Properties

Label 195.6.a.d.1.4
Level $195$
Weight $6$
Character 195.1
Self dual yes
Analytic conductor $31.275$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,6,Mod(1,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 195.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2748448635\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 67x^{2} + 57x + 250 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(7.99762\) of defining polynomial
Character \(\chi\) \(=\) 195.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.99762 q^{2} -9.00000 q^{3} +16.9667 q^{4} +25.0000 q^{5} -62.9786 q^{6} +66.9584 q^{7} -105.197 q^{8} +81.0000 q^{9} +174.940 q^{10} -721.813 q^{11} -152.700 q^{12} +169.000 q^{13} +468.549 q^{14} -225.000 q^{15} -1279.07 q^{16} +781.362 q^{17} +566.807 q^{18} -2302.21 q^{19} +424.167 q^{20} -602.625 q^{21} -5050.97 q^{22} +3338.48 q^{23} +946.777 q^{24} +625.000 q^{25} +1182.60 q^{26} -729.000 q^{27} +1136.06 q^{28} -8038.05 q^{29} -1574.46 q^{30} -4569.45 q^{31} -5584.10 q^{32} +6496.31 q^{33} +5467.67 q^{34} +1673.96 q^{35} +1374.30 q^{36} -12449.8 q^{37} -16110.0 q^{38} -1521.00 q^{39} -2629.94 q^{40} -10075.1 q^{41} -4216.94 q^{42} +11914.5 q^{43} -12246.8 q^{44} +2025.00 q^{45} +23361.4 q^{46} -10204.7 q^{47} +11511.6 q^{48} -12323.6 q^{49} +4373.51 q^{50} -7032.26 q^{51} +2867.37 q^{52} -13656.0 q^{53} -5101.26 q^{54} -18045.3 q^{55} -7043.85 q^{56} +20719.8 q^{57} -56247.2 q^{58} +7164.16 q^{59} -3817.50 q^{60} -40796.2 q^{61} -31975.2 q^{62} +5423.63 q^{63} +1854.71 q^{64} +4225.00 q^{65} +45458.7 q^{66} +29213.1 q^{67} +13257.1 q^{68} -30046.3 q^{69} +11713.7 q^{70} +71183.1 q^{71} -8520.99 q^{72} +37309.7 q^{73} -87119.2 q^{74} -5625.00 q^{75} -39060.8 q^{76} -48331.4 q^{77} -10643.4 q^{78} +102581. q^{79} -31976.6 q^{80} +6561.00 q^{81} -70501.6 q^{82} +91063.1 q^{83} -10224.6 q^{84} +19534.0 q^{85} +83373.1 q^{86} +72342.4 q^{87} +75932.8 q^{88} +20540.8 q^{89} +14170.2 q^{90} +11316.0 q^{91} +56642.9 q^{92} +41125.0 q^{93} -71408.5 q^{94} -57555.1 q^{95} +50256.9 q^{96} +38094.6 q^{97} -86235.7 q^{98} -58466.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 36 q^{3} + 9 q^{4} + 100 q^{5} + 27 q^{6} - 87 q^{7} - 183 q^{8} + 324 q^{9} - 75 q^{10} - 631 q^{11} - 81 q^{12} + 676 q^{13} + 1344 q^{14} - 900 q^{15} - 351 q^{16} - 599 q^{17} - 243 q^{18}+ \cdots - 51111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.99762 1.23702 0.618508 0.785778i \(-0.287737\pi\)
0.618508 + 0.785778i \(0.287737\pi\)
\(3\) −9.00000 −0.577350
\(4\) 16.9667 0.530209
\(5\) 25.0000 0.447214
\(6\) −62.9786 −0.714192
\(7\) 66.9584 0.516487 0.258244 0.966080i \(-0.416856\pi\)
0.258244 + 0.966080i \(0.416856\pi\)
\(8\) −105.197 −0.581139
\(9\) 81.0000 0.333333
\(10\) 174.940 0.553210
\(11\) −721.813 −1.79863 −0.899317 0.437298i \(-0.855936\pi\)
−0.899317 + 0.437298i \(0.855936\pi\)
\(12\) −152.700 −0.306116
\(13\) 169.000 0.277350
\(14\) 468.549 0.638903
\(15\) −225.000 −0.258199
\(16\) −1279.07 −1.24909
\(17\) 781.362 0.655737 0.327869 0.944723i \(-0.393670\pi\)
0.327869 + 0.944723i \(0.393670\pi\)
\(18\) 566.807 0.412339
\(19\) −2302.21 −1.46305 −0.731527 0.681813i \(-0.761192\pi\)
−0.731527 + 0.681813i \(0.761192\pi\)
\(20\) 424.167 0.237117
\(21\) −602.625 −0.298194
\(22\) −5050.97 −2.22494
