gp: [N,k,chi] = [195,2,Mod(16,195)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(195, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("195.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-1,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 195 Z ) × \left(\mathbb{Z}/195\mathbb{Z}\right)^\times ( Z / 1 9 5 Z ) × .
n n n
106 106 1 0 6
131 131 1 3 1
157 157 1 5 7
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 T_{2} T 2
T2
acting on S 2 n e w ( 195 , [ χ ] ) S_{2}^{\mathrm{new}}(195, [\chi]) S 2 n e w ( 1 9 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + T + 1 T^{2} + T + 1 T 2 + T + 1
T^2 + T + 1
5 5 5
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
7 7 7
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
11 11 1 1
T 2 + 6 T + 36 T^{2} + 6T + 36 T 2 + 6 T + 3 6
T^2 + 6*T + 36
13 13 1 3
T 2 − 5 T + 13 T^{2} - 5T + 13 T 2 − 5 T + 1 3
T^2 - 5*T + 13
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 − 4 T + 16 T^{2} - 4T + 16 T 2 − 4 T + 1 6
T^2 - 4*T + 16
23 23 2 3
T 2 − 6 T + 36 T^{2} - 6T + 36 T 2 − 6 T + 3 6
T^2 - 6*T + 36
29 29 2 9
T 2 − 6 T + 36 T^{2} - 6T + 36 T 2 − 6 T + 3 6
T^2 - 6*T + 36
31 31 3 1
( T − 5 ) 2 (T - 5)^{2} ( T − 5 ) 2
(T - 5)^2
37 37 3 7
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
T 2 + 11 T + 121 T^{2} + 11T + 121 T 2 + 1 1 T + 1 2 1
T^2 + 11*T + 121
47 47 4 7
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
T 2 + 6 T + 36 T^{2} + 6T + 36 T 2 + 6 T + 3 6
T^2 + 6*T + 36
61 61 6 1
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
67 67 6 7
T 2 + 11 T + 121 T^{2} + 11T + 121 T 2 + 1 1 T + 1 2 1
T^2 + 11*T + 121
71 71 7 1
T 2 − 6 T + 36 T^{2} - 6T + 36 T 2 − 6 T + 3 6
T^2 - 6*T + 36
73 73 7 3
( T − 5 ) 2 (T - 5)^{2} ( T − 5 ) 2
(T - 5)^2
79 79 7 9
( T − 11 ) 2 (T - 11)^{2} ( T − 1 1 ) 2
(T - 11)^2
83 83 8 3
( T − 12 ) 2 (T - 12)^{2} ( T − 1 2 ) 2
(T - 12)^2
89 89 8 9
T 2 + 12 T + 144 T^{2} + 12T + 144 T 2 + 1 2 T + 1 4 4
T^2 + 12*T + 144
97 97 9 7
T 2 + 17 T + 289 T^{2} + 17T + 289 T 2 + 1 7 T + 2 8 9
T^2 + 17*T + 289
show more
show less