Properties

Label 1936.4.a.e
Level $1936$
Weight $4$
Character orbit 1936.a
Self dual yes
Analytic conductor $114.228$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1936,4,Mod(1,1936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 242)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{3} + 3 q^{5} - 8 q^{7} - 11 q^{9} + 83 q^{13} - 12 q^{15} + 123 q^{17} + 112 q^{19} + 32 q^{21} - 36 q^{23} - 116 q^{25} + 152 q^{27} - 21 q^{29} - 128 q^{31} - 24 q^{35} + 107 q^{37} - 332 q^{39}+ \cdots + 299 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −4.00000 0 3.00000 0 −8.00000 0 −11.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1936.4.a.e 1
4.b odd 2 1 242.4.a.e yes 1
11.b odd 2 1 1936.4.a.f 1
12.b even 2 1 2178.4.a.f 1
44.c even 2 1 242.4.a.b 1
44.g even 10 4 242.4.c.i 4
44.h odd 10 4 242.4.c.c 4
132.d odd 2 1 2178.4.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
242.4.a.b 1 44.c even 2 1
242.4.a.e yes 1 4.b odd 2 1
242.4.c.c 4 44.h odd 10 4
242.4.c.i 4 44.g even 10 4
1936.4.a.e 1 1.a even 1 1 trivial
1936.4.a.f 1 11.b odd 2 1
2178.4.a.f 1 12.b even 2 1
2178.4.a.p 1 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1936))\):

\( T_{3} + 4 \) Copy content Toggle raw display
\( T_{5} - 3 \) Copy content Toggle raw display
\( T_{7} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 4 \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 83 \) Copy content Toggle raw display
$17$ \( T - 123 \) Copy content Toggle raw display
$19$ \( T - 112 \) Copy content Toggle raw display
$23$ \( T + 36 \) Copy content Toggle raw display
$29$ \( T + 21 \) Copy content Toggle raw display
$31$ \( T + 128 \) Copy content Toggle raw display
$37$ \( T - 107 \) Copy content Toggle raw display
$41$ \( T + 201 \) Copy content Toggle raw display
$43$ \( T + 308 \) Copy content Toggle raw display
$47$ \( T - 492 \) Copy content Toggle raw display
$53$ \( T + 345 \) Copy content Toggle raw display
$59$ \( T + 204 \) Copy content Toggle raw display
$61$ \( T - 470 \) Copy content Toggle raw display
$67$ \( T - 760 \) Copy content Toggle raw display
$71$ \( T + 900 \) Copy content Toggle raw display
$73$ \( T + 742 \) Copy content Toggle raw display
$79$ \( T + 92 \) Copy content Toggle raw display
$83$ \( T - 864 \) Copy content Toggle raw display
$89$ \( T + 645 \) Copy content Toggle raw display
$97$ \( T - 299 \) Copy content Toggle raw display
show more
show less