\(23\) 3338.48 1.31592 0.657959 0.753054i \(-0.271420\pi\)
0.657959 + 0.753054i \(0.271420\pi\)
\(24\) 946.777 0.335521
\(25\) 625.000 0.200000
\(26\) 1182.60 0.343087
\(27\) −729.000 −0.192450
\(28\) 1136.06 0.273846
\(29\) −8038.05 −1.77482 −0.887412 0.460976i \(-0.847499\pi\)
−0.887412 + 0.460976i \(0.847499\pi\)
\(30\) −1574.46 −0.319396
\(31\) −4569.45 −0.854003 −0.427001 0.904251i \(-0.640430\pi\)
−0.427001 + 0.904251i \(0.640430\pi\)
\(32\) −5584.10 −0.964002
\(33\) 6496.31 1.03844
\(34\) 5467.67 0.811158
\(35\) 1673.96 0.230980
\(36\) 1374.30 0.176736
\(37\) −12449.8 −1.49506 −0.747531 0.664227i \(-0.768761\pi\)
−0.747531 + 0.664227i \(0.768761\pi\)
\(38\) −16110.0 −1.80982
\(39\) −1521.00 −0.160128
\(40\) −2629.94 −0.259893
\(41\) −10075.1 −0.936029 −0.468014 0.883721i \(-0.655030\pi\)
−0.468014 + 0.883721i \(0.655030\pi\)
\(42\) −4216.94 −0.368871
\(43\) 11914.5 0.982663 0.491332 0.870973i \(-0.336510\pi\)
0.491332 + 0.870973i \(0.336510\pi\)
\(44\) −12246.8 −0.953652
\(45\) 2025.00 0.149071
\(46\) 23361.4 1.62781
\(47\) −10204.7 −0.673837 −0.336918 0.941534i \(-0.609385\pi\)
−0.336918 + 0.941534i \(0.609385\pi\)
\(48\) 11511.6 0.721161
\(49\) −12323.6 −0.733241
\(50\) 4373.51 0.247403
\(51\) −7032.26 −0.378590
\(52\) 2867.37 0.147053
\(53\) −13656.0 −0.667783 −0.333891 0.942612i \(-0.608362\pi\)
−0.333891 + 0.942612i \(0.608362\pi\)
\(54\) −5101.26 −0.238064
\(55\) −18045.3 −0.804373
\(56\) −7043.85 −0.300151
\(57\) 20719.8 0.844694
\(58\) −56247.2 −2.19549
\(59\) 7164.16 0.267939 0.133969 0.990985i \(-0.457228\pi\)
0.133969 + 0.990985i \(0.457228\pi\)
\(60\) −3817.50 −0.136899
\(61\) −40796.2 −1.40377 −0.701884 0.712291i \(-0.747658\pi\)
−0.701884 + 0.712291i \(0.747658\pi\)
\(62\) −31975.2 −1.05642
\(63\) 5423.63 0.172162
\(64\) 1854.71 0.0566013
\(65\) 4225.00 0.124035
\(66\) 45458.7 1.28457
\(67\) 29213.1 0.795042 0.397521 0.917593i \(-0.369871\pi\)
0.397521 + 0.917593i \(0.369871\pi\)
\(68\) 13257.1 0.347678
\(69\) −30046.3 −0.759745
\(70\) 11713.7 0.285726
\(71\) 71183.1 1.67583 0.837916 0.545798i \(-0.183774\pi\)
0.837916 + 0.545798i \(0.183774\pi\)
\(72\) −8520.99 −0.193713
\(73\) 37309.7 0.819435 0.409717 0.912213i \(-0.365627\pi\)
0.409717 + 0.912213i \(0.365627\pi\)
\(74\) −87119.2 −1.84942
\(75\) −5625.00 −0.115470
\(76\) −39060.8 −0.775724
\(77\) −48331.4 −0.928971
\(78\) −10643.4 −0.198081
\(79\) 102581. 1.84927 0.924634 0.380857i \(-0.124371\pi\)
0.924634 + 0.380857i \(0.124371\pi\)
\(80\) −31976.6 −0.558609
\(81\) 6561.00 0.111111
\(82\) −70501.6 −1.15788
\(83\) 91063.1 1.45093 0.725466 0.688258i \(-0.241624\pi\)
0.725466 + 0.688258i \(0.241624\pi\)
\(84\) −10224.6 −0.158105
\(85\) 19534.0 0.293255
\(86\) 83373.1 1.21557
\(87\) 72342.4 1.02470
\(88\) 75932.8 1.04526
\(89\) 20540.8 0.274880 0.137440 0.990510i \(-0.456113\pi\)
0.137440 + 0.990510i \(0.456113\pi\)
\(90\) 14170.2 0.184403
\(91\) 11316.0 0.143248
\(92\) 56642.9 0.697711
\(93\) 41125.0 0.493059
\(94\) −71408.5 −0.833547
\(95\) −57555.1 −0.654297
\(96\) 50256.9 0.556567
\(97\) 38094.6 0.411088 0.205544 0.978648i \(-0.434104\pi\)
0.205544 + 0.978648i \(0.434104\pi\)
\(98\) −86235.7 −0.907031
\(99\) −58466.8 −0.599545
\(100\) 10604.2 0.106042
\(101\) −50607.7 −0.493643 −0.246822 0.969061i \(-0.579386\pi\)
−0.246822 + 0.969061i \(0.579386\pi\)
