0.936329i \(0.385800\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 8.24264 + 2.65685i 0.951778 + 0.306787i
\(76\) 0 0
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) 14.1421i 1.59111i 0.605878 + 0.795557i \(0.292822\pi\)
−0.605878 + 0.795557i \(0.707178\pi\)
\(80\) 0 0
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 0 0
\(83\) 8.48528 0.931381 0.465690 0.884948i \(-0.345806\pi\)
0.465690 + 0.884948i \(0.345806\pi\)
\(84\) 0 0
\(85\) −2.82843 + 5.65685i −0.306786 + 0.613572i
\(86\) 0 0
\(87\) −8.48528 + 6.00000i −0.909718 + 0.643268i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 0 0
\(93\) −2.82843 4.00000i −0.293294 0.414781i
\(94\) 0 0
\(95\) −4.00000 + 8.00000i −0.410391 + 0.820783i
\(96\) 0 0
\(97\) 8.00000i 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 0 0
\(99\) −8.00000 2.82843i −0.804030 0.284268i
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −14.1421 −1.39347 −0.696733 0.717331i \(-0.745364\pi\)
−0.696733 + 0.717331i \(0.745364\pi\)
\(104\) 0 0
\(105\) −1.65685 10.8284i −0.161692 1.05675i
\(106\) 0 0
\(107\) −2.82843 −0.273434 −0.136717 0.990610i \(-0.543655\pi\)
−0.136717 + 0.990610i \(0.543655\pi\)
\(108\) 0 0
\(109\) 16.9706i 1.62549i 0.582623 + 0.812743i \(0.302026\pi\)
−0.582623 + 0.812743i \(0.697974\pi\)
\(110\) 0 0
\(111\) −12.0000 + 8.48528i −1.13899 + 0.805387i
\(112\) 0 0
\(113\) 8.48528 0.798228 0.399114 0.916901i \(-0.369318\pi\)
0.399114 + 0.916901i \(0.369318\pi\)
\(114\) 0 0
\(115\) 12.0000 + 6.00000i 1.11901 + 0.559503i
\(116\) 0 0
\(117\) −2.82843 + 8.00000i −0.261488 + 0.739600i
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) −5.65685 8.00000i −0.510061 0.721336i
\(124\) 0 0
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) −8.48528 −0.752947 −0.376473 0.926427i \(-0.622863\pi\)
−0.376473 + 0.926427i \(0.622863\pi\)
\(128\) 0 0
\(129\) 2.00000 + 2.82843i 0.176090 + 0.249029i
\(130\) 0 0
\(131\) 8.48528i 0.741362i 0.928760 + 0.370681i \(0.120876\pi\)
−0.928760 + 0.370681i \(0.879124\pi\)
\(132\) 0 0
\(133\) 11.3137 0.981023
\(134\) 0 0
\(135\) 11.4142 + 2.17157i 0.982379 + 0.186899i
\(136\) 0 0
\(137\) −14.1421 −1.20824 −0.604122 0.796892i \(-0.706476\pi\)
−0.604122 + 0.796892i \(0.706476\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) −10.0000 14.1421i −0.842152 1.19098i
\(142\) 0 0
\(143\) 8.00000i 0.668994i
\(144\) 0 0
\(145\) 6.00000 12.0000i 0.498273 0.996546i
\(146\) 0 0
\(147\) −1.41421 + 1.00000i −0.116642 + 0.0824786i
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 8.48528i 0.690522i −0.938507 0.345261i \(-0.887790\pi\)
0.938507 0.345261i \(-0.112210\pi\)
\(152\) 0 0
\(153\) −2.82843 + 8.00000i −0.228665 + 0.646762i
\(154\) 0 0
\(155\) 5.65685 + 2.82843i 0.454369 + 0.227185i
\(156\) 0 0
\(157\) 8.48528 0.677199 0.338600 0.940931i \(-0.390047\pi\)
0.338600 + 0.940931i \(0.390047\pi\)
\(158\) 0 0
\(159\) 4.00000 + 5.65685i 0.317221 + 0.448618i
\(160\) 0 0
\(161\) 16.9706i 1.33747i
\(162\) 0 0
\(163\) 18.0000i 1.40987i 0.709273 + 0.704934i \(0.249024\pi\)
−0.709273 + 0.704934i \(0.750976\pi\)
\(164\) 0 0
\(165\) 10.8284 1.65685i 0.842992 0.128986i
\(166\) 0 0
\(167\) 2.00000i 0.154765i 0.997001 + 0.0773823i \(0.0246562\pi\)
−0.997001 + 0.0773823i \(0.975344\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −4.00000 + 11.3137i −0.305888 + 0.865181i
\(172\) 0 0
\(173\) 12.0000i 0.912343i 0.889892 + 0.456172i \(0.150780\pi\)
−0.889892 + 0.456172i \(0.849220\pi\)
\(174\) 0 0
\(175\) 8.48528 + 11.3137i 0.641427 + 0.855236i
\(176\) 0 0
\(177\) 2.82843 + 4.00000i 0.212598 + 0.300658i
\(178\) 0 0
\(179\) 25.4558i 1.90266i −0.308175 0.951330i \(-0.599718\pi\)
0.308175 0.951330i \(-0.400282\pi\)
\(180\) 0 0
\(181\) 22.6274i 1.68188i 0.541126 + 0.840941i \(0.317998\pi\)
−0.541126 + 0.840941i \(0.682002\pi\)
\(182\) 0 0
\(183\) −5.65685 8.00000i −0.418167 0.591377i
\(184\) 0 0
\(185\) 8.48528 16.9706i 0.623850 1.24770i
