Properties

Label 195.6.a.d.1.2
Level $195$
Weight $6$
Character 195.1
Self dual yes
Analytic conductor $31.275$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,6,Mod(1,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 195.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2748448635\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 67x^{2} + 57x + 250 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.59162\) of defining polynomial
Character \(\chi\) \(=\) 195.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59162 q^{2} -9.00000 q^{3} -25.2835 q^{4} +25.0000 q^{5} +23.3245 q^{6} -54.8537 q^{7} +148.457 q^{8} +81.0000 q^{9} -64.7904 q^{10} -290.262 q^{11} +227.552 q^{12} +169.000 q^{13} +142.160 q^{14} -225.000 q^{15} +424.330 q^{16} +300.969 q^{17} -209.921 q^{18} +2338.08 q^{19} -632.088 q^{20} +493.684 q^{21} +752.248 q^{22} +1669.33 q^{23} -1336.11 q^{24} +625.000 q^{25} -437.983 q^{26} -729.000 q^{27} +1386.90 q^{28} -2268.75 q^{29} +583.114 q^{30} -743.117 q^{31} -5850.32 q^{32} +2612.36 q^{33} -779.996 q^{34} -1371.34 q^{35} -2047.97 q^{36} +5772.74 q^{37} -6059.40 q^{38} -1521.00 q^{39} +3711.42 q^{40} -17026.7 q^{41} -1279.44 q^{42} -23533.3 q^{43} +7338.85 q^{44} +2025.00 q^{45} -4326.25 q^{46} +22075.9 q^{47} -3818.97 q^{48} -13798.1 q^{49} -1619.76 q^{50} -2708.72 q^{51} -4272.92 q^{52} -14705.3 q^{53} +1889.29 q^{54} -7256.55 q^{55} -8143.41 q^{56} -21042.7 q^{57} +5879.73 q^{58} -29292.8 q^{59} +5688.79 q^{60} +29473.2 q^{61} +1925.87 q^{62} -4443.15 q^{63} +1583.23 q^{64} +4225.00 q^{65} -6770.23 q^{66} -63057.6 q^{67} -7609.56 q^{68} -15023.9 q^{69} +3553.99 q^{70} +66763.1 q^{71} +12025.0 q^{72} -89576.2 q^{73} -14960.7 q^{74} -5625.00 q^{75} -59114.9 q^{76} +15922.0 q^{77} +3941.85 q^{78} +54278.7 q^{79} +10608.2 q^{80} +6561.00 q^{81} +44126.7 q^{82} +7985.79 q^{83} -12482.1 q^{84} +7524.22 q^{85} +60989.3 q^{86} +20418.8 q^{87} -43091.4 q^{88} -62769.6 q^{89} -5248.02 q^{90} -9270.28 q^{91} -42206.5 q^{92} +6688.06 q^{93} -57212.1 q^{94} +58451.9 q^{95} +52652.9 q^{96} -15494.6 q^{97} +35759.3 q^{98} -23511.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 36 q^{3} + 9 q^{4} + 100 q^{5} + 27 q^{6} - 87 q^{7} - 183 q^{8} + 324 q^{9} - 75 q^{10} - 631 q^{11} - 81 q^{12} + 676 q^{13} + 1344 q^{14} - 900 q^{15} - 351 q^{16} - 599 q^{17} - 243 q^{18}+ \cdots - 51111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.59162 −0.458137 −0.229069 0.973410i \(-0.573568\pi\)
−0.229069 + 0.973410i \(0.573568\pi\)
\(3\) −9.00000 −0.577350
\(4\) −25.2835 −0.790110
\(5\) 25.0000 0.447214
\(6\) 23.3245 0.264506
\(7\) −54.8537 −0.423118 −0.211559 0.977365i \(-0.567854\pi\)
−0.211559 + 0.977365i \(0.567854\pi\)
\(8\) 148.457 0.820116
\(9\) 81.0000 0.333333
\(10\) −64.7904 −0.204885
\(11\) −290.262 −0.723283 −0.361642 0.932317i \(-0.617784\pi\)
−0.361642 + 0.932317i \(0.617784\pi\)
\(12\) 227.552 0.456170
\(13\) 169.000 0.277350
\(14\) 142.160 0.193846
\(15\) −225.000 −0.258199
\(16\) 424.330 0.414384
\(17\) 300.969 0.252580 0.126290 0.991993i \(-0.459693\pi\)
0.126290 + 0.991993i \(0.459693\pi\)
\(18\) −209.921 −0.152712
\(19\) 2338.08 1.48585 0.742925 0.669375i \(-0.233438\pi\)
0.742925 + 0.669375i \(0.233438\pi\)
\(20\) −632.088 −0.353348
\(21\) 493.684 0.244287
\(22\) 752.248 0.331363
\(23\) 1669.33 0.657994 0.328997 0.944331i \(-0.393289\pi\)
0.328997 + 0.944331i \(0.393289\pi\)
\(24\) −1336.11 −0.473494
\(25\) 625.000 0.200000
\(26\) −437.983 −0.127064
\(27\) −729.000 −0.192450
\(28\) 1386.90 0.334310
\(29\) −2268.75 −0.500947 −0.250473 0.968123i \(-0.580586\pi\)
−0.250473 + 0.968123i \(0.580586\pi\)
\(30\) 583.114 0.118291
\(31\) −743.117 −0.138884 −0.0694421 0.997586i \(-0.522122\pi\)
−0.0694421 + 0.997586i \(0.522122\pi\)
\(32\) −5850.32 −1.00996
\(33\) 2612.36 0.417588
\(34\) −779.996 −0.115716
\(35\) −1371.34 −0.189224
\(36\) −2047.97 −0.263370
\(37\) 5772.74 0.693231 0.346615 0.938007i \(-0.387331\pi\)
0.346615 + 0.938007i \(0.387331\pi\)
\(38\) −6059.40 −0.680723
\(39\) −1521.00 −0.160128
\(40\) 3711.42 0.366767
\(41\) −17026.7 −1.58187 −0.790936 0.611899i \(-0.790406\pi\)
−0.790936 + 0.611899i \(0.790406\pi\)
\(42\) −1279.44 −0.111917
\(43\) −23533.3 −1.94094 −0.970470 0.241222i \(-0.922452\pi\)
−0.970470 + 0.241222i \(0.922452\pi\)
\(44\) 7338.85 0.571474
\(45\) 2025.00 0.149071
\(46\) −4326.25 −0.301452
\(47\) 22075.9 1.45772 0.728858 0.684665i \(-0.240051\pi\)
0.728858 + 0.684665i \(0.240051\pi\)
\(48\) −3818.97 −0.239245
\(49\) −13798.1 −0.820972
\(50\) −1619.76 −0.0916275
\(51\) −2708.72 −0.145827
\(52\) −4272.92 −0.219137
\(53\) −14705.3 −0.719093 −0.359546 0.933127i \(-0.617069\pi\)
−0.359546 + 0.933127i \(0.617069\pi\)
\(54\) 1889.29 0.0881686
\(55\) −7256.55 −0.323462
\(56\) −8143.41 −0.347006
\(57\) −21042.7 −0.857856
\(58\) 5879.73 0.229502
\(59\) −29292.8 −1.09555 −0.547774 0.836626i \(-0.684525\pi\)
−0.547774 + 0.836626i \(0.684525\pi\)
\(60\) 5688.79 0.204006
\(61\) 29473.2 1.01415 0.507076 0.861901i \(-0.330726\pi\)
0.507076 + 0.861901i \(0.330726\pi\)
\(62\) 1925.87 0.0636281
\(63\) −4443.15 −0.141039
\(64\) 1583.23 0.0483165
\(65\) 4225.00 0.124035
\(66\) −6770.23 −0.191313
\(67\) −63057.6 −1.71613 −0.858066 0.513539i \(-0.828334\pi\)
−0.858066 + 0.513539i \(0.828334\pi\)
\(68\) −7609.56 −0.199566