\(102\) −49209.1 −0.468322
\(103\) −62651.4 −0.581885 −0.290943 0.956740i \(-0.593969\pi\)
−0.290943 + 0.956740i \(0.593969\pi\)
\(104\) −17778.4 −0.161179
\(105\) −15065.6 −0.133356
\(106\) −95559.8 −0.826058
\(107\) 53587.6 0.452486 0.226243 0.974071i \(-0.427356\pi\)
0.226243 + 0.974071i \(0.427356\pi\)
\(108\) −12368.7 −0.102039
\(109\) −20492.4 −0.165206 −0.0826031 0.996583i \(-0.526323\pi\)
−0.0826031 + 0.996583i \(0.526323\pi\)
\(110\) −126274. −0.995023
\(111\) 112049. 0.863175
\(112\) −85644.1 −0.645138
\(113\) −105210. −0.775109 −0.387554 0.921847i \(-0.626680\pi\)
−0.387554 + 0.921847i \(0.626680\pi\)
\(114\) 144990. 1.04490
\(115\) 83461.9 0.588496
\(116\) −136379. −0.941028
\(117\) 13689.0 0.0924500
\(118\) 50132.1 0.331444
\(119\) 52318.7 0.338680
\(120\) 23669.4 0.150049
\(121\) 359962. 2.23508
\(122\) −285477. −1.73648
\(123\) 90675.8 0.540416
\(124\) −77528.3 −0.452800
\(125\) 15625.0 0.0894427
\(126\) 37952.5 0.212968
\(127\) −294738. −1.62153 −0.810767 0.585369i \(-0.800950\pi\)
−0.810767 + 0.585369i \(0.800950\pi\)
\(128\) 191670. 1.03402
\(129\) −107231. −0.567341
\(130\) 29564.9 0.153433
\(131\) −63843.9 −0.325043 −0.162522 0.986705i \(-0.551963\pi\)
−0.162522 + 0.986705i \(0.551963\pi\)
\(132\) 110221. 0.550591
\(133\) −154152. −0.755648
\(134\) 204422. 0.983480
\(135\) −18225.0 −0.0860663
\(136\) −82197.3 −0.381075
\(137\) 170391. 0.775614 0.387807 0.921741i \(-0.373233\pi\)
0.387807 + 0.921741i \(0.373233\pi\)
\(138\) −210252. −0.939817
\(139\) −372319. −1.63448 −0.817238 0.576300i \(-0.804496\pi\)
−0.817238 + 0.576300i \(0.804496\pi\)
\(140\) 28401.5 0.122468
\(141\) 91842.1 0.389040
\(142\) 498112. 2.07303
\(143\) −121986. −0.498851
\(144\) −103604. −0.416362
\(145\) −200951. −0.793726
\(146\) 261079. 1.01365
\(147\) 110912. 0.423337
\(148\) −211232. −0.792695
\(149\) −519080. −1.91544 −0.957720 0.287702i \(-0.907109\pi\)
−0.957720 + 0.287702i \(0.907109\pi\)
\(150\) −39361.6 −0.142838
\(151\) 111177. 0.396800 0.198400 0.980121i \(-0.436426\pi\)
0.198400 + 0.980121i \(0.436426\pi\)
\(152\) 242186. 0.850237
\(153\) 63290.3 0.218579
\(154\) −338205. −1.14915
\(155\) −114236. −0.381922
\(156\) −25806.3 −0.0849014
\(157\) −259512. −0.840249 −0.420125 0.907466i \(-0.638014\pi\)
−0.420125 + 0.907466i \(0.638014\pi\)
\(158\) 717824. 2.28757
\(159\) 122904. 0.385544
\(160\) −139602. −0.431115
\(161\) 223539. 0.679655
\(162\) 45911.4 0.137446
\(163\) 224126. 0.660730 0.330365 0.943853i \(-0.392828\pi\)
0.330365 + 0.943853i \(0.392828\pi\)
\(164\) −170941. −0.496291
\(165\) 162408. 0.464405
\(166\) 637225. 1.79483
\(167\) 604099. 1.67617 0.838083 0.545542i \(-0.183676\pi\)
0.838083 + 0.545542i \(0.183676\pi\)
\(168\) 63394.6 0.173292
\(169\) 28561.0 0.0769231
\(170\) 136692. 0.362761
\(171\) −186479. −0.487684
\(172\) 202150. 0.521017
\(173\) 174723. 0.443850 0.221925 0.975064i \(-0.428766\pi\)
0.221925 + 0.975064i \(0.428766\pi\)
\(174\) 506225. 1.26756
\(175\) 41849.0 0.103297
\(176\) 923246. 2.24665
\(177\) −64477.4 −0.154694
\(178\) 143737. 0.340031
\(179\) −614608. −1.43372 −0.716862 0.697215i \(-0.754422\pi\)
−0.716862 + 0.697215i \(0.754422\pi\)
\(180\) 34357.5 0.0790389
\(181\) 569981. 1.29319 0.646597 0.762832i \(-0.276191\pi\)
0.646597 + 0.762832i \(0.276191\pi\)
\(182\) 79184.8 0.177200