\(186\) 0 0
\(187\) 8.00000i 0.585018i
\(188\) 0 0
\(189\) −4.00000 14.1421i −0.290957 1.02869i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 16.0000i 1.15171i 0.817554 + 0.575853i \(0.195330\pi\)
−0.817554 + 0.575853i \(0.804670\pi\)
\(194\) 0 0
\(195\) −1.65685 10.8284i −0.118650 0.775440i
\(196\) 0 0
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) 19.7990i 1.40351i −0.712417 0.701757i \(-0.752399\pi\)
0.712417 0.701757i \(-0.247601\pi\)
\(200\) 0 0
\(201\) 10.0000 + 14.1421i 0.705346 + 0.997509i
\(202\) 0 0
\(203\) −16.9706 −1.19110
\(204\) 0 0
\(205\) 11.3137 + 5.65685i 0.790184 + 0.395092i
\(206\) 0 0
\(207\) 16.9706 + 6.00000i 1.17954 + 0.417029i
\(208\) 0 0
\(209\) 11.3137i 0.782586i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) −22.6274 + 16.0000i −1.55041 + 1.09630i
\(214\) 0 0
\(215\) −4.00000 2.00000i −0.272798 0.136399i
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) 0 0
\(219\) −16.0000 22.6274i −1.08118 1.52902i
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) 8.48528 0.568216 0.284108 0.958792i \(-0.408302\pi\)
0.284108 + 0.958792i \(0.408302\pi\)
\(224\) 0 0
\(225\) −14.3137 + 4.48528i −0.954247 + 0.299019i
\(226\) 0 0
\(227\) −2.82843 −0.187729 −0.0938647 0.995585i \(-0.529922\pi\)
−0.0938647 + 0.995585i \(0.529922\pi\)
\(228\) 0 0
\(229\) 11.3137i 0.747631i 0.927503 + 0.373815i \(0.121951\pi\)
−0.927503 + 0.373815i \(0.878049\pi\)
\(230\) 0 0
\(231\) −8.00000 11.3137i −0.526361 0.744387i
\(232\) 0 0
\(233\) 19.7990 1.29707 0.648537 0.761183i \(-0.275381\pi\)
0.648537 + 0.761183i \(0.275381\pi\)
\(234\) 0 0
\(235\) 20.0000 + 10.0000i 1.30466 + 0.652328i
\(236\) 0 0
\(237\) −14.1421 20.0000i −0.918630 1.29914i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 15.5563 + 1.00000i 0.997940 + 0.0641500i
\(244\) 0 0
\(245\) 1.00000 2.00000i 0.0638877 0.127775i
\(246\) 0 0
\(247\) 11.3137 0.719874
\(248\) 0 0
\(249\) −12.0000 + 8.48528i −0.760469 + 0.537733i
\(250\) 0 0
\(251\) 19.7990i 1.24970i 0.780744 + 0.624851i \(0.214840\pi\)
−0.780744 + 0.624851i \(0.785160\pi\)
\(252\) 0 0
\(253\) 16.9706 1.06693
\(254\) 0 0
\(255\) −1.65685 10.8284i −0.103756 0.678102i
\(256\) 0 0
\(257\) −2.82843 −0.176432 −0.0882162 0.996101i \(-0.528117\pi\)
−0.0882162 + 0.996101i \(0.528117\pi\)
\(258\) 0 0
\(259\) −24.0000 −1.49129
\(260\) 0 0
\(261\) 6.00000 16.9706i 0.371391 1.05045i
\(262\) 0 0
\(263\) 14.0000i 0.863277i −0.902047 0.431638i \(-0.857936\pi\)
0.902047 0.431638i \(-0.142064\pi\)
\(264\) 0 0
\(265\) −8.00000 4.00000i −0.491436 0.245718i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 25.4558i 1.54633i 0.634203 + 0.773166i \(0.281328\pi\)
−0.634203 + 0.773166i \(0.718672\pi\)
\(272\) 0 0
\(273\) −11.3137 + 8.00000i −0.684737 + 0.484182i
\(274\) 0 0
\(275\) −11.3137 + 8.48528i −0.682242 + 0.511682i
\(276\) 0 0
\(277\) −25.4558 −1.52949 −0.764747 0.644331i \(-0.777136\pi\)
−0.764747 + 0.644331i \(0.777136\pi\)
\(278\) 0 0
\(279\) 8.00000 + 2.82843i 0.478947 + 0.169334i
\(280\) 0 0
\(281\) 16.9706i 1.01238i 0.862422 + 0.506189i \(0.168946\pi\)
−0.862422 + 0.506189i \(0.831054\pi\)
\(282\) 0 0
\(283\) 18.0000i 1.06999i −0.844856 0.534994i \(-0.820314\pi\)
0.844856 0.534994i \(-0.179686\pi\)
\(284\) 0 0
\(285\) −2.34315 15.3137i −0.138796 0.907106i
\(286\) 0 0
\(287\) 16.0000i 0.944450i
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) 8.00000 + 11.3137i 0.468968 + 0.663221i
\(292\) 0 0
\(293\) 12.0000i 0.701047i −0.936554 0.350524i \(-0.886004\pi\)
0.936554 0.350524i \(-0.113996\pi\)
\(294\) 0 0
\(295\) −5.65685 2.82843i −0.329355 0.164677i
\(296\) 0 0
\(297\) 14.1421 4.00000i 0.820610 0.232104i
\(298\) 0 0
\(299\) 16.9706i 0.981433i
\(300\) 0 0
\(301\) 5.65685i 0.326056i
\(302\) 0 0
\(303\) 8.48528 6.00000i 0.487467 0.344691i
\(304\) 0 0
\(305\) 11.3137 + 5.65685i 0.647821 + 0.323911i
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 0 0