\(69\) −15023.9 −0.379893
\(70\) 3553.99 0.0866905
\(71\) 66763.1 1.57178 0.785888 0.618368i \(-0.212206\pi\)
0.785888 + 0.618368i \(0.212206\pi\)
\(72\) 12025.0 0.273372
\(73\) −89576.2 −1.96737 −0.983684 0.179905i \(-0.942421\pi\)
−0.983684 + 0.179905i \(0.942421\pi\)
\(74\) −14960.7 −0.317595
\(75\) −5625.00 −0.115470
\(76\) −59114.9 −1.17399
\(77\) 15922.0 0.306034
\(78\) 3941.85 0.0733607
\(79\) 54278.7 0.978501 0.489251 0.872143i \(-0.337270\pi\)
0.489251 + 0.872143i \(0.337270\pi\)
\(80\) 10608.2 0.185318
\(81\) 6561.00 0.111111
\(82\) 44126.7 0.724714
\(83\) 7985.79 0.127240 0.0636198 0.997974i \(-0.479735\pi\)
0.0636198 + 0.997974i \(0.479735\pi\)
\(84\) −12482.1 −0.193014
\(85\) 7524.22 0.112957
\(86\) 60989.3 0.889217
\(87\) 20418.8 0.289222
\(88\) −43091.4 −0.593176
\(89\) −62769.6 −0.839990 −0.419995 0.907526i \(-0.637968\pi\)
−0.419995 + 0.907526i \(0.637968\pi\)
\(90\) −5248.02 −0.0682951
\(91\) −9270.28 −0.117352
\(92\) −42206.5 −0.519888
\(93\) 6688.06 0.0801849
\(94\) −57212.1 −0.667834
\(95\) 58451.9 0.664492
\(96\) 52652.9 0.583101
\(97\) −15494.6 −0.167205 −0.0836026 0.996499i \(-0.526643\pi\)
−0.0836026 + 0.996499i \(0.526643\pi\)
\(98\) 35759.3 0.376118
\(99\) −23511.2 −0.241094
\(100\) −15802.2 −0.158022
\(101\) −41988.4 −0.409568 −0.204784 0.978807i \(-0.565649\pi\)
−0.204784 + 0.978807i \(0.565649\pi\)
\(102\) 7019.96 0.0668089
\(103\) −105241. −0.977447 −0.488724 0.872439i \(-0.662537\pi\)
−0.488724 + 0.872439i \(0.662537\pi\)
\(104\) 25089.2 0.227459
\(105\) 12342.1 0.109248
\(106\) 38110.5 0.329443
\(107\) 13869.3 0.117110 0.0585552 0.998284i \(-0.481351\pi\)
0.0585552 + 0.998284i \(0.481351\pi\)
\(108\) 18431.7 0.152057
\(109\) −167225. −1.34814 −0.674072 0.738666i \(-0.735456\pi\)
−0.674072 + 0.738666i \(0.735456\pi\)
\(110\) 18806.2 0.148190
\(111\) −51954.7 −0.400237
\(112\) −23276.1 −0.175333
\(113\) −62253.5 −0.458635 −0.229318 0.973352i \(-0.573649\pi\)
−0.229318 + 0.973352i \(0.573649\pi\)
\(114\) 54534.6 0.393016
\(115\) 41733.2 0.294264
\(116\) 57362.0 0.395803
\(117\) 13689.0 0.0924500
\(118\) 75915.8 0.501911
\(119\) −16509.3 −0.106871
\(120\) −33402.8 −0.211753
\(121\) −76799.0 −0.476861
\(122\) −76383.2 −0.464621
\(123\) 153240. 0.913294
\(124\) 18788.6 0.109734
\(125\) 15625.0 0.0894427
\(126\) 11514.9 0.0646153
\(127\) 151671. 0.834437 0.417219 0.908806i \(-0.363005\pi\)
0.417219 + 0.908806i \(0.363005\pi\)
\(128\) 183107. 0.987826
\(129\) 211800. 1.12060
\(130\) −10949.6 −0.0568249
\(131\) 380790. 1.93868 0.969342 0.245716i \(-0.0790231\pi\)
0.969342 + 0.245716i \(0.0790231\pi\)
\(132\) −66049.6 −0.329940
\(133\) −128252. −0.628689
\(134\) 163421. 0.786224
\(135\) −18225.0 −0.0860663
\(136\) 44680.9 0.207145
\(137\) 141642. 0.644748 0.322374 0.946612i \(-0.395519\pi\)
0.322374 + 0.946612i \(0.395519\pi\)
\(138\) 38936.3 0.174043
\(139\) 274401. 1.20461 0.602307 0.798264i \(-0.294248\pi\)
0.602307 + 0.798264i \(0.294248\pi\)
\(140\) 34672.4 0.149508
\(141\) −198683. −0.841613
\(142\) −173024. −0.720090
\(143\) −49054.3 −0.200603
\(144\) 34370.7 0.138128
\(145\) −56718.8 −0.224030
\(146\) 232147. 0.901325
\(147\) 124183. 0.473988
\(148\) −145955. −0.547729
\(149\) 241413. 0.890831 0.445415 0.895324i \(-0.353056\pi\)
0.445415 + 0.895324i \(0.353056\pi\)
\(150\) 14577.8 0.0529011
\(151\) 168939. 0.602959 0.301479 0.953473i \(-0.402520\pi\)
0.301479 + 0.953473i \(0.402520\pi\)
\(152\) 347104. 1.21857
\(153\) 24378.5 0.0841934
\(154\) −41263.6 −0.140206
\(155\) −18577.9 −0.0621109
\(156\) 38456.2 0.126519
\(157\) −351585. −1.13837 −0.569183 0.822211i \(-0.692740\pi\)
−0.569183 + 0.822211i \(0.692740\pi\)
\(158\) −140669. −0.448288
\(159\) 132348. 0.415168
\(160\) −146258. −0.451668
\(161\) −91568.8 −0.278409
\(162\) −17003.6 −0.0509041
\(163\) −370754. −1.09299 −0.546495 0.837462i \(-0.684038\pi\)
−0.546495 + 0.837462i \(0.684038\pi\)
\(164\) 430495. 1.24985
\(165\) 65308.9 0.186751
\(166\) −20696.1 −0.0582932
\(167\) −708309. −1.96531 −0.982656 0.185439i \(-0.940629\pi\)
−0.982656 + 0.185439i \(0.940629\pi\)
\(168\) 73290.7 0.200344
\(169\) 28561.0 0.0769231
\(170\) −19499.9 −0.0517500
\(171\) 189384. 0.495283
\(172\) 595005. 1.53356
\(173\) −57046.9 −0.144916 −0.0724580 0.997371i \(-0.523084\pi\)
−0.0724580 + 0.997371i \(0.523084\pi\)
\(174\) −52917.6 −0.132503
\(175\) −34283.6 −0.0846235
\(176\) −123167. −0.299717
\(177\) 263635. 0.632515
\(178\) 162675. 0.384831
\(179\) −186253. −0.434481 −0.217241 0.976118i \(-0.569706\pi\)
−0.217241 + 0.976118i \(0.569706\pi\)
\(180\) −51199.1 −0.117783
\(181\) 75693.0 0.171735 0.0858676 0.996307i \(-0.472634\pi\)
0.0858676 + 0.996307i \(0.472634\pi\)
\(182\) 24025.0 0.0537632
\(183\) −265259. −0.585521
\(184\) 247823. 0.539631
\(185\) 144319. 0.310022
\(186\) −17332.9 −0.0367357
\(187\) −87359.8 −0.182687
\(188\) −558156. −1.15176
\(189\) 39988.4 0.0814290
\(190\) −151485. −0.304429
\(191\) −305399. −0.605737 −0.302869 0.953032i \(-0.597944\pi\)
−0.302869 + 0.953032i \(0.597944\pi\)
\(192\) −14249.1 −0.0278955
\(193\) −741845. −1.43357 −0.716787 0.697292i \(-0.754388\pi\)
−0.716787 + 0.697292i \(0.754388\pi\)
\(194\) 40155.9 0.0766029
\(195\) −38025.0 −0.0716115
\(196\) 348864. 0.648658
\(197\) 603512. 1.10795 0.553975 0.832533i \(-0.313110\pi\)