\(183\) 367166. 0.810466
\(184\) −351199. −0.764731
\(185\) −311246. −0.668612
\(186\) 287777. 0.609922
\(187\) −563997. −1.17943
\(188\) −173140. −0.357274
\(189\) −48812.6 −0.0993980
\(190\) −402749. −0.809376
\(191\) 254138. 0.504064 0.252032 0.967719i \(-0.418901\pi\)
0.252032 + 0.967719i \(0.418901\pi\)
\(192\) −16692.4 −0.0326788
\(193\) 27615.3 0.0533650 0.0266825 0.999644i \(-0.491506\pi\)
0.0266825 + 0.999644i \(0.491506\pi\)
\(194\) 266572. 0.508522
\(195\) −38025.0 −0.0716115
\(196\) −209090. −0.388771
\(197\) 883788. 1.62249 0.811246 0.584705i \(-0.198790\pi\)
0.811246 + 0.584705i \(0.198790\pi\)
\(198\) −409129. −0.741646
\(199\) 374638. 0.670624 0.335312 0.942107i \(-0.391158\pi\)
0.335312 + 0.942107i \(0.391158\pi\)
\(200\) −65748.4 −0.116228
\(201\) −262918. −0.459018
\(202\) −354134. −0.610645
\(203\) −538214. −0.916674
\(204\) −119314. −0.200732
\(205\) −251877. −0.418605
\(206\) −438410. −0.719802
\(207\) 270417. 0.438639
\(208\) −216162. −0.346435
\(209\) 1.66176e6 2.63150
\(210\) −105424. −0.164964
\(211\) −1.14233e6 −1.76638 −0.883191 0.469014i \(-0.844609\pi\)
−0.883191 + 0.469014i \(0.844609\pi\)
\(212\) −231698. −0.354064
\(213\) −640647. −0.967543
\(214\) 374986. 0.559732
\(215\) 297863. 0.439460
\(216\) 76688.9 0.111840
\(217\) −305963. −0.441082
\(218\) −143398. −0.204363
\(219\) −335787. −0.473101
\(220\) −306169. −0.426486
\(221\) 132050. 0.181869
\(222\) 784073. 1.06776
\(223\) −29633.8 −0.0399049 −0.0199524 0.999801i \(-0.506351\pi\)
−0.0199524 + 0.999801i \(0.506351\pi\)
\(224\) −373902. −0.497895
\(225\) 50625.0 0.0666667
\(226\) −736223. −0.958822
\(227\) 143145. 0.184379 0.0921897 0.995741i \(-0.470613\pi\)
0.0921897 + 0.995741i \(0.470613\pi\)
\(228\) 351547. 0.447864
\(229\) −1.45047e6 −1.82776 −0.913882 0.405980i \(-0.866930\pi\)
−0.913882 + 0.405980i \(0.866930\pi\)
\(230\) 584035. 0.727979
\(231\) 434982. 0.536342
\(232\) 845582. 1.03142
\(233\) 17913.6 0.0216169 0.0108085 0.999942i \(-0.496559\pi\)
0.0108085 + 0.999942i \(0.496559\pi\)
\(234\) 95790.4 0.114362
\(235\) −255117. −0.301349
\(236\) 121552. 0.142063
\(237\) −923230. −1.06768
\(238\) 366106. 0.418953
\(239\) 398359. 0.451108 0.225554 0.974231i \(-0.427581\pi\)
0.225554 + 0.974231i \(0.427581\pi\)
\(240\) 287790. 0.322513
\(241\) −1.15213e6 −1.27778 −0.638892 0.769296i \(-0.720607\pi\)
−0.638892 + 0.769296i \(0.720607\pi\)
\(242\) 2.51888e6 2.76483
\(243\) −59049.0 −0.0641500
\(244\) −692177. −0.744290
\(245\) −308089. −0.327915
\(246\) 634515. 0.668504
\(247\) −389073. −0.405778
\(248\) 480694. 0.496294
\(249\) −819568. −0.837696
\(250\) 109338. 0.110642
\(251\) −800083. −0.801587 −0.400794 0.916168i \(-0.631266\pi\)
−0.400794 + 0.916168i \(0.631266\pi\)
\(252\) 92021.0 0.0912821
\(253\) −2.40975e6 −2.36685
\(254\) −2.06246e6 −2.00586
\(255\) −175806. −0.169311
\(256\) 1.28188e6 1.22250
\(257\) −669863. −0.632635 −0.316317 0.948653i \(-0.602446\pi\)
−0.316317 + 0.948653i \(0.602446\pi\)
\(258\) −750358. −0.701810
\(259\) −833621. −0.772181
\(260\) 71684.2 0.0657643
\(261\) −651082. −0.591608
\(262\) −446755. −0.402084
\(263\) −493932. −0.440329 −0.220165 0.975463i \(-0.570659\pi\)
−0.220165 + 0.975463i \(0.570659\pi\)
\(264\) −683395. −0.603479
\(265\) −341401. −0.298641
\(266\) −1.07870e6 −0.934749