\(309\) 20.0000 14.1421i 1.13776 0.804518i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i −0.974106 0.226093i \(-0.927405\pi\)
0.974106 0.226093i \(-0.0725954\pi\)
\(314\) 0 0
\(315\) 13.1716 + 13.6569i 0.742134 + 0.769477i
\(316\) 0 0
\(317\) 4.00000i 0.224662i −0.993671 0.112331i \(-0.964168\pi\)
0.993671 0.112331i \(-0.0358318\pi\)
\(318\) 0 0
\(319\) 16.9706i 0.950169i
\(320\) 0 0
\(321\) 4.00000 2.82843i 0.223258 0.157867i
\(322\) 0 0
\(323\) 11.3137 0.629512
\(324\) 0 0
\(325\) 8.48528 + 11.3137i 0.470679 + 0.627572i
\(326\) 0 0
\(327\) −16.9706 24.0000i −0.938474 1.32720i
\(328\) 0 0
\(329\) 28.2843i 1.55936i
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) 8.48528 24.0000i 0.464991 1.31519i
\(334\) 0 0
\(335\) −20.0000 10.0000i −1.09272 0.546358i
\(336\) 0 0
\(337\) 8.00000i 0.435788i 0.975972 + 0.217894i \(0.0699187\pi\)
−0.975972 + 0.217894i \(0.930081\pi\)
\(338\) 0 0
\(339\) −12.0000 + 8.48528i −0.651751 + 0.460857i
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) −22.9706 + 3.51472i −1.23669 + 0.189226i
\(346\) 0 0
\(347\) 31.1127 1.67022 0.835109 0.550085i \(-0.185405\pi\)
0.835109 + 0.550085i \(0.185405\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) −4.00000 14.1421i −0.213504 0.754851i
\(352\) 0 0
\(353\) −2.82843 −0.150542 −0.0752710 0.997163i \(-0.523982\pi\)
−0.0752710 + 0.997163i \(0.523982\pi\)
\(354\) 0 0
\(355\) 16.0000 32.0000i 0.849192 1.69838i
\(356\) 0 0
\(357\) −11.3137 + 8.00000i −0.598785 + 0.423405i
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −4.24264 + 3.00000i −0.222681 + 0.157459i
\(364\) 0 0
\(365\) 32.0000 + 16.0000i 1.67496 + 0.837478i
\(366\) 0 0
\(367\) 8.48528 0.442928 0.221464 0.975169i \(-0.428916\pi\)
0.221464 + 0.975169i \(0.428916\pi\)
\(368\) 0 0
\(369\) 16.0000 + 5.65685i 0.832927 + 0.294484i
\(370\) 0 0
\(371\) 11.3137i 0.587378i
\(372\) 0 0
\(373\) 8.48528 0.439351 0.219676 0.975573i \(-0.429500\pi\)
0.219676 + 0.975573i \(0.429500\pi\)
\(374\) 0 0
\(375\) 13.5563 13.8284i 0.700047 0.714097i
\(376\) 0 0
\(377\) −16.9706 −0.874028
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 12.0000 8.48528i 0.614779 0.434714i
\(382\) 0 0
\(383\) 18.0000i 0.919757i −0.887982 0.459879i \(-0.847893\pi\)
0.887982 0.459879i \(-0.152107\pi\)
\(384\) 0 0
\(385\) 16.0000 + 8.00000i 0.815436 + 0.407718i
\(386\) 0 0
\(387\) −5.65685 2.00000i −0.287554 0.101666i
\(388\) 0 0
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 16.9706i 0.858238i
\(392\) 0 0
\(393\) −8.48528 12.0000i −0.428026 0.605320i
\(394\) 0 0
\(395\) 28.2843 + 14.1421i 1.42314 + 0.711568i
\(396\) 0 0
\(397\) 8.48528 0.425864 0.212932 0.977067i \(-0.431699\pi\)
0.212932 + 0.977067i \(0.431699\pi\)
\(398\) 0 0
\(399\) −16.0000 + 11.3137i −0.801002 + 0.566394i
\(400\) 0 0
\(401\) 22.6274i 1.12996i −0.825105 0.564980i \(-0.808884\pi\)
0.825105 0.564980i \(-0.191116\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) −18.3137 + 8.34315i −0.910015 + 0.414574i
\(406\) 0 0
\(407\) 24.0000i 1.18964i
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) 20.0000 14.1421i 0.986527 0.697580i
\(412\) 0 0
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) 8.48528 16.9706i 0.416526 0.833052i
\(416\) 0 0
\(417\) 28.2843 20.0000i 1.38509 0.979404i
\(418\) 0 0
\(419\) 25.4558i 1.24360i −0.783176 0.621800i \(-0.786402\pi\)
0.783176 0.621800i \(-0.213598\pi\)
\(420\) 0 0
\(421\) 5.65685i 0.275698i −0.990453 0.137849i \(-0.955981\pi\)
0.990453 0.137849i \(-0.0440189\pi\)
\(422\) 0 0
\(423\) 28.2843 + 10.0000i 1.37523 + 0.486217i
\(424\) 0 0
\(425\) 8.48528 + 11.3137i 0.411597 + 0.548795i
\(426\) 0 0
\(427\) 16.0000i 0.774294i
\(428\) 0 0
\(429\) −8.00000 11.3137i −0.386244 0.546231i
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 8.00000i 0.384455i −0.981350 0.192228i \(-0.938429\pi\)
0.981350 0.192228i \(-0.0615712\pi\)
\(434\) 0 0
\(435\) 3.51472 + 22.9706i 0.168518 + 1.10135i