0.553975 + 0.832533i \(0.313110\pi\)
\(198\) 60932.1 0.110454
\(199\) 343396. 0.614698 0.307349 0.951597i \(-0.400558\pi\)
0.307349 + 0.951597i \(0.400558\pi\)
\(200\) 92785.6 0.164023
\(201\) 567519. 0.990809
\(202\) 108818. 0.187639
\(203\) 124449. 0.211959
\(204\) 68486.0 0.115220
\(205\) −425668. −0.707435
\(206\) 272745. 0.447805
\(207\) 135215. 0.219331
\(208\) 71711.7 0.114930
\(209\) −678655. −1.07469
\(210\) −31986.0 −0.0500508
\(211\) −960164. −1.48470 −0.742351 0.670011i \(-0.766289\pi\)
−0.742351 + 0.670011i \(0.766289\pi\)
\(212\) 371802. 0.568162
\(213\) −600868. −0.907466
\(214\) −35943.9 −0.0536526
\(215\) −588333. −0.868015
\(216\) −108225. −0.157831
\(217\) 40762.8 0.0587644
\(218\) 433384. 0.617635
\(219\) 806186. 1.13586
\(220\) 183471. 0.255571
\(221\) 50863.8 0.0700532
\(222\) 134647. 0.183363
\(223\) −625536. −0.842346 −0.421173 0.906980i \(-0.638381\pi\)
−0.421173 + 0.906980i \(0.638381\pi\)
\(224\) 320912. 0.427332
\(225\) 50625.0 0.0666667
\(226\) 161337. 0.210118
\(227\) −1.40089e6 −1.80443 −0.902215 0.431287i \(-0.858060\pi\)
−0.902215 + 0.431287i \(0.858060\pi\)
\(228\) 532034. 0.677801
\(229\) −825220. −1.03988 −0.519938 0.854204i \(-0.674045\pi\)
−0.519938 + 0.854204i \(0.674045\pi\)
\(230\) −108156. −0.134813
\(231\) −143298. −0.176689
\(232\) −336812. −0.410835
\(233\) −1.25079e6 −1.50937 −0.754684 0.656088i \(-0.772210\pi\)
−0.754684 + 0.656088i \(0.772210\pi\)
\(234\) −35476.6 −0.0423548
\(235\) 551896. 0.651910
\(236\) 740626. 0.865604
\(237\) −488508. −0.564938
\(238\) 42785.7 0.0489617
\(239\) 900688. 1.01995 0.509976 0.860189i \(-0.329654\pi\)
0.509976 + 0.860189i \(0.329654\pi\)
\(240\) −95474.2 −0.106994
\(241\) 137571. 0.152575 0.0762876 0.997086i \(-0.475693\pi\)
0.0762876 + 0.997086i \(0.475693\pi\)
\(242\) 199033. 0.218468
\(243\) −59049.0 −0.0641500
\(244\) −745187. −0.801292
\(245\) −344952. −0.367150
\(246\) −397140. −0.418414
\(247\) 395135. 0.412101
\(248\) −110321. −0.113901
\(249\) −71872.1 −0.0734618
\(250\) −40494.0 −0.0409770
\(251\) 1.45062e6 1.45334 0.726671 0.686985i \(-0.241066\pi\)
0.726671 + 0.686985i \(0.241066\pi\)
\(252\) 112339. 0.111437
\(253\) −484542. −0.475916
\(254\) −393073. −0.382287
\(255\) −67718.0 −0.0652159
\(256\) −525207. −0.500876
\(257\) −197792. −0.186799 −0.0933997 0.995629i \(-0.529773\pi\)
−0.0933997 + 0.995629i \(0.529773\pi\)
\(258\) −548904. −0.513390
\(259\) −316656. −0.293318
\(260\) −106823. −0.0980011
\(261\) −183769. −0.166982
\(262\) −986861. −0.888183
\(263\) −504026. −0.449328 −0.224664 0.974436i \(-0.572128\pi\)
−0.224664 + 0.974436i \(0.572128\pi\)
\(264\) 387823. 0.342471
\(265\) −367633. −0.321588
\(266\) 332381. 0.288026
\(267\) 564926. 0.484968
\(268\) 1.59432e6 1.35593
\(269\) −371314. −0.312867 −0.156434 0.987688i \(-0.550000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(270\) 47232.2 0.0394302
\(271\) −1.41828e6 −1.17311 −0.586556 0.809909i \(-0.699516\pi\)
−0.586556 + 0.809909i \(0.699516\pi\)
\(272\) 127710. 0.104665
\(273\) 83432.5 0.0677530
\(274\) −367081. −0.295383
\(275\) −181414. −0.144657
\(276\) 379858. 0.300157
\(277\) 353077. 0.276484 0.138242 0.990398i \(-0.455855\pi\)
0.138242 + 0.990398i \(0.455855\pi\)
\(278\) −711141. −0.551879
\(279\) −60192.5 −0.0462948
\(280\) −203585. −0.155186
\(281\) 1.02661e6 0.775600 0.387800 0.921744i \(-0.373235\pi\)
0.387800 + 0.921744i \(0.373235\pi\)
\(282\) 514909. 0.385574
\(283\) −1.71763e6 −1.27487 −0.637433 0.770506i \(-0.720004\pi\)
−0.637433 + 0.770506i \(0.720004\pi\)
\(284\) −1.68801e6 −1.24188
\(285\) −526068. −0.383645
\(286\) 127130. 0.0919036
\(287\) 933979. 0.669318
\(288\) −473876. −0.336654
\(289\) −1.32927e6 −0.936203
\(290\) 146993. 0.102637
\(291\) 139451. 0.0965360
\(292\) 2.26480e6 1.55444
\(293\) −510871. −0.347650 −0.173825 0.984777i \(-0.555613\pi\)
−0.173825 + 0.984777i \(0.555613\pi\)
\(294\) −321834. −0.217152
\(295\) −732321. −0.489944
\(296\) 857003. 0.568530
\(297\) 211601. 0.139196
\(298\) −625650. −0.408123
\(299\) 282116. 0.182495
\(300\) 142220. 0.0912341
\(301\) 1.29089e6 0.821246
\(302\) −437825. −0.276238
\(303\) 377896. 0.236464
\(304\) 992116. 0.615713
\(305\) 736830. 0.453542
\(306\) −63179.7 −0.0385721
\(307\) 982994. 0.595257 0.297629 0.954682i \(-0.403804\pi\)
0.297629 + 0.954682i \(0.403804\pi\)
\(308\) −402563. −0.241800
\(309\) 947172. 0.564330
\(310\) 48146.9 0.0284553
\(311\) 127598. 0.0748069 0.0374034 0.999300i \(-0.488091\pi\)
0.0374034 + 0.999300i \(0.488091\pi\)
\(312\) −225803. −0.131324
\(313\) −1.48526e6 −0.856924 −0.428462 0.903560i \(-0.640944\pi\)
−0.428462 + 0.903560i \(0.640944\pi\)
\(314\) 911174. 0.521528
\(315\) −111079. −0.0630746
\(316\) −1.37236e6 −0.773124
\(317\) 187925. 0.105036 0.0525179 0.998620i \(-0.483275\pi\)
0.0525179 + 0.998620i \(0.483275\pi\)
\(318\) −342995. −0.190204
\(319\) 658532. 0.362327
\(320\) 39580.9 0.0216078
\(321\) −124824. −0.0676137
\(322\) 237311. 0.127549
\(323\) 703689. 0.375296
\(324\) −165885. −0.0877900
\(325\) 105625. 0.0554700
\(326\) 960851. 0.500740
\(327\) 1.50503e6 0.778351
\(328\) −2.52773e6 −1.29732
\(329\) −1.21094e6 −0.616785
\(330\) −169256. −0.0855576
\(331\) −349254. −0.175215 −0.0876075 0.996155i \(-0.527922\pi\)
−0.0876075 + 0.996155i \(0.527922\pi\)
\(332\) −201909. −0.100533