\(267\) −184867. −0.158702
\(268\) 495649. 0.421538
\(269\) 2.15725e6 1.81769 0.908843 0.417139i \(-0.136967\pi\)
0.908843 + 0.417139i \(0.136967\pi\)
\(270\) −127532. −0.106465
\(271\) 1.46880e6 1.21489 0.607447 0.794360i \(-0.292194\pi\)
0.607447 + 0.794360i \(0.292194\pi\)
\(272\) −999413. −0.819073
\(273\) −101844. −0.0827042
\(274\) 1.19233e6 0.959447
\(275\) −451133. −0.359727
\(276\) −509786. −0.402824
\(277\) −2.54437e6 −1.99242 −0.996211 0.0869688i \(-0.972282\pi\)
−0.996211 + 0.0869688i \(0.972282\pi\)
\(278\) −2.60535e6 −2.02187
\(279\) −370125. −0.284668
\(280\) −176096. −0.134232
\(281\) −541195. −0.408873 −0.204436 0.978880i \(-0.565536\pi\)
−0.204436 + 0.978880i \(0.565536\pi\)
\(282\) 642676. 0.481249
\(283\) 747106. 0.554518 0.277259 0.960795i \(-0.410574\pi\)
0.277259 + 0.960795i \(0.410574\pi\)
\(284\) 1.20774e6 0.888542
\(285\) 517996. 0.377759
\(286\) −853614. −0.617087
\(287\) −674611. −0.483447
\(288\) −452312. −0.321334
\(289\) −809330. −0.570008
\(290\) −1.40618e6 −0.981852
\(291\) −342852. −0.237342
\(292\) 633021. 0.434472
\(293\) 587050. 0.399490 0.199745 0.979848i \(-0.435989\pi\)
0.199745 + 0.979848i \(0.435989\pi\)
\(294\) 776122. 0.523674
\(295\) 179104. 0.119826
\(296\) 1.30969e6 0.868839
\(297\) 526201. 0.346147
\(298\) −3.63232e6 −2.36943
\(299\) 564202. 0.364970
\(300\) −95437.6 −0.0612232
\(301\) 797775. 0.507533
\(302\) 777972. 0.490848
\(303\) 455469. 0.285005
\(304\) 2.94467e6 1.82748
\(305\) −1.01991e6 −0.627784
\(306\) 442882. 0.270386
\(307\) −835807. −0.506128 −0.253064 0.967450i \(-0.581438\pi\)
−0.253064 + 0.967450i \(0.581438\pi\)
\(308\) −820023. −0.492549
\(309\) 563862. 0.335952
\(310\) −799381. −0.472443
\(311\) −1.06297e6 −0.623192 −0.311596 0.950215i \(-0.600864\pi\)
−0.311596 + 0.950215i \(0.600864\pi\)
\(312\) 160005. 0.0930567
\(313\) −1.54176e6 −0.889520 −0.444760 0.895650i \(-0.646711\pi\)
−0.444760 + 0.895650i \(0.646711\pi\)
\(314\) −1.81597e6 −1.03940
\(315\) 135591. 0.0769934
\(316\) 1.74046e6 0.980498
\(317\) −424457. −0.237239 −0.118619 0.992940i \(-0.537847\pi\)
−0.118619 + 0.992940i \(0.537847\pi\)
\(318\) 860038. 0.476925
\(319\) 5.80196e6 3.19226
\(320\) 46367.8 0.0253129
\(321\) −482288. −0.261243
\(322\) 1.56424e6 0.840744
\(323\) −1.79886e6 −0.959379
\(324\) 111318. 0.0589121
\(325\) 105625. 0.0554700
\(326\) 1.56835e6 0.817334
\(327\) 184432. 0.0953819
\(328\) 1.05987e6 0.543963
\(329\) −683289. −0.348028
\(330\) 1.13647e6 0.574477
\(331\) 1.46376e6 0.734342 0.367171 0.930153i \(-0.380326\pi\)
0.367171 + 0.930153i \(0.380326\pi\)
\(332\) 1.54504e6 0.769297
\(333\) −1.00844e6 −0.498354
\(334\) 4.22726e6 2.07345
\(335\) 730327. 0.355554
\(336\) 770797. 0.372470
\(337\) −2.50149e6 −1.19984 −0.599921 0.800059i \(-0.704802\pi\)
−0.599921 + 0.800059i \(0.704802\pi\)
\(338\) 199859. 0.0951551
\(339\) 946894. 0.447509
\(340\) 331428. 0.155486
\(341\) 3.29828e6 1.53604
\(342\) −1.30491e6 −0.603273
\(343\) −1.95054e6 −0.895197
\(344\) −1.25337e6 −0.571064
\(345\) −751157. −0.339768
\(346\) 1.22265e6 0.549049
\(347\) 1.71568e6 0.764915 0.382457 0.923973i \(-0.375078\pi\)
0.382457 + 0.923973i \(0.375078\pi\)
\(348\) 1.22741e6 0.543303
\(349\) 3.12794e6 1.37466 0.687329 0.726346i \(-0.258783\pi\)
0.687329 + 0.726346i \(0.258783\pi\)
\(350\) 292843. 0.127781
\(351\) −123201. −0.0533761