\(436\) 0 0
\(437\) 24.0000i 1.14808i
\(438\) 0 0
\(439\) 14.1421i 0.674967i 0.941331 + 0.337484i \(0.109576\pi\)
−0.941331 + 0.337484i \(0.890424\pi\)
\(440\) 0 0
\(441\) 1.00000 2.82843i 0.0476190 0.134687i
\(442\) 0 0
\(443\) −31.1127 −1.47821 −0.739104 0.673591i \(-0.764751\pi\)
−0.739104 + 0.673591i \(0.764751\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.1421 10.0000i 0.668900 0.472984i
\(448\) 0 0
\(449\) 5.65685i 0.266963i −0.991051 0.133482i \(-0.957384\pi\)
0.991051 0.133482i \(-0.0426157\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 0 0
\(453\) 8.48528 + 12.0000i 0.398673 + 0.563809i
\(454\) 0 0
\(455\) 8.00000 16.0000i 0.375046 0.750092i
\(456\) 0 0
\(457\) 16.0000i 0.748448i 0.927338 + 0.374224i \(0.122091\pi\)
−0.927338 + 0.374224i \(0.877909\pi\)
\(458\) 0 0
\(459\) −4.00000 14.1421i −0.186704 0.660098i
\(460\) 0 0
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) 25.4558 1.18303 0.591517 0.806293i \(-0.298529\pi\)
0.591517 + 0.806293i \(0.298529\pi\)
\(464\) 0 0
\(465\) −10.8284 + 1.65685i −0.502156 + 0.0768348i
\(466\) 0 0
\(467\) −31.1127 −1.43972 −0.719862 0.694117i \(-0.755795\pi\)
−0.719862 + 0.694117i \(0.755795\pi\)
\(468\) 0 0
\(469\) 28.2843i 1.30605i
\(470\) 0 0
\(471\) −12.0000 + 8.48528i −0.552931 + 0.390981i
\(472\) 0 0
\(473\) −5.65685 −0.260102
\(474\) 0 0
\(475\) 12.0000 + 16.0000i 0.550598 + 0.734130i
\(476\) 0 0
\(477\) −11.3137 4.00000i −0.518019 0.183147i
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −24.0000 −1.09431
\(482\) 0 0
\(483\) 16.9706 + 24.0000i 0.772187 + 1.09204i
\(484\) 0 0
\(485\) −16.0000 8.00000i −0.726523 0.363261i
\(486\) 0 0
\(487\) 25.4558 1.15351 0.576757 0.816916i \(-0.304318\pi\)
0.576757 + 0.816916i \(0.304318\pi\)
\(488\) 0 0
\(489\) −18.0000 25.4558i −0.813988 1.15115i
\(490\) 0 0
\(491\) 14.1421i 0.638226i −0.947717 0.319113i \(-0.896615\pi\)
0.947717 0.319113i \(-0.103385\pi\)
\(492\) 0 0
\(493\) −16.9706 −0.764316
\(494\) 0 0
\(495\) −13.6569 + 13.1716i −0.613830 + 0.592018i
\(496\) 0 0
\(497\) −45.2548 −2.02996
\(498\) 0 0
\(499\) −44.0000 −1.96971 −0.984855 0.173379i \(-0.944532\pi\)
−0.984855 + 0.173379i \(0.944532\pi\)
\(500\) 0 0
\(501\) −2.00000 2.82843i −0.0893534 0.126365i
\(502\) 0 0
\(503\) 14.0000i 0.624229i −0.950044 0.312115i \(-0.898963\pi\)
0.950044 0.312115i \(-0.101037\pi\)
\(504\) 0 0
\(505\) −6.00000 + 12.0000i −0.266996 + 0.533993i
\(506\) 0 0
\(507\) 7.07107 5.00000i 0.314037 0.222058i
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 45.2548i 2.00196i
\(512\) 0 0
\(513\) −5.65685 20.0000i −0.249756 0.883022i
\(514\) 0 0
\(515\) −14.1421 + 28.2843i −0.623177 + 1.24635i
\(516\) 0 0
\(517\) 28.2843 1.24394
\(518\) 0 0
\(519\) −12.0000 16.9706i −0.526742 0.744925i
\(520\) 0 0
\(521\) 22.6274i 0.991325i 0.868515 + 0.495663i \(0.165075\pi\)
−0.868515 + 0.495663i \(0.834925\pi\)
\(522\) 0 0
\(523\) 6.00000i 0.262362i −0.991358 0.131181i \(-0.958123\pi\)
0.991358 0.131181i \(-0.0418769\pi\)
\(524\) 0 0
\(525\) −23.3137 7.51472i −1.01749 0.327969i
\(526\) 0 0
\(527\) 8.00000i 0.348485i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) −8.00000 2.82843i −0.347170 0.122743i
\(532\) 0 0
\(533\) 16.0000i 0.693037i
\(534\) 0 0
\(535\) −2.82843 + 5.65685i −0.122284 + 0.244567i
\(536\) 0 0
\(537\) 25.4558 + 36.0000i 1.09850 + 1.55351i
\(538\) 0 0
\(539\) 2.82843i 0.121829i
\(540\) 0 0
\(541\) 33.9411i 1.45924i 0.683851 + 0.729621i \(0.260304\pi\)
−0.683851 + 0.729621i \(0.739696\pi\)
\(542\) 0 0
\(543\) −22.6274 32.0000i −0.971035 1.37325i
\(544\) 0 0
\(545\) 33.9411 + 16.9706i 1.45388 + 0.726939i
\(546\) 0 0
\(547\) 22.0000i 0.940652i 0.882493 + 0.470326i \(0.155864\pi\)
−0.882493 + 0.470326i \(0.844136\pi\)
\(548\) 0 0
\(549\) 16.0000 + 5.65685i 0.682863 + 0.241429i
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 40.0000i 1.70097i
\(554\) 0 0
\(555\) 4.97056 + 32.4853i 0.210989 + 1.37892i