\(333\) 467592. 0.231077
\(334\) 1.83566e6 0.900383
\(335\) −1.57644e6 −0.767478
\(336\) 209485. 0.101229
\(337\) 898203. 0.430824 0.215412 0.976523i \(-0.430891\pi\)
0.215412 + 0.976523i \(0.430891\pi\)
\(338\) −74019.1 −0.0352413
\(339\) 560281. 0.264793
\(340\) −190239. −0.0892487
\(341\) 215699. 0.100453
\(342\) −490811. −0.226908
\(343\) 1.67880e6 0.770485
\(344\) −3.49368e6 −1.59180
\(345\) −375599. −0.169893
\(346\) 147844. 0.0663914
\(347\) 1.00900e6 0.449851 0.224925 0.974376i \(-0.427786\pi\)
0.224925 + 0.974376i \(0.427786\pi\)
\(348\) −516258. −0.228517
\(349\) −93616.8 −0.0411425 −0.0205712 0.999788i \(-0.506548\pi\)
−0.0205712 + 0.999788i \(0.506548\pi\)
\(350\) 88849.9 0.0387692
\(351\) −123201. −0.0533761
\(352\) 1.69813e6 0.730488
\(353\) −378686. −0.161749 −0.0808746 0.996724i \(-0.525771\pi\)
−0.0808746 + 0.996724i \(0.525771\pi\)
\(354\) −683242. −0.289779
\(355\) 1.66908e6 0.702920
\(356\) 1.58704e6 0.663685
\(357\) 148583. 0.0617021
\(358\) 482697. 0.199052
\(359\) 1.23245e6 0.504702 0.252351 0.967636i \(-0.418796\pi\)
0.252351 + 0.967636i \(0.418796\pi\)
\(360\) 300625. 0.122256
\(361\) 2.99051e6 1.20775
\(362\) −196167. −0.0786783
\(363\) 691191. 0.275316
\(364\) 234385. 0.0927208
\(365\) −2.23941e6 −0.879834
\(366\) 687449. 0.268249
\(367\) 2.65963e6 1.03076 0.515378 0.856963i \(-0.327652\pi\)
0.515378 + 0.856963i \(0.327652\pi\)
\(368\) 708345. 0.272662
\(369\) −1.37916e6 −0.527291
\(370\) −374018. −0.142033
\(371\) 806642. 0.304261
\(372\) −169098. −0.0633549
\(373\) −2.15129e6 −0.800620 −0.400310 0.916380i \(-0.631098\pi\)
−0.400310 + 0.916380i \(0.631098\pi\)
\(374\) 226403. 0.0836958
\(375\) −140625. −0.0516398
\(376\) 3.27731e6 1.19550
\(377\) −383419. −0.138938
\(378\) −103634. −0.0373057
\(379\) 286584. 0.102484 0.0512418 0.998686i \(-0.483682\pi\)
0.0512418 + 0.998686i \(0.483682\pi\)
\(380\) −1.47787e6 −0.525022
\(381\) −1.36504e6 −0.481762
\(382\) 791477. 0.277511
\(383\) 2.49736e6 0.869931 0.434966 0.900447i \(-0.356760\pi\)
0.434966 + 0.900447i \(0.356760\pi\)
\(384\) −1.64796e6 −0.570321
\(385\) 398049. 0.136863
\(386\) 1.92258e6 0.656774
\(387\) −1.90620e6 −0.646980
\(388\) 391757. 0.132111
\(389\) 4.84505e6 1.62339 0.811697 0.584079i \(-0.198544\pi\)
0.811697 + 0.584079i \(0.198544\pi\)
\(390\) 98546.2 0.0328079
\(391\) 502416. 0.166196
\(392\) −2.04842e6 −0.673292
\(393\) −3.42711e6 −1.11930
\(394\) −1.56407e6 −0.507593
\(395\) 1.35697e6 0.437599
\(396\) 594447. 0.190491
\(397\) −898099. −0.285988 −0.142994 0.989724i \(-0.545673\pi\)
−0.142994 + 0.989724i \(0.545673\pi\)
\(398\) −889949. −0.281616
\(399\) 1.15427e6 0.362974
\(400\) 265206. 0.0828769
\(401\) −3.15459e6 −0.979676 −0.489838 0.871813i \(-0.662944\pi\)
−0.489838 + 0.871813i \(0.662944\pi\)
\(402\) −1.47079e6 −0.453927
\(403\) −125587. −0.0385196
\(404\) 1.06162e6 0.323604
\(405\) 164025. 0.0496904
\(406\) −322525. −0.0971065
\(407\) −1.67561e6 −0.501402
\(408\) −402128. −0.119595
\(409\) 3.05248e6 0.902286 0.451143 0.892452i \(-0.351016\pi\)
0.451143 + 0.892452i \(0.351016\pi\)
\(410\) 1.10317e6 0.324102
\(411\) −1.27478e6 −0.372246
\(412\) 2.66087e6 0.772291
\(413\) 1.60682e6 0.463546
\(414\) −350427. −0.100484
\(415\) 199645. 0.0569033
\(416\) −988704. −0.280113
\(417\) −2.46961e6 −0.695485
\(418\) 1.75881e6 0.492356
\(419\) −4.54407e6 −1.26448 −0.632238 0.774774i \(-0.717863\pi\)
−0.632238 + 0.774774i \(0.717863\pi\)
\(420\) −312052. −0.0863183
\(421\) 2.76813e6 0.761169 0.380585 0.924746i \(-0.375723\pi\)
0.380585 + 0.924746i \(0.375723\pi\)
\(422\) 2.48838e6 0.680197
\(423\) 1.78814e6 0.485905
\(424\) −2.18311e6 −0.589739
\(425\) 188106. 0.0505161
\(426\) 1.55722e6 0.415744
\(427\) −1.61672e6 −0.429105
\(428\) −350665. −0.0925301
\(429\) 441488. 0.115818
\(430\) 1.52473e6 0.397670
\(431\) 4.41610e6 1.14511 0.572553 0.819868i \(-0.305953\pi\)
0.572553 + 0.819868i \(0.305953\pi\)
\(432\) −309336. −0.0797483
\(433\) −863694. −0.221381 −0.110690 0.993855i \(-0.535306\pi\)
−0.110690 + 0.993855i \(0.535306\pi\)
\(434\) −105641. −0.0269222
\(435\) 510469. 0.129344
\(436\) 4.22805e6 1.06518
\(437\) 3.90302e6 0.977680
\(438\) −2.08932e6 −0.520380
\(439\) −6.45914e6 −1.59961 −0.799803 0.600262i \(-0.795063\pi\)
−0.799803 + 0.600262i \(0.795063\pi\)
\(440\) −1.07728e6 −0.265277
\(441\) −1.11764e6 −0.273657
\(442\) −131819. −0.0320940
\(443\) −6.66037e6 −1.61246 −0.806231 0.591601i \(-0.798496\pi\)
−0.806231 + 0.591601i \(0.798496\pi\)
\(444\) 1.31360e6 0.316231
\(445\) −1.56924e6 −0.375655
\(446\) 1.62115e6 0.385910
\(447\) −2.17272e6 −0.514321
\(448\) −86846.3 −0.0204436
\(449\) −3.86595e6 −0.904984 −0.452492 0.891769i \(-0.649465\pi\)
−0.452492 + 0.891769i \(0.649465\pi\)
\(450\) −131201. −0.0305425
\(451\) 4.94221e6 1.14414
\(452\) 1.57399e6 0.362373
\(453\) −1.52045e6 −0.348118
\(454\) 3.63057e6 0.826676
\(455\) −231757. −0.0524813
\(456\) −3.12393e6 −0.703542
\(457\) 6.31227e6 1.41382 0.706912 0.707302i \(-0.250088\pi\)
0.706912 + 0.707302i \(0.250088\pi\)
\(458\) 2.13865e6 0.476406
\(459\) −219406. −0.0486091
\(460\) −1.05516e6 −0.232501
\(461\) −5.36464e6 −1.17568 −0.587839 0.808978i \(-0.700021\pi\)
−0.587839 + 0.808978i \(0.700021\pi\)
\(462\) 371372. 0.0809477
\(463\) 2.43236e6 0.527321 0.263660 0.964616i \(-0.415070\pi\)
0.263660 + 0.964616i \(0.415070\pi\)
