Properties

Label 195.2.i.b
Level 195195
Weight 22
Character orbit 195.i
Analytic conductor 1.5571.557
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,2,Mod(16,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 195=3513 195 = 3 \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 195.i (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.557082839411.55708283941
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q3+2ζ6q4q5+ζ6q7ζ6q9+(6ζ66)q112q12+(3ζ6+4)q13+(ζ6+1)q15+(4ζ64)q16++6q99+O(q100) q + (\zeta_{6} - 1) q^{3} + 2 \zeta_{6} q^{4} - q^{5} + \zeta_{6} q^{7} - \zeta_{6} q^{9} + (6 \zeta_{6} - 6) q^{11} - 2 q^{12} + ( - 3 \zeta_{6} + 4) q^{13} + ( - \zeta_{6} + 1) q^{15} + (4 \zeta_{6} - 4) q^{16} + \cdots + 6 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq3+2q42q5+q7q96q114q12+5q13+q154q16+4q192q202q21+6q23+2q25+2q272q28+6q29+10q31++12q99+O(q100) 2 q - q^{3} + 2 q^{4} - 2 q^{5} + q^{7} - q^{9} - 6 q^{11} - 4 q^{12} + 5 q^{13} + q^{15} - 4 q^{16} + 4 q^{19} - 2 q^{20} - 2 q^{21} + 6 q^{23} + 2 q^{25} + 2 q^{27} - 2 q^{28} + 6 q^{29} + 10 q^{31}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/195Z)×\left(\mathbb{Z}/195\mathbb{Z}\right)^\times.

nn 106106 131131 157157
χ(n)\chi(n) ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
16.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 1.00000 1.73205i −1.00000 0 0.500000 0.866025i 0 −0.500000 + 0.866025i 0
61.1 0 −0.500000 + 0.866025i 1.00000 + 1.73205i −1.00000 0 0.500000 + 0.866025i 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 195.2.i.b 2
3.b odd 2 1 585.2.j.a 2
5.b even 2 1 975.2.i.d 2
5.c odd 4 2 975.2.bb.b 4
13.c even 3 1 inner 195.2.i.b 2
13.c even 3 1 2535.2.a.h 1
13.e even 6 1 2535.2.a.i 1
39.h odd 6 1 7605.2.a.k 1
39.i odd 6 1 585.2.j.a 2
39.i odd 6 1 7605.2.a.l 1
65.n even 6 1 975.2.i.d 2
65.q odd 12 2 975.2.bb.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.i.b 2 1.a even 1 1 trivial
195.2.i.b 2 13.c even 3 1 inner
585.2.j.a 2 3.b odd 2 1
585.2.j.a 2 39.i odd 6 1
975.2.i.d 2 5.b even 2 1
975.2.i.d 2 65.n even 6 1
975.2.bb.b 4 5.c odd 4 2
975.2.bb.b 4 65.q odd 12 2
2535.2.a.h 1 13.c even 3 1
2535.2.a.i 1 13.e even 6 1
7605.2.a.k 1 39.h odd 6 1
7605.2.a.l 1 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2 T_{2} acting on S2new(195,[χ])S_{2}^{\mathrm{new}}(195, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
77 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1111 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
1313 T25T+13 T^{2} - 5T + 13 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
2323 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
2929 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
3131 (T5)2 (T - 5)^{2} Copy content Toggle raw display
3737 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
4747 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
6161 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6767 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
7171 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
7373 (T5)2 (T - 5)^{2} Copy content Toggle raw display
7979 (T11)2 (T - 11)^{2} Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
9797 T2+17T+289 T^{2} + 17T + 289 Copy content Toggle raw display
show more
show less