\(556\) 0 0
\(557\) 44.0000i 1.86434i 0.362021 + 0.932170i \(0.382087\pi\)
−0.362021 + 0.932170i \(0.617913\pi\)
\(558\) 0 0
\(559\) 5.65685i 0.239259i
\(560\) 0 0
\(561\) −8.00000 11.3137i −0.337760 0.477665i
\(562\) 0 0
\(563\) 36.7696 1.54965 0.774826 0.632175i \(-0.217837\pi\)
0.774826 + 0.632175i \(0.217837\pi\)
\(564\) 0 0
\(565\) 8.48528 16.9706i 0.356978 0.713957i
\(566\) 0 0
\(567\) 19.7990 + 16.0000i 0.831479 + 0.671937i
\(568\) 0 0
\(569\) 39.5980i 1.66003i 0.557738 + 0.830017i \(0.311669\pi\)
−0.557738 + 0.830017i \(0.688331\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) −11.3137 + 8.00000i −0.472637 + 0.334205i
\(574\) 0 0
\(575\) 24.0000 18.0000i 1.00087 0.750652i
\(576\) 0 0
\(577\) 8.00000i 0.333044i 0.986038 + 0.166522i \(0.0532537\pi\)
−0.986038 + 0.166522i \(0.946746\pi\)
\(578\) 0 0
\(579\) −16.0000 22.6274i −0.664937 0.940363i
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) −11.3137 −0.468566
\(584\) 0 0
\(585\) 13.1716 + 13.6569i 0.544578 + 0.564641i
\(586\) 0 0
\(587\) −14.1421 −0.583708 −0.291854 0.956463i \(-0.594272\pi\)
−0.291854 + 0.956463i \(0.594272\pi\)
\(588\) 0 0
\(589\) 11.3137i 0.466173i
\(590\) 0 0
\(591\) 12.0000 + 16.9706i 0.493614 + 0.698076i
\(592\) 0 0
\(593\) 8.48528 0.348449 0.174224 0.984706i \(-0.444258\pi\)
0.174224 + 0.984706i \(0.444258\pi\)
\(594\) 0 0
\(595\) 8.00000 16.0000i 0.327968 0.655936i
\(596\) 0 0
\(597\) 19.7990 + 28.0000i 0.810319 + 1.14596i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) −28.2843 10.0000i −1.15182 0.407231i
\(604\) 0 0
\(605\) 3.00000 6.00000i 0.121967 0.243935i
\(606\) 0 0
\(607\) −25.4558 −1.03322 −0.516610 0.856221i \(-0.672806\pi\)
−0.516610 + 0.856221i \(0.672806\pi\)
\(608\) 0 0
\(609\) 24.0000 16.9706i 0.972529 0.687682i
\(610\) 0 0
\(611\) 28.2843i 1.14426i
\(612\) 0 0
\(613\) −14.1421 −0.571195 −0.285598 0.958350i \(-0.592192\pi\)
−0.285598 + 0.958350i \(0.592192\pi\)
\(614\) 0 0
\(615\) −21.6569 + 3.31371i −0.873289 + 0.133622i
\(616\) 0 0
\(617\) −14.1421 −0.569341 −0.284670 0.958625i \(-0.591884\pi\)
−0.284670 + 0.958625i \(0.591884\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) −30.0000 + 8.48528i −1.20386 + 0.340503i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) −11.3137 16.0000i −0.451826 0.638978i
\(628\) 0 0
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 36.7696i 1.46377i 0.681427 + 0.731886i \(0.261360\pi\)
−0.681427 + 0.731886i \(0.738640\pi\)
\(632\) 0 0
\(633\) −5.65685 + 4.00000i −0.224840 + 0.158986i
\(634\) 0 0
\(635\) −8.48528 + 16.9706i −0.336728 + 0.673456i
\(636\) 0 0
\(637\) −2.82843 −0.112066
\(638\) 0 0
\(639\) 16.0000 45.2548i 0.632950 1.79025i
\(640\) 0 0
\(641\) 28.2843i 1.11716i 0.829450 + 0.558581i \(0.188654\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) 34.0000i 1.34083i 0.741987 + 0.670415i \(0.233884\pi\)
−0.741987 + 0.670415i \(0.766116\pi\)
\(644\) 0 0
\(645\) 7.65685 1.17157i 0.301488 0.0461306i
\(646\) 0 0
\(647\) 18.0000i 0.707653i 0.935311 + 0.353827i \(0.115120\pi\)
−0.935311 + 0.353827i \(0.884880\pi\)
\(648\) 0 0
\(649\) −8.00000 −0.314027
\(650\) 0 0
\(651\) 8.00000 + 11.3137i 0.313545 + 0.443419i
\(652\) 0 0
\(653\) 36.0000i 1.40879i 0.709809 + 0.704394i \(0.248781\pi\)
−0.709809 + 0.704394i \(0.751219\pi\)
\(654\) 0 0
\(655\) 16.9706 + 8.48528i 0.663095 + 0.331547i
\(656\) 0 0
\(657\) 45.2548 + 16.0000i 1.76556 + 0.624219i
\(658\) 0 0
\(659\) 2.82843i 0.110180i −0.998481 0.0550899i \(-0.982455\pi\)
0.998481 0.0550899i \(-0.0175446\pi\)
\(660\) 0 0
\(661\) 16.9706i 0.660078i −0.943967 0.330039i \(-0.892938\pi\)
0.943967 0.330039i \(-0.107062\pi\)
\(662\) 0 0
\(663\) −11.3137 + 8.00000i −0.439388 + 0.310694i
\(664\) 0 0
\(665\) 11.3137 22.6274i 0.438727 0.877454i
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) 0 0
\(669\) −12.0000 + 8.48528i −0.463947 + 0.328060i
\(670\) 0 0