\(464\) −962698. −0.207585
\(465\) 167201. 0.0358598
\(466\) 3.24157e6 0.691498
\(467\) −1.25881e6 −0.267097 −0.133549 0.991042i \(-0.542637\pi\)
−0.133549 + 0.991042i \(0.542637\pi\)
\(468\) −346106. −0.0730457
\(469\) 3.45895e6 0.726126
\(470\) −1.43030e6 −0.298664
\(471\) 3.16427e6 0.657236
\(472\) −4.34872e6 −0.898477
\(473\) 6.83083e6 1.40385
\(474\) 1.26602e6 0.258819
\(475\) 1.46130e6 0.297170
\(476\) 417413. 0.0844400
\(477\) −1.19113e6 −0.239698
\(478\) −2.33424e6 −0.467278
\(479\) 992576. 0.197663 0.0988314 0.995104i \(-0.468490\pi\)
0.0988314 + 0.995104i \(0.468490\pi\)
\(480\) 1.31632e6 0.260771
\(481\) 975593. 0.192268
\(482\) −356531. −0.0699004
\(483\) 824119. 0.160739
\(484\) 1.94175e6 0.376773
\(485\) −387364. −0.0747764
\(486\) 153032. 0.0293895
\(487\) −1.27849e6 −0.244272 −0.122136 0.992513i \(-0.538974\pi\)
−0.122136 + 0.992513i \(0.538974\pi\)
\(488\) 4.37550e6 0.831722
\(489\) 3.33678e6 0.631039
\(490\) 893982. 0.168205
\(491\) 4.18445e6 0.783312 0.391656 0.920112i \(-0.371902\pi\)
0.391656 + 0.920112i \(0.371902\pi\)
\(492\) −3.87446e6 −0.721603
\(493\) −682823. −0.126529
\(494\) −1.02404e6 −0.188799
\(495\) −587781. −0.107821
\(496\) −315327. −0.0575515
\(497\) −3.66221e6 −0.665046
\(498\) 186265. 0.0336556
\(499\) 9.34504e6 1.68008 0.840039 0.542525i \(-0.182532\pi\)
0.840039 + 0.542525i \(0.182532\pi\)
\(500\) −395055. −0.0706696
\(501\) 6.37478e6 1.13467
\(502\) −3.75944e6 −0.665830
\(503\) 3.48626e6 0.614384 0.307192 0.951648i \(-0.400611\pi\)
0.307192 + 0.951648i \(0.400611\pi\)
\(504\) −659617. −0.115669
\(505\) −1.04971e6 −0.183165
\(506\) 1.25575e6 0.218035
\(507\) −257049. −0.0444116
\(508\) −3.83478e6 −0.659297
\(509\) 4.36939e6 0.747527 0.373763 0.927524i \(-0.378067\pi\)
0.373763 + 0.927524i \(0.378067\pi\)
\(510\) 175499. 0.0298779
\(511\) 4.91359e6 0.832428
\(512\) −4.49829e6 −0.758356
\(513\) −1.70446e6 −0.285952
\(514\) 512600. 0.0855798
\(515\) −2.63103e6 −0.437128
\(516\) −5.35505e6 −0.885399
\(517\) −6.40778e6 −1.05434
\(518\) 820652. 0.134380
\(519\) 513422. 0.0836673
\(520\) 627230. 0.101723
\(521\) −7.27566e6 −1.17430 −0.587149 0.809479i \(-0.699750\pi\)
−0.587149 + 0.809479i \(0.699750\pi\)
\(522\) 476258. 0.0765008
\(523\) −6.97883e6 −1.11565 −0.557825 0.829958i \(-0.688364\pi\)
−0.557825 + 0.829958i \(0.688364\pi\)
\(524\) −9.62771e6 −1.53177
\(525\) 308552. 0.0488574
\(526\) 1.30624e6 0.205854
\(527\) −223655. −0.0350794
\(528\) 1.10850e6 0.173042
\(529\) −3.64969e6 −0.567044
\(530\) 952763. 0.147331
\(531\) −2.37272e6 −0.365183
\(532\) 3.24267e6 0.496734
\(533\) −2.87752e6 −0.438732
\(534\) −1.46407e6 −0.222182
\(535\) 346733. 0.0523733
\(536\) −9.36134e6 −1.40743
\(537\) 1.67628e6 0.250848
\(538\) 962303. 0.143336
\(539\) 4.00505e6 0.593795
\(540\) 460792. 0.0680019
\(541\) −1.20446e7 −1.76929 −0.884643 0.466270i \(-0.845598\pi\)
−0.884643 + 0.466270i \(0.845598\pi\)
\(542\) 3.67564e6 0.537446
\(543\) −681237. −0.0991514
\(544\) −1.76076e6 −0.255096
\(545\) −4.18064e6 −0.602908
\(546\) −216225. −0.0310402
\(547\) −680290. −0.0972133 −0.0486066 0.998818i \(-0.515478\pi\)
−0.0486066 + 0.998818i \(0.515478\pi\)
\(548\) −3.58121e6 −0.509422
\(549\) 2.38733e6 0.338051
\(550\) 470155. 0.0662726
\(551\) −5.30452e6 −0.744332
\(552\) −2.23041e6 −0.311556
\(553\) −2.97739e6 −0.414021
\(554\) −915039. −0.126668
\(555\) −1.29887e6 −0.178991
\(556\) −6.93782e6 −0.951779
\(557\) −9.83821e6 −1.34363 −0.671813 0.740721i \(-0.734484\pi\)
−0.671813 + 0.740721i \(0.734484\pi\)
\(558\) 155996. 0.0212094
\(559\) −3.97713e6 −0.538320
\(560\) −581902. −0.0784114
\(561\) 786239. 0.105474
\(562\) −2.66057e6 −0.355331
\(563\) −5.26909e6 −0.700591 −0.350296 0.936639i \(-0.613919\pi\)
−0.350296 + 0.936639i \(0.613919\pi\)
\(564\) 5.02340e6 0.664967
\(565\) −1.55634e6 −0.205108
\(566\) 4.45145e6 0.584064
\(567\) −359895. −0.0470131
\(568\) 9.91145e6 1.28904
\(569\) −5.43793e6 −0.704130 −0.352065 0.935976i \(-0.614520\pi\)
−0.352065 + 0.935976i \(0.614520\pi\)
\(570\) 1.36336e6 0.175762
\(571\) −1.22762e7 −1.57570 −0.787851 0.615865i \(-0.788806\pi\)
−0.787851 + 0.615865i \(0.788806\pi\)
\(572\) 1.24027e6 0.158498
\(573\) 2.74859e6 0.349722
\(574\) −2.42051e6 −0.306639
\(575\) 1.04333e6 0.131599
\(576\) 128242. 0.0161055
\(577\) 5.41452e6 0.677049 0.338525 0.940958i \(-0.390072\pi\)
0.338525 + 0.940958i \(0.390072\pi\)
\(578\) 3.44497e6 0.428910
\(579\) 6.67661e6 0.827674
\(580\) 1.43405e6 0.177009
\(581\) −438050. −0.0538373
\(582\) −361403. −0.0442267
\(583\) 4.26839e6 0.520108
\(584\) −1.32982e7 −1.61347
\(585\) 342225. 0.0413449
\(586\) 1.32398e6 0.159271
\(587\) 4.91081e6 0.588244 0.294122 0.955768i \(-0.404973\pi\)
0.294122 + 0.955768i \(0.404973\pi\)
\(588\) −3.13977e6 −0.374503
\(589\) −1.73747e6 −0.206361
\(590\) 1.89789e6 0.224462
\(591\) −5.43161e6 −0.639675
\(592\) 2.44955e6 0.287264
\(593\) 1.35145e7 1.57820 0.789100 0.614265i \(-0.210547\pi\)
0.789100 + 0.614265i \(0.210547\pi\)
\(594\) −548388. −0.0637708
\(595\) −412732. −0.0477942
\(596\) −6.10377e6 −0.703854
\(597\) −3.09056e6 −0.354896
\(598\) −731137. −0.0836076
\(599\) −5.00902e6 −0.570409 −0.285204 0.958467i \(-0.592061\pi\)
−0.285204 + 0.958467i \(0.592061\pi\)
\(600\) −835070. −0.0946989
\(601\) 747198. 0.0843819 0.0421910 0.999110i \(-0.486566\pi\)