\(352\) 4.03067e6 1.73389
\(353\) −1.83043e6 −0.781835 −0.390918 0.920426i \(-0.627842\pi\)
−0.390918 + 0.920426i \(0.627842\pi\)
\(354\) −451189. −0.191359
\(355\) 1.77958e6 0.749455
\(356\) 348510. 0.145744
\(357\) −470868. −0.195537
\(358\) −4.30079e6 −1.77354
\(359\) −2.29833e6 −0.941190 −0.470595 0.882349i \(-0.655961\pi\)
−0.470595 + 0.882349i \(0.655961\pi\)
\(360\) −213025. −0.0866311
\(361\) 2.82405e6 1.14052
\(362\) 3.98851e6 1.59970
\(363\) −3.23966e6 −1.29043
\(364\) 191994. 0.0759513
\(365\) 932742. 0.366462
\(366\) 2.56929e6 1.00256
\(367\) −4.58322e6 −1.77626 −0.888128 0.459597i \(-0.847994\pi\)
−0.888128 + 0.459597i \(0.847994\pi\)
\(368\) −4.27013e6 −1.64370
\(369\) −816082. −0.312010
\(370\) −2.17798e6 −0.827084
\(371\) −914386. −0.344901
\(372\) 697755. 0.261424
\(373\) 494132. 0.183896 0.0919478 0.995764i \(-0.470691\pi\)
0.0919478 + 0.995764i \(0.470691\pi\)
\(374\) −3.94664e6 −1.45898
\(375\) −140625. −0.0516398
\(376\) 1.07351e6 0.391593
\(377\) −1.35843e6 −0.492248
\(378\) −341572. −0.122957
\(379\) 2.51002e6 0.897591 0.448795 0.893635i \(-0.351853\pi\)
0.448795 + 0.893635i \(0.351853\pi\)
\(380\) −976520. −0.346914
\(381\) 2.65264e6 0.936193
\(382\) 1.77836e6 0.623535
\(383\) 1.69626e6 0.590876 0.295438 0.955362i \(-0.404534\pi\)
0.295438 + 0.955362i \(0.404534\pi\)
\(384\) −1.72503e6 −0.596991
\(385\) −1.20828e6 −0.415449
\(386\) 193242. 0.0660134
\(387\) 965075. 0.327554
\(388\) 646340. 0.217962
\(389\) −299373. −0.100309 −0.0501543 0.998741i \(-0.515971\pi\)
−0.0501543 + 0.998741i \(0.515971\pi\)
\(390\) −266084. −0.0885846
\(391\) 2.60856e6 0.862896
\(392\) 1.29641e6 0.426115
\(393\) 574595. 0.187664
\(394\) 6.18441e6 2.00705
\(395\) 2.56453e6 0.827018
\(396\) −991988. −0.317884
\(397\) −1.40190e6 −0.446418 −0.223209 0.974771i \(-0.571653\pi\)
−0.223209 + 0.974771i \(0.571653\pi\)
\(398\) 2.62158e6 0.829573
\(399\) 1.38737e6 0.436274
\(400\) −799416. −0.249817
\(401\) 2.32824e6 0.723049 0.361524 0.932363i \(-0.382256\pi\)
0.361524 + 0.932363i \(0.382256\pi\)
\(402\) −1.83980e6 −0.567812
\(403\) −772236. −0.236858
\(404\) −858645. −0.261734
\(405\) 164025. 0.0496904
\(406\) −3.76622e6 −1.13394
\(407\) 8.98645e6 2.68907
\(408\) 739775. 0.220014
\(409\) 625884. 0.185006 0.0925029 0.995712i \(-0.470513\pi\)
0.0925029 + 0.995712i \(0.470513\pi\)
\(410\) −1.76254e6 −0.517821
\(411\) −1.53352e6 −0.447801
\(412\) −1.06299e6 −0.308521
\(413\) 479700. 0.138387
\(414\) 1.89227e6 0.542604
\(415\) 2.27658e6 0.648877
\(416\) −943712. −0.267366
\(417\) 3.35087e6 0.943665
\(418\) 1.16284e7 3.25520
\(419\) −1.38874e6 −0.386442 −0.193221 0.981155i \(-0.561893\pi\)
−0.193221 + 0.981155i \(0.561893\pi\)
\(420\) −255614. −0.0707068
\(421\) −6.45976e6 −1.77628 −0.888139 0.459575i \(-0.848002\pi\)
−0.888139 + 0.459575i \(0.848002\pi\)
\(422\) −7.99358e6 −2.18504
\(423\) −826579. −0.224612
\(424\) 1.43658e6 0.388075
\(425\) 488351. 0.131147
\(426\) −4.48301e6 −1.19687
\(427\) −2.73165e6 −0.725029
\(428\) 909204. 0.239912
\(429\) 1.09788e6 0.288012
\(430\) 2.08433e6 0.543620
\(431\) −3.08684e6 −0.800426 −0.400213 0.916422i \(-0.631064\pi\)
−0.400213 + 0.916422i \(0.631064\pi\)
\(432\) 932439. 0.240387
\(433\) −4.59588e6 −1.17801 −0.589005 0.808130i \(-0.700480\pi\)
−0.589005 + 0.808130i \(0.700480\pi\)