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) 24.0000i 0.925132i −0.886585 0.462566i \(-0.846929\pi\)
0.886585 0.462566i \(-0.153071\pi\)
\(674\) 0 0
\(675\) 15.7574 20.6569i 0.606501 0.795083i
\(676\) 0 0
\(677\) 12.0000i 0.461197i 0.973049 + 0.230599i \(0.0740685\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(678\) 0 0
\(679\) 22.6274i 0.868361i
\(680\) 0 0
\(681\) 4.00000 2.82843i 0.153280 0.108386i
\(682\) 0 0
\(683\) −14.1421 −0.541134 −0.270567 0.962701i \(-0.587211\pi\)
−0.270567 + 0.962701i \(0.587211\pi\)
\(684\) 0 0
\(685\) −14.1421 + 28.2843i −0.540343 + 1.08069i
\(686\) 0 0
\(687\) −11.3137 16.0000i −0.431645 0.610438i
\(688\) 0 0
\(689\) 11.3137i 0.431018i
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) 22.6274 + 8.00000i 0.859544 + 0.303895i
\(694\) 0 0
\(695\) −20.0000 + 40.0000i −0.758643 + 1.51729i
\(696\) 0 0
\(697\) 16.0000i 0.606043i
\(698\) 0 0
\(699\) −28.0000 + 19.7990i −1.05906 + 0.748867i
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −33.9411 −1.28011
\(704\) 0 0
\(705\) −38.2843 + 5.85786i −1.44187 + 0.220620i
\(706\) 0 0
\(707\) 16.9706 0.638244
\(708\) 0 0
\(709\) 22.6274i 0.849790i −0.905243 0.424895i \(-0.860311\pi\)
0.905243 0.424895i \(-0.139689\pi\)
\(710\) 0 0
\(711\) 40.0000 + 14.1421i 1.50012 + 0.530372i
\(712\) 0 0
\(713\) −16.9706 −0.635553
\(714\) 0 0
\(715\) 16.0000 + 8.00000i 0.598366 + 0.299183i
\(716\) 0 0
\(717\) 33.9411 24.0000i 1.26755 0.896296i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 40.0000 1.48968
\(722\) 0 0
\(723\) 2.82843 2.00000i 0.105190 0.0743808i
\(724\) 0 0
\(725\) −18.0000 24.0000i −0.668503 0.891338i
\(726\) 0 0
\(727\) 2.82843 0.104901 0.0524503 0.998624i \(-0.483297\pi\)
0.0524503 + 0.998624i \(0.483297\pi\)
\(728\) 0 0
\(729\) −23.0000 + 14.1421i −0.851852 + 0.523783i
\(730\) 0 0
\(731\) 5.65685i 0.209226i
\(732\) 0 0
\(733\) −14.1421 −0.522352 −0.261176 0.965291i \(-0.584110\pi\)
−0.261176 + 0.965291i \(0.584110\pi\)
\(734\) 0 0
\(735\) 0.585786 + 3.82843i 0.0216071 + 0.141214i
\(736\) 0 0
\(737\) −28.2843 −1.04186
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) −16.0000 + 11.3137i −0.587775 + 0.415619i
\(742\) 0 0
\(743\) 6.00000i 0.220119i 0.993925 + 0.110059i \(0.0351041\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(744\) 0 0
\(745\) −10.0000 + 20.0000i −0.366372 + 0.732743i
\(746\) 0 0
\(747\) 8.48528 24.0000i 0.310460 0.878114i
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 8.48528i 0.309632i −0.987943 0.154816i \(-0.950521\pi\)
0.987943 0.154816i \(-0.0494785\pi\)
\(752\) 0 0
\(753\) −19.7990 28.0000i −0.721515 1.02038i
\(754\) 0 0
\(755\) −16.9706 8.48528i −0.617622 0.308811i
\(756\) 0 0
\(757\) 42.4264 1.54201 0.771007 0.636827i \(-0.219753\pi\)
0.771007 + 0.636827i \(0.219753\pi\)
\(758\) 0 0
\(759\) −24.0000 + 16.9706i −0.871145 + 0.615992i
\(760\) 0 0
\(761\) 33.9411i 1.23036i −0.788385 0.615182i \(-0.789082\pi\)
0.788385 0.615182i \(-0.210918\pi\)
\(762\) 0 0
\(763\) 48.0000i 1.73772i
\(764\) 0 0
\(765\) 13.1716 + 13.6569i 0.476219 + 0.493765i
\(766\) 0 0
\(767\) 8.00000i 0.288863i
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 4.00000 2.82843i 0.144056 0.101863i
\(772\) 0 0
\(773\) 12.0000i 0.431610i −0.976436 0.215805i \(-0.930762\pi\)
0.976436 0.215805i \(-0.0692376\pi\)
\(774\) 0 0
\(775\) 11.3137 8.48528i 0.406400 0.304800i
\(776\) 0 0
\(777\) 33.9411 24.0000i 1.21763 0.860995i
\(778\) 0 0
\(779\) 22.6274i 0.810711i
\(780\) 0 0
\(781\) 45.2548i 1.61935i
\(782\) 0 0
\(783\) 8.48528 + 30.0000i 0.303239 + 1.07211i
\(784\) 0 0
\(785\) 8.48528 16.9706i 0.302853 0.605705i
\(786\) 0 0
\(787\) 14.0000i 0.499046i −0.968369 0.249523i \(-0.919726\pi\)
0.968369 0.249523i \(-0.0802738\pi\)
\(788\) 0 0
\(789\) 14.0000 + 19.7990i 0.498413 + 0.704863i
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) 16.0000i 0.568177i
\(794\) 0 0
\(795\) 15.3137 2.34315i 0.543121 0.0831028i
\(796\) 0 0