0.0421910 + 0.999110i \(0.486566\pi\)
\(602\) −3.34549e6 −0.376243
\(603\) −5.10767e6 −0.572044
\(604\) −4.27138e6 −0.476404
\(605\) −1.91997e6 −0.213259
\(606\) −979361. −0.108333
\(607\) 8.01852e6 0.883329 0.441665 0.897180i \(-0.354388\pi\)
0.441665 + 0.897180i \(0.354388\pi\)
\(608\) −1.36785e7 −1.50065
\(609\) −1.12004e6 −0.122375
\(610\) −1.90958e6 −0.207785
\(611\) 3.73082e6 0.404298
\(612\) −616374. −0.0665221
\(613\) −4.05917e6 −0.436301 −0.218151 0.975915i \(-0.570002\pi\)
−0.218151 + 0.975915i \(0.570002\pi\)
\(614\) −2.54754e6 −0.272710
\(615\) 3.83101e6 0.408438
\(616\) 2.36372e6 0.250983
\(617\) 1.52799e6 0.161588 0.0807938 0.996731i \(-0.474254\pi\)
0.0807938 + 0.996731i \(0.474254\pi\)
\(618\) −2.45471e6 −0.258540
\(619\) 7.43720e6 0.780158 0.390079 0.920781i \(-0.372448\pi\)
0.390079 + 0.920781i \(0.372448\pi\)
\(620\) 469716. 0.0490745
\(621\) −1.21694e6 −0.126631
\(622\) −330684. −0.0342718
\(623\) 3.44314e6 0.355415
\(624\) −645405. −0.0663546
\(625\) 390625. 0.0400000
\(626\) 3.84923e6 0.392589
\(627\) 6.10790e6 0.620473
\(628\) 8.88932e6 0.899434
\(629\) 1.73742e6 0.175096
\(630\) 287874. 0.0288968
\(631\) −9.85344e6 −0.985178 −0.492589 0.870262i \(-0.663949\pi\)
−0.492589 + 0.870262i \(0.663949\pi\)
\(632\) 8.05804e6 0.802485
\(633\) 8.64147e6 0.857193
\(634\) −487030. −0.0481208
\(635\) 3.79178e6 0.373172
\(636\) −3.34622e6 −0.328029
\(637\) −2.33187e6 −0.227697
\(638\) −1.70666e6 −0.165995
\(639\) 5.40781e6 0.523926
\(640\) 4.57768e6 0.441769
\(641\) −6.42503e6 −0.617633 −0.308816 0.951122i \(-0.599933\pi\)
−0.308816 + 0.951122i \(0.599933\pi\)
\(642\) 323495. 0.0309763
\(643\) −8.19208e6 −0.781388 −0.390694 0.920521i \(-0.627765\pi\)
−0.390694 + 0.920521i \(0.627765\pi\)
\(644\) 2.31518e6 0.219974
\(645\) 5.29500e6 0.501149
\(646\) −1.82369e6 −0.171937
\(647\) 8.72113e6 0.819053 0.409526 0.912298i \(-0.365694\pi\)
0.409526 + 0.912298i \(0.365694\pi\)
\(648\) 974026. 0.0911240
\(649\) 8.50260e6 0.792391
\(650\) −273739. −0.0254129
\(651\) −366865. −0.0339276
\(652\) 9.37396e6 0.863583
\(653\) 1.51333e7 1.38884 0.694419 0.719571i \(-0.255662\pi\)
0.694419 + 0.719571i \(0.255662\pi\)
\(654\) −3.90046e6 −0.356592
\(655\) 9.51974e6 0.867006
\(656\) −7.22494e6 −0.655503
\(657\) −7.25567e6 −0.655789
\(658\) 3.13830e6 0.282572
\(659\) 1.96144e7 1.75938 0.879692 0.475544i \(-0.157749\pi\)
0.879692 + 0.475544i \(0.157749\pi\)
\(660\) −1.65124e6 −0.147554
\(661\) −1.84242e7 −1.64015 −0.820076 0.572255i \(-0.806069\pi\)
−0.820076 + 0.572255i \(0.806069\pi\)
\(662\) 905132. 0.0802725
\(663\) −457774. −0.0404452
\(664\) 1.18555e6 0.104351
\(665\) −3.20631e6 −0.281158
\(666\) −1.21182e6 −0.105865
\(667\) −3.78729e6 −0.329620
\(668\) 1.79085e7 1.55281
\(669\) 5.62983e6 0.486328
\(670\) 4.08553e6 0.351610
\(671\) −8.55495e6 −0.733519
\(672\) −2.88821e6 −0.246720
\(673\) −7.42806e6 −0.632176 −0.316088 0.948730i \(-0.602369\pi\)
−0.316088 + 0.948730i \(0.602369\pi\)
\(674\) −2.32780e6 −0.197377
\(675\) −455625. −0.0384900
\(676\) −722123. −0.0607777
\(677\) −471546. −0.0395415 −0.0197707 0.999805i \(-0.506294\pi\)
−0.0197707 + 0.999805i \(0.506294\pi\)
\(678\) −1.45203e6 −0.121312
\(679\) 849934. 0.0707475
\(680\) 1.11702e6 0.0926381
\(681\) 1.26080e7 1.04179
\(682\) −559008. −0.0460211
\(683\) 1.68803e7 1.38461 0.692305 0.721605i \(-0.256595\pi\)
0.692305 + 0.721605i \(0.256595\pi\)
\(684\) −4.78830e6 −0.391328
\(685\) 3.54105e6 0.288340
\(686\) −4.35081e6 −0.352988
\(687\) 7.42698e6 0.600372
\(688\) −9.98588e6 −0.804295
\(689\) −2.48520e6 −0.199440
\(690\) 973407. 0.0778344
\(691\) 1.28298e7 1.02218 0.511088 0.859528i \(-0.329243\pi\)
0.511088 + 0.859528i \(0.329243\pi\)
\(692\) 1.44235e6 0.114500
\(693\) 1.28968e6 0.102011
\(694\) −2.61495e6 −0.206093
\(695\) 6.86002e6 0.538720
\(696\) 3.03130e6 0.237196
\(697\) −5.12451e6 −0.399550
\(698\) 242619. 0.0188489
\(699\) 1.12571e7 0.871434
\(700\) 866810. 0.0668619
\(701\) 1.23572e7 0.949783 0.474892 0.880044i \(-0.342487\pi\)
0.474892 + 0.880044i \(0.342487\pi\)
\(702\) 319290. 0.0244536
\(703\) 1.34971e7 1.03004
\(704\) −459553. −0.0349465
\(705\) −4.96707e6 −0.376381
\(706\) 981408. 0.0741033
\(707\) 2.30322e6 0.173296
\(708\) −6.66564e6 −0.499756
\(709\) 1.11669e7 0.834293 0.417146 0.908839i \(-0.363030\pi\)
0.417146 + 0.908839i \(0.363030\pi\)
\(710\) −4.32561e6 −0.322034
\(711\) 4.39657e6 0.326167
\(712\) −9.31858e6 −0.688889
\(713\) −1.24051e6 −0.0913850
\(714\) −385071. −0.0282680
\(715\) −1.22636e6 −0.0897123
\(716\) 4.70914e6 0.343288
\(717\) −8.10620e6 −0.588870
\(718\) −3.19405e6 −0.231223
\(719\) 1.22097e6 0.0880807 0.0440404 0.999030i \(-0.485977\pi\)
0.0440404 + 0.999030i \(0.485977\pi\)
\(720\) 859267. 0.0617728
\(721\) 5.77288e6 0.413575
\(722\) −7.75025e6 −0.553315
\(723\) −1.23814e6 −0.0880893
\(724\) −1.91379e6 −0.135690
\(725\) −1.41797e6 −0.100189
\(726\) −1.79130e6 −0.126133
\(727\) −1.16677e7 −0.818749 −0.409374 0.912366i \(-0.634253\pi\)
−0.409374 + 0.912366i \(0.634253\pi\)
\(728\) −1.37624e6 −0.0962420
\(729\) 531441. 0.0370370
\(730\) 5.80368e6 0.403085
\(731\) −7.08280e6 −0.490243
\(732\) 6.70668e6 0.462626
\(733\) 4.81700e6 0.331144 0.165572 0.986198i \(-0.447053\pi\)
0.165572 + 0.986198i \(0.447053\pi\)
\(734\) −6.89273e6 −0.472228