\(434\) −2.14101e6 −0.545625
\(435\) 1.80856e6 0.458258
\(436\) −347688. −0.0875938
\(437\) −7.68586e6 −1.92526
\(438\) −2.34971e6 −0.585233
\(439\) −2.84441e6 −0.704420 −0.352210 0.935921i \(-0.614570\pi\)
−0.352210 + 0.935921i \(0.614570\pi\)
\(440\) 1.89832e6 0.467453
\(441\) −998210. −0.244414
\(442\) 924037. 0.224975
\(443\) 4.20072e6 1.01698 0.508492 0.861067i \(-0.330203\pi\)
0.508492 + 0.861067i \(0.330203\pi\)
\(444\) 1.90109e6 0.457663
\(445\) 513521. 0.122930
\(446\) −207366. −0.0493629
\(447\) 4.67172e6 1.10588
\(448\) 124188. 0.0292338
\(449\) −2.79787e6 −0.654955 −0.327478 0.944859i \(-0.606199\pi\)
−0.327478 + 0.944859i \(0.606199\pi\)
\(450\) 354255. 0.0824677
\(451\) 7.27232e6 1.68357
\(452\) −1.78507e6 −0.410970
\(453\) −1.00059e6 −0.229092
\(454\) 1.00168e6 0.228080
\(455\) 282899. 0.0640624
\(456\) −2.17967e6 −0.490885
\(457\) 2.61344e6 0.585358 0.292679 0.956211i \(-0.405453\pi\)
0.292679 + 0.956211i \(0.405453\pi\)
\(458\) −1.01498e7 −2.26097
\(459\) −569613. −0.126197
\(460\) 1.41607e6 0.312026
\(461\) 5.12210e6 1.12253 0.561263 0.827638i \(-0.310316\pi\)
0.561263 + 0.827638i \(0.310316\pi\)
\(462\) 3.04384e6 0.663464
\(463\) 5.44971e6 1.18146 0.590732 0.806868i \(-0.298839\pi\)
0.590732 + 0.806868i \(0.298839\pi\)
\(464\) 1.02812e7 2.21691
\(465\) 1.02813e6 0.220503
\(466\) 125353. 0.0267405
\(467\) 1.43759e6 0.305031 0.152516 0.988301i \(-0.451263\pi\)
0.152516 + 0.988301i \(0.451263\pi\)
\(468\) 232257. 0.0490178
\(469\) 1.95606e6 0.410629
\(470\) −1.78521e6 −0.372774
\(471\) 2.33561e6 0.485118
\(472\) −753651. −0.155710
\(473\) −8.60004e6 −1.76745
\(474\) −6.46042e6 −1.32073
\(475\) −1.43888e6 −0.292611
\(476\) 887675. 0.179571
\(477\) −1.10614e6 −0.222594
\(478\) 2.78757e6 0.558027
\(479\) −5.58674e6 −1.11255 −0.556276 0.830998i \(-0.687770\pi\)
−0.556276 + 0.830998i \(0.687770\pi\)
\(480\) 1.25642e6 0.248904
\(481\) −2.10402e6 −0.414656
\(482\) −8.06215e6 −1.58064
\(483\) −2.01185e6 −0.392399
\(484\) 6.10737e6 1.18506
\(485\) 952366. 0.183844
\(486\) −413202. −0.0793546
\(487\) −4.65236e6 −0.888895 −0.444448 0.895805i \(-0.646600\pi\)
−0.444448 + 0.895805i \(0.646600\pi\)
\(488\) 4.29166e6 0.815785
\(489\) −2.01714e6 −0.381473
\(490\) −2.15589e6 −0.405636
\(491\) −483556. −0.0905197 −0.0452598 0.998975i \(-0.514412\pi\)
−0.0452598 + 0.998975i \(0.514412\pi\)
\(492\) 1.53847e6 0.286534
\(493\) −6.28062e6 −1.16382
\(494\) −2.72258e6 −0.501954
\(495\) −1.46167e6 −0.268124
\(496\) 5.84462e6 1.06672
\(497\) 4.76630e6 0.865546
\(498\) −5.73502e6 −1.03624
\(499\) −7.51098e6 −1.35035 −0.675173 0.737659i \(-0.735931\pi\)
−0.675173 + 0.737659i \(0.735931\pi\)
\(500\) 265104. 0.0474233
\(501\) −5.43689e6 −0.967735
\(502\) −5.59868e6 −0.991576
\(503\) 5.82616e6 1.02675 0.513373 0.858166i \(-0.328396\pi\)
0.513373 + 0.858166i \(0.328396\pi\)
\(504\) −570552. −0.100050
\(505\) −1.26519e6 −0.220764
\(506\) −1.68625e7 −2.92784
\(507\) −257049. −0.0444116
\(508\) −5.00072e6 −0.859752
\(509\) −406063. −0.0694703 −0.0347351 0.999397i \(-0.511059\pi\)
−0.0347351 + 0.999397i \(0.511059\pi\)
\(510\) −1.23023e6 −0.209440
\(511\) 2.49819e6 0.423228
\(512\) 2.83668e6 0.478229
\(513\) 1.67831e6 0.281565
\(514\) −4.68744e6 −0.782579
\(515\) −1.56628e6 −0.260227
\(516\) −1.81935e6 −0.300809
\(517\) 7.36587e6 1.21199