\(797\) 12.0000i 0.425062i 0.977154 + 0.212531i \(0.0681706\pi\)
−0.977154 + 0.212531i \(0.931829\pi\)
\(798\) 0 0
\(799\) 28.2843i 1.00063i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 45.2548 1.59701
\(804\) 0 0
\(805\) −33.9411 16.9706i −1.19627 0.598134i
\(806\) 0 0
\(807\) −19.7990 + 14.0000i −0.696957 + 0.492823i
\(808\) 0 0
\(809\) 22.6274i 0.795538i −0.917486 0.397769i \(-0.869785\pi\)
0.917486 0.397769i \(-0.130215\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) −25.4558 36.0000i −0.892775 1.26258i
\(814\) 0 0
\(815\) 36.0000 + 18.0000i 1.26102 + 0.630512i
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) 0 0
\(819\) 8.00000 22.6274i 0.279543 0.790666i
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 0 0
\(823\) 8.48528 0.295778 0.147889 0.989004i \(-0.452752\pi\)
0.147889 + 0.989004i \(0.452752\pi\)
\(824\) 0 0
\(825\) 7.51472 23.3137i 0.261629 0.811679i
\(826\) 0 0
\(827\) 25.4558 0.885186 0.442593 0.896723i \(-0.354059\pi\)
0.442593 + 0.896723i \(0.354059\pi\)
\(828\) 0 0
\(829\) 5.65685i 0.196471i 0.995163 + 0.0982353i \(0.0313198\pi\)
−0.995163 + 0.0982353i \(0.968680\pi\)
\(830\) 0 0
\(831\) 36.0000 25.4558i 1.24883 0.883053i
\(832\) 0 0
\(833\) −2.82843 −0.0979992
\(834\) 0 0
\(835\) 4.00000 + 2.00000i 0.138426 + 0.0692129i
\(836\) 0 0
\(837\) −14.1421 + 4.00000i −0.488824 + 0.138260i
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −16.9706 24.0000i −0.584497 0.826604i
\(844\) 0 0
\(845\) −5.00000 + 10.0000i −0.172005 + 0.344010i
\(846\) 0 0
\(847\) −8.48528 −0.291558
\(848\) 0 0
\(849\) 18.0000 + 25.4558i 0.617758 + 0.873642i
\(850\) 0 0
\(851\) 50.9117i 1.74523i
\(852\) 0 0
\(853\) −2.82843 −0.0968435 −0.0484218 0.998827i \(-0.515419\pi\)
−0.0484218 + 0.998827i \(0.515419\pi\)
\(854\) 0 0
\(855\) 18.6274 + 19.3137i 0.637044 + 0.660515i
\(856\) 0 0
\(857\) −25.4558 −0.869555 −0.434778 0.900538i \(-0.643173\pi\)
−0.434778 + 0.900538i \(0.643173\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) 16.0000 + 22.6274i 0.545279 + 0.771140i
\(862\) 0 0
\(863\) 26.0000i 0.885050i 0.896756 + 0.442525i \(0.145917\pi\)
−0.896756 + 0.442525i \(0.854083\pi\)
\(864\) 0 0
\(865\) 24.0000 + 12.0000i 0.816024 + 0.408012i
\(866\) 0 0
\(867\) 12.7279 9.00000i 0.432263 0.305656i
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) 28.2843i 0.958376i
\(872\) 0 0
\(873\) −22.6274 8.00000i −0.765822 0.270759i
\(874\) 0 0
\(875\) 31.1127 5.65685i 1.05180 0.191237i
\(876\) 0 0
\(877\) −36.7696 −1.24162 −0.620810 0.783961i \(-0.713196\pi\)
−0.620810 + 0.783961i \(0.713196\pi\)
\(878\) 0 0
\(879\) 12.0000 + 16.9706i 0.404750 + 0.572403i
\(880\) 0 0
\(881\) 5.65685i 0.190584i 0.995449 + 0.0952921i \(0.0303785\pi\)
−0.995449 + 0.0952921i \(0.969621\pi\)
\(882\) 0 0
\(883\) 34.0000i 1.14419i 0.820187 + 0.572096i \(0.193869\pi\)
−0.820187 + 0.572096i \(0.806131\pi\)
\(884\) 0 0
\(885\) 10.8284 1.65685i 0.363994 0.0556945i
\(886\) 0 0
\(887\) 34.0000i 1.14161i 0.821086 + 0.570804i \(0.193368\pi\)
−0.821086 + 0.570804i \(0.806632\pi\)
\(888\) 0 0
\(889\) 24.0000 0.804934
\(890\) 0 0
\(891\) −16.0000 + 19.7990i −0.536020 + 0.663291i
\(892\) 0 0
\(893\) 40.0000i 1.33855i
\(894\) 0 0
\(895\) −50.9117 25.4558i −1.70179 0.850895i
\(896\) 0 0
\(897\) 16.9706 + 24.0000i 0.566631 + 0.801337i
\(898\) 0 0
\(899\) 16.9706i 0.566000i
\(900\) 0 0
\(901\) 11.3137i 0.376914i
\(902\) 0 0
\(903\) −5.65685 8.00000i −0.188248 0.266223i
\(904\) 0 0
\(905\) 45.2548 + 22.6274i 1.50432 + 0.752161i
\(906\) 0 0
\(907\) 14.0000i 0.464862i 0.972613 + 0.232431i \(0.0746680\pi\)
−0.972613 + 0.232431i \(0.925332\pi\)
\(908\) 0 0
\(909\) −6.00000 + 16.9706i −0.199007 + 0.562878i
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 24.0000i 0.794284i
\(914\) 0 0
\(915\) −21.6569 + 3.31371i −0.715954 + 0.109548i
\(916\) 0 0
\(917\) 24.0000i 0.792550i
\(918\) 0 0
\(919\) 25.4558i 0.839711i 0.907591 + 0.419855i \(0.137919\pi\)