\(735\) 3.10457e6 0.211974
\(736\) −9.76610e6 −0.664548
\(737\) 1.83032e7 1.24125
\(738\) 3.57426e6 0.241571
\(739\) −1.36673e6 −0.0920599 −0.0460299 0.998940i \(-0.514657\pi\)
−0.0460299 + 0.998940i \(0.514657\pi\)
\(740\) −3.64888e6 −0.244952
\(741\) −3.55622e6 −0.237926
\(742\) −2.09051e6 −0.139393
\(743\) 2.43212e7 1.61626 0.808132 0.589001i \(-0.200479\pi\)
0.808132 + 0.589001i \(0.200479\pi\)
\(744\) 992888. 0.0657609
\(745\) 6.03533e6 0.398392
\(746\) 5.57531e6 0.366794
\(747\) 646849. 0.0424132
\(748\) 2.20877e6 0.144343
\(749\) −760783. −0.0495514
\(750\) 364446. 0.0236581
\(751\) −1.63033e7 −1.05481 −0.527406 0.849614i \(-0.676835\pi\)
−0.527406 + 0.849614i \(0.676835\pi\)
\(752\) 9.36744e6 0.604055
\(753\) −1.30555e7 −0.839088
\(754\) 993674. 0.0636525
\(755\) 4.22348e6 0.269651
\(756\) −1.01105e6 −0.0643379
\(757\) 1.66431e6 0.105559 0.0527795 0.998606i \(-0.483192\pi\)
0.0527795 + 0.998606i \(0.483192\pi\)
\(758\) −742716. −0.0469515
\(759\) 4.36088e6 0.274770
\(760\) 8.67759e6 0.544961
\(761\) 5.48618e6 0.343407 0.171703 0.985149i \(-0.445073\pi\)
0.171703 + 0.985149i \(0.445073\pi\)
\(762\) 3.53766e6 0.220713
\(763\) 9.17294e6 0.570423
\(764\) 7.72156e6 0.478599
\(765\) 609462. 0.0376524
\(766\) −6.47221e6 −0.398548
\(767\) −4.95049e6 −0.303850
\(768\) 4.72686e6 0.289181
\(769\) 3.23567e6 0.197309 0.0986547 0.995122i \(-0.468546\pi\)
0.0986547 + 0.995122i \(0.468546\pi\)
\(770\) −1.03159e6 −0.0627018
\(771\) 1.78013e6 0.107849
\(772\) 1.87565e7 1.13268
\(773\) 1.81094e7 1.09007 0.545037 0.838412i \(-0.316515\pi\)
0.545037 + 0.838412i \(0.316515\pi\)
\(774\) 4.94014e6 0.296406
\(775\) −464448. −0.0277769
\(776\) −2.30027e6 −0.137128
\(777\) 2.84991e6 0.169347
\(778\) −1.25565e7 −0.743737
\(779\) −3.98098e7 −2.35042
\(780\) 961406. 0.0565810
\(781\) −1.93788e7 −1.13684
\(782\) −1.30207e6 −0.0761407
\(783\) 1.65392e6 0.0964073
\(784\) −5.85493e6 −0.340198
\(785\) −8.78964e6 −0.509093
\(786\) 8.88175e6 0.512793
\(787\) −2.22828e7 −1.28243 −0.641213 0.767363i \(-0.721568\pi\)
−0.641213 + 0.767363i \(0.721568\pi\)
\(788\) −1.52589e7 −0.875403
\(789\) 4.53623e6 0.259420
\(790\) −3.51674e6 −0.200480
\(791\) 3.41484e6 0.194057
\(792\) −3.49040e6 −0.197725
\(793\) 4.98097e6 0.281275
\(794\) 2.32753e6 0.131022
\(795\) 3.30870e6 0.185669
\(796\) −8.68225e6 −0.485679
\(797\) 1.23718e7 0.689900 0.344950 0.938621i \(-0.387896\pi\)
0.344950 + 0.938621i \(0.387896\pi\)
\(798\) −2.99143e6 −0.166292
\(799\) 6.64415e6 0.368190
\(800\) −3.65645e6 −0.201992
\(801\) −5.08433e6 −0.279997
\(802\) 8.17550e6 0.448826
\(803\) 2.60006e7 1.42296
\(804\) −1.43489e7 −0.782849
\(805\) −2.28922e6 −0.124508
\(806\) 325473. 0.0176473
\(807\) 3.34182e6 0.180634
\(808\) −6.23348e6 −0.335894
\(809\) −45723.1 −0.00245620 −0.00122810 0.999999i \(-0.500391\pi\)
−0.00122810 + 0.999999i \(0.500391\pi\)
\(810\) −425090. −0.0227650
\(811\) 1.48379e6 0.0792174 0.0396087 0.999215i \(-0.487389\pi\)
0.0396087 + 0.999215i \(0.487389\pi\)
\(812\) −3.14652e6 −0.167471
\(813\) 1.27645e7 0.677296
\(814\) 4.34253e6 0.229711
\(815\) −9.26884e6 −0.488800
\(816\) −1.14939e6 −0.0604285
\(817\) −5.50227e7 −2.88395
\(818\) −7.91085e6 −0.413371
\(819\) −750893. −0.0391172
\(820\) 1.07624e7 0.558951
\(821\) 3.27057e7 1.69342 0.846711 0.532054i \(-0.178579\pi\)
0.846711 + 0.532054i \(0.178579\pi\)
\(822\) 3.30373e6 0.170540
\(823\) 1.73238e7 0.891543 0.445772 0.895147i \(-0.352929\pi\)
0.445772 + 0.895147i \(0.352929\pi\)
\(824\) −1.56238e7 −0.801620
\(825\) 1.63272e6 0.0835176
\(826\) −4.16426e6 −0.212367
\(827\) 1.24591e7 0.633463 0.316732 0.948515i \(-0.397415\pi\)
0.316732 + 0.948515i \(0.397415\pi\)
\(828\) −3.41872e6 −0.173296
\(829\) −1.86441e7 −0.942226 −0.471113 0.882073i \(-0.656148\pi\)
−0.471113 + 0.882073i \(0.656148\pi\)
\(830\) −517402. −0.0260695
\(831\) −3.17769e6 −0.159628
\(832\) 267567. 0.0134006
\(833\) −4.15279e6 −0.207361
\(834\) 6.40027e6 0.318627
\(835\) −1.77077e7 −0.878914
\(836\) 1.71588e7 0.849124
\(837\) 541733. 0.0267283
\(838\) 1.17765e7 0.579303
\(839\) −1.05408e7 −0.516974 −0.258487 0.966015i \(-0.583224\pi\)
−0.258487 + 0.966015i \(0.583224\pi\)
\(840\) 1.83227e6 0.0895965
\(841\) −1.53639e7 −0.749052
\(842\) −7.17393e6 −0.348720
\(843\) −9.23945e6 −0.447793
\(844\) 2.42763e7 1.17308
\(845\) 714025. 0.0344010
\(846\) −4.63418e6 −0.222611
\(847\) 4.21271e6 0.201768
\(848\) −6.23990e6 −0.297981
\(849\) 1.54587e7 0.736044
\(850\) −487497. −0.0231433
\(851\) 9.63659e6 0.456142
\(852\) 1.51921e7 0.716998
\(853\) −3.76226e7 −1.77042 −0.885210 0.465191i \(-0.845985\pi\)
−0.885210 + 0.465191i \(0.845985\pi\)
\(854\) 4.18991e6 0.196589
\(855\) 4.73461e6 0.221497
\(856\) 2.05899e6 0.0960441
\(857\) −1.67479e7 −0.778949 −0.389475 0.921037i \(-0.627343\pi\)
−0.389475 + 0.921037i \(0.627343\pi\)
\(858\) −1.14417e6 −0.0530606
\(859\) −6.07022e6 −0.280686 −0.140343 0.990103i \(-0.544821\pi\)
−0.140343 + 0.990103i \(0.544821\pi\)
\(860\) 1.48751e7 0.685827
\(861\) −8.40581e6 −0.386431
\(862\) −1.14448e7 −0.524616
\(863\) 3.14068e7 1.43548 0.717738 0.696313i \(-0.245177\pi\)
0.717738 + 0.696313i \(0.245177\pi\)
\(864\) 4.26488e6 0.194367
\(865\) −1.42617e6 −0.0648084
\(866\) 2.23836e6 0.101423
\(867\) 1.19635e7 0.540517
\(868\) −1.03063e6 −0.0464303
\(869\) −1.57550e7 −0.707734
\(870\) −1.32294e6 −0.0592573
\(871\) −1.06567e7 −0.475969
\(872\) −2.48258e7 −1.10563
\(873\) −1.25506e6 −0.0557351
\(874\) −1.01151e7 −0.447912
\(875\) −857090. −0.0378448
\(876\) −2.03832e7 −0.897455
\(877\) −1.88402e7 −0.827152 −0.413576 0.910469i \(-0.635720\pi\)
−0.413576 + 0.910469i \(0.635720\pi\)
\(878\) 1.67396e7 0.732840
\(879\) 4.59784e6 0.200716
\(880\) −3.07917e6 −0.134038
\(881\) −1.75384e7 −0.761292 −0.380646 0.924721i \(-0.624298\pi\)
−0.380646 + 0.924721i \(0.624298\pi\)
\(882\) 2.89650e6 0.125373
\(883\) −2.44702e6 −0.105618 −0.0528088 0.998605i \(-0.516817\pi\)
−0.0528088 + 0.998605i \(0.516817\pi\)
\(884\) −1.28602e6 −0.0553497
\(885\) 6.59089e6 0.282869
\(886\) 1.72611e7 0.738729
\(887\) −4.43486e7 −1.89265 −0.946327 0.323212i \(-0.895237\pi\)
−0.946327 + 0.323212i \(0.895237\pi\)
\(888\) −7.71303e6 −0.328241
\(889\) −8.31973e6 −0.353065
\(890\) 4.06687e6 0.172102
\(891\) −1.90441e6 −0.0803648
\(892\) 1.58158e7 0.665546
\(893\) 5.16151e7 2.16595
\(894\) 5.63085e6 0.235630
\(895\) −4.65633e6 −0.194306
\(896\) −1.00441e7 −0.417966
\(897\) −2.53905e6 −0.105363
\(898\) 1.00191e7 0.414607
\(899\) 1.68595e6 0.0695737
\(900\) −1.27998e6 −0.0526740
\(901\) −4.42584e6 −0.181629
\(902\) −1.28083e7 −0.524174
\(903\) −1.16180e7 −0.474146
\(904\) −9.24196e6 −0.376134
\(905\) 1.89233e6 0.0768023
\(906\) 3.94043e6 0.159486
\(907\) 1.55585e7 0.627984 0.313992 0.949426i \(-0.398334\pi\)
0.313992 + 0.949426i \(0.398334\pi\)
\(908\) 3.54195e7 1.42570
\(909\) −3.40106e6 −0.136523
\(910\) 600625. 0.0240436
\(911\) 2.10345e7 0.839722 0.419861 0.907588i \(-0.362079\pi\)
0.419861 + 0.907588i \(0.362079\pi\)
\(912\) −8.92904e6 −0.355482
\(913\) −2.31797e6 −0.0920303
\(914\) −1.63590e7 −0.647725
\(915\) −6.63147e6 −0.261853
\(916\) 2.08645e7 0.821616
\(917\) −2.08877e7 −0.820291
\(918\) 568617. 0.0222696
\(919\) 3.03776e7 1.18649 0.593245 0.805022i \(-0.297846\pi\)
0.593245 + 0.805022i \(0.297846\pi\)
\(920\) 6.19558e6 0.241331
\(921\) −8.84694e6 −0.343672
\(922\) 1.39031e7 0.538622
\(923\) 1.12830e7 0.435932
\(924\) 3.62307e6 0.139604
\(925\) 3.60796e6 0.138646
\(926\) −6.30373e6 −0.241585
\(927\) −8.52455e6 −0.325816
\(928\) 1.32729e7 0.505937
\(929\) −1.65938e7 −0.630823 −0.315412 0.948955i \(-0.602143\pi\)
−0.315412 + 0.948955i \(0.602143\pi\)
\(930\) −433322. −0.0164287
\(931\) −3.22610e7 −1.21984
\(932\) 3.16244e7 1.19257
\(933\) −1.14838e6 −0.0431898
\(934\) 3.26236e6 0.122367
\(935\) −2.18400e6 −0.0817001
\(936\) 2.03223e6 0.0758198
\(937\) 7.72391e6 0.287401 0.143701 0.989621i \(-0.454100\pi\)
0.143701 + 0.989621i \(0.454100\pi\)
\(938\) −8.96426e6 −0.332665
\(939\) 1.33674e7 0.494745
\(940\) −1.39539e7 −0.515081
\(941\) −9.62960e6 −0.354515 −0.177257 0.984165i \(-0.556722\pi\)
−0.177257 + 0.984165i \(0.556722\pi\)
\(942\) −8.20057e6 −0.301104
\(943\) −2.84232e7 −1.04086
\(944\) −1.24298e7 −0.453978
\(945\) 999709. 0.0364162
\(946\) −1.77029e7 −0.643156
\(947\) −166328. −0.00602685 −0.00301343 0.999995i \(-0.500959\pi\)
−0.00301343 + 0.999995i \(0.500959\pi\)
\(948\) 1.23512e7 0.446363
\(949\) −1.51384e7 −0.545650
\(950\) −3.78712e6 −0.136145
\(951\) −1.69133e6 −0.0606424
\(952\) −2.45091e6 −0.0876468
\(953\) −1.98203e7 −0.706932 −0.353466 0.935447i \(-0.614997\pi\)
−0.353466 + 0.935447i \(0.614997\pi\)
\(954\) 3.08695e6 0.109814
\(955\) −7.63497e6 −0.270894
\(956\) −2.27726e7 −0.805875
\(957\) −5.92679e6 −0.209189
\(958\) −2.57238e6 −0.0905567
\(959\) −7.76959e6 −0.272804
\(960\) −356228. −0.0124753
\(961\) −2.80769e7 −0.980711
\(962\) −2.52836e6 −0.0880850
\(963\) 1.12341e6 0.0390368
\(964\) −3.47828e6 −0.120551
\(965\) −1.85461e7 −0.641114
\(966\) −2.13580e6 −0.0736407
\(967\) −5.44138e7 −1.87130 −0.935648 0.352934i \(-0.885184\pi\)
−0.935648 + 0.352934i \(0.885184\pi\)
\(968\) −1.14013e7 −0.391082
\(969\) −6.33320e6 −0.216677
\(970\) 1.00390e6 0.0342579
\(971\) 4.15925e7 1.41569 0.707843 0.706370i \(-0.249668\pi\)
0.707843 + 0.706370i \(0.249668\pi\)
\(972\) 1.49297e6 0.0506856
\(973\) −1.50519e7 −0.509694
\(974\) 3.31335e6 0.111910
\(975\) −950625. −0.0320256
\(976\) 1.25064e7 0.420249
\(977\) −1.21355e7 −0.406743 −0.203371 0.979102i \(-0.565190\pi\)
−0.203371 + 0.979102i \(0.565190\pi\)
\(978\) −8.64766e6 −0.289102
\(979\) 1.82196e7 0.607551
\(980\) 8.72160e6 0.290089
\(981\) −1.35453e7 −0.449381
\(982\) −1.08445e7 −0.358864
\(983\) 3.35695e7 1.10805 0.554027 0.832499i \(-0.313090\pi\)
0.554027 + 0.832499i \(0.313090\pi\)
\(984\) 2.27496e7 0.749007
\(985\) 1.50878e7 0.495490
\(986\) 1.76962e6 0.0579678
\(987\) 1.08985e7 0.356101
\(988\) −9.99041e6 −0.325605
\(989\) −3.92848e7 −1.27713
\(990\) 1.52330e6 0.0493967
\(991\) 7.36811e6 0.238326 0.119163 0.992875i \(-0.461979\pi\)
0.119163 + 0.992875i \(0.461979\pi\)
\(992\) 4.34747e6 0.140268
\(993\) 3.14329e6 0.101160
\(994\) 9.49103e6 0.304683
\(995\) 8.58489e6 0.274901
\(996\) 1.81718e6 0.0580430
\(997\) 3.35011e7 1.06738 0.533692 0.845679i \(-0.320804\pi\)
0.533692 + 0.845679i \(0.320804\pi\)
\(998\) −2.42187e7 −0.769707
\(999\) −4.20833e6 −0.133412
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.6.a.d.1.2 4
3.2 odd 2 585.6.a.e.1.3 4
5.4 even 2 975.6.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.6.a.d.1.2 4 1.1 even 1 trivial
585.6.a.e.1.3 4 3.2 odd 2
975.6.a.g.1.3 4 5.4 even 2