−0.907591 + 0.419855i \(0.862081\pi\)
\(920\) 0 0
\(921\) −2.00000 2.82843i −0.0659022 0.0931998i
\(922\) 0 0
\(923\) −45.2548 −1.48958
\(924\) 0 0
\(925\) −25.4558 33.9411i −0.836983 1.11598i
\(926\) 0 0
\(927\) −14.1421 + 40.0000i −0.464489 + 1.31377i
\(928\) 0 0
\(929\) 16.9706i 0.556786i −0.960467 0.278393i \(-0.910198\pi\)
0.960467 0.278393i \(-0.0898018\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16.0000 + 8.00000i 0.523256 + 0.261628i
\(936\) 0 0
\(937\) 24.0000i 0.784046i 0.919955 + 0.392023i \(0.128225\pi\)
−0.919955 + 0.392023i \(0.871775\pi\)
\(938\) 0 0
\(939\) 8.00000 + 11.3137i 0.261070 + 0.369209i
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) −33.9411 −1.10528
\(944\) 0 0
\(945\) −32.2843 6.14214i −1.05021 0.199804i
\(946\) 0 0
\(947\) −19.7990 −0.643381 −0.321690 0.946845i \(-0.604251\pi\)
−0.321690 + 0.946845i \(0.604251\pi\)
\(948\) 0 0
\(949\) 45.2548i 1.46903i
\(950\) 0 0
\(951\) 4.00000 + 5.65685i 0.129709 + 0.183436i
\(952\) 0 0
\(953\) 31.1127 1.00784 0.503920 0.863751i \(-0.331891\pi\)
0.503920 + 0.863751i \(0.331891\pi\)
\(954\) 0 0
\(955\) 8.00000 16.0000i 0.258874 0.517748i
\(956\) 0 0
\(957\) 16.9706 + 24.0000i 0.548580 + 0.775810i
\(958\) 0 0
\(959\) 40.0000 1.29167
\(960\) 0 0
\(961\) 23.0000 0.741935
\(962\) 0 0
\(963\) −2.82843 + 8.00000i −0.0911448 + 0.257796i
\(964\) 0 0
\(965\) 32.0000 + 16.0000i 1.03012 + 0.515058i
\(966\) 0 0
\(967\) −8.48528 −0.272868 −0.136434 0.990649i \(-0.543564\pi\)
−0.136434 + 0.990649i \(0.543564\pi\)
\(968\) 0 0
\(969\) −16.0000 + 11.3137i −0.513994 + 0.363449i
\(970\) 0 0
\(971\) 31.1127i 0.998454i 0.866471 + 0.499227i \(0.166383\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) 56.5685 1.81350
\(974\) 0 0
\(975\) −23.3137 7.51472i −0.746636 0.240664i
\(976\) 0 0
\(977\) −14.1421 −0.452447 −0.226224 0.974075i \(-0.572638\pi\)
−0.226224 + 0.974075i \(0.572638\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 48.0000 + 16.9706i 1.53252 + 0.541828i
\(982\) 0 0
\(983\) 54.0000i 1.72233i 0.508323 + 0.861166i \(0.330265\pi\)
−0.508323 + 0.861166i \(0.669735\pi\)
\(984\) 0 0
\(985\) −24.0000 12.0000i −0.764704 0.382352i
\(986\) 0 0
\(987\) 28.2843 + 40.0000i 0.900298 + 1.27321i
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 8.48528i 0.269544i −0.990877 0.134772i \(-0.956970\pi\)
0.990877 0.134772i \(-0.0430302\pi\)
\(992\) 0 0
\(993\) −16.9706 + 12.0000i −0.538545 + 0.380808i
\(994\) 0 0
\(995\) −39.5980 19.7990i −1.25534 0.627670i
\(996\) 0 0
\(997\) −48.0833 −1.52281 −0.761406 0.648275i \(-0.775491\pi\)
−0.761406 + 0.648275i \(0.775491\pi\)
\(998\) 0 0
\(999\) 12.0000 + 42.4264i 0.379663 + 1.34231i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.m.n.959.2 yes 4
3.2 odd 2 1920.2.m.i.959.4 yes 4
4.3 odd 2 1920.2.m.m.959.3 yes 4
5.4 even 2 inner 1920.2.m.n.959.3 yes 4
8.3 odd 2 1920.2.m.i.959.2 yes 4
8.5 even 2 1920.2.m.j.959.3 yes 4
12.11 even 2 1920.2.m.j.959.1 yes 4
15.14 odd 2 1920.2.m.i.959.1 4
20.19 odd 2 1920.2.m.m.959.2 yes 4
24.5 odd 2 1920.2.m.m.959.1 yes 4
24.11 even 2 inner 1920.2.m.n.959.4 yes 4
40.19 odd 2 1920.2.m.i.959.3 yes 4
40.29 even 2 1920.2.m.j.959.2 yes 4
60.59 even 2 1920.2.m.j.959.4 yes 4
120.29 odd 2 1920.2.m.m.959.4 yes 4
120.59 even 2 inner 1920.2.m.n.959.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.m.i.959.1 4 15.14 odd 2
1920.2.m.i.959.2 yes 4 8.3 odd 2
1920.2.m.i.959.3 yes 4 40.19 odd 2
1920.2.m.i.959.4 yes 4 3.2 odd 2
1920.2.m.j.959.1 yes 4 12.11 even 2
1920.2.m.j.959.2 yes 4 40.29 even 2
1920.2.m.j.959.3 yes 4 8.5 even 2
1920.2.m.j.959.4 yes 4 60.59 even 2
1920.2.m.m.959.1 yes 4 24.5 odd 2
1920.2.m.m.959.2 yes 4 20.19 odd 2
1920.2.m.m.959.3 yes 4 4.3 odd 2
1920.2.m.m.959.4 yes 4 120.29 odd 2
1920.2.m.n.959.1 yes 4 120.59 even 2 inner
1920.2.m.n.959.2 yes 4 1.1 even 1 trivial
1920.2.m.n.959.3 yes 4 5.4 even 2 inner
1920.2.m.n.959.4 yes 4 24.11 even 2 inner