\(518\) −5.83336e6 −0.955200
\(519\) −1.57251e6 −0.256257
\(520\) −444459. −0.0720814
\(521\) 1.00945e7 1.62926 0.814630 0.579981i \(-0.196940\pi\)
0.814630 + 0.579981i \(0.196940\pi\)
\(522\) −4.55602e6 −0.731829
\(523\) 2.37804e6 0.380158 0.190079 0.981769i \(-0.439126\pi\)
0.190079 + 0.981769i \(0.439126\pi\)
\(524\) −1.08322e6 −0.172341
\(525\) −376641. −0.0596388
\(526\) −3.45635e6 −0.544695
\(527\) −3.57039e6 −0.560002
\(528\) −8.30921e6 −1.29710
\(529\) 4.70908e6 0.731639
\(530\) −2.38899e6 −0.369424
\(531\) 580297. 0.0893129
\(532\) −2.61545e6 −0.400651
\(533\) −1.70269e6 −0.259608
\(534\) −1.29363e6 −0.196317
\(535\) 1.33969e6 0.202358
\(536\) −3.07314e6 −0.462030
\(537\) 5.53147e6 0.827761
\(538\) 1.50956e7 2.24851
\(539\) 8.89531e6 1.31883
\(540\) −309218. −0.0456331
\(541\) 2.95079e6 0.433456 0.216728 0.976232i \(-0.430462\pi\)
0.216728 + 0.976232i \(0.430462\pi\)
\(542\) 1.02781e7 1.50284
\(543\) −5.12983e6 −0.746626
\(544\) −4.36320e6 −0.632132
\(545\) −512310. −0.0738825
\(546\) −712663. −0.102306
\(547\) −1.11440e7 −1.59248 −0.796240 0.604981i \(-0.793181\pi\)
−0.796240 + 0.604981i \(0.793181\pi\)
\(548\) 2.89097e6 0.411238
\(549\) −3.30449e6 −0.467923
\(550\) −3.15686e6 −0.444988
\(551\) 1.85052e7 2.59666
\(552\) 3.16079e6 0.441518
\(553\) 6.86867e6 0.955123
\(554\) −1.78046e7 −2.46466
\(555\) 2.80121e6 0.386023
\(556\) −6.31703e6 −0.866614
\(557\) −1.82804e6 −0.249659 −0.124830 0.992178i \(-0.539838\pi\)
−0.124830 + 0.992178i \(0.539838\pi\)
\(558\) −2.58999e6 −0.352138
\(559\) 2.01355e6 0.272542
\(560\) −2.14110e6 −0.288514
\(561\) 5.07597e6 0.680945
\(562\) −3.78708e6 −0.505782
\(563\) 7.18745e6 0.955661 0.477830 0.878452i \(-0.341423\pi\)
0.477830 + 0.878452i \(0.341423\pi\)
\(564\) 1.55826e6 0.206272
\(565\) −2.63026e6 −0.346639
\(566\) 5.22796e6 0.685948
\(567\) 439314. 0.0573875
\(568\) −7.48827e6 −0.973892
\(569\) 9.09907e6 1.17819 0.589096 0.808063i \(-0.299484\pi\)
0.589096 + 0.808063i \(0.299484\pi\)
\(570\) 3.62474e6 0.467294
\(571\) −7.53787e6 −0.967517 −0.483758 0.875202i \(-0.660729\pi\)
−0.483758 + 0.875202i \(0.660729\pi\)
\(572\) −2.06970e6 −0.264495
\(573\) −2.28724e6 −0.291021
\(574\) −4.72067e6 −0.598032
\(575\) 2.08655e6 0.263184
\(576\) 150232. 0.0188671
\(577\) 297945. 0.0372560 0.0186280 0.999826i \(-0.494070\pi\)
0.0186280 + 0.999826i \(0.494070\pi\)
\(578\) −5.66339e6 −0.705110
\(579\) −248538. −0.0308103
\(580\) −3.40947e6 −0.420840
\(581\) 6.09743e6 0.749388
\(582\) −2.39915e6 −0.293595
\(583\) 9.85710e6 1.20110
\(584\) −3.92488e6 −0.476206
\(585\) 342225. 0.0413449
\(586\) 4.10795e6 0.494176
\(587\) 1.07712e7 1.29024 0.645120 0.764081i \(-0.276807\pi\)
0.645120 + 0.764081i \(0.276807\pi\)
\(588\) 1.88181e6 0.224457
\(589\) 1.05198e7 1.24945
\(590\) 1.25330e6 0.148226
\(591\) −7.95410e6 −0.936747
\(592\) 1.59242e7 1.86746
\(593\) 437753. 0.0511202 0.0255601 0.999673i \(-0.491863\pi\)
0.0255601 + 0.999673i \(0.491863\pi\)
\(594\) 3.68216e6 0.428190
\(595\) 1.30797e6 0.151462
\(596\) −8.80707e6 −1.01558
\(597\) −3.37174e6 −0.387185
\(598\) 3.94807e6 0.451474
\(599\) −1.62933e7 −1.85542 −0.927708 0.373306i \(-0.878224\pi\)
−0.927708 + 0.373306i \(0.878224\pi\)
\(600\) 591736. 0.0671042
\(601\) −9.07820e6 −1.02521 −0.512606 0.858624i \(-0.671320\pi\)
−0.512606 + 0.858624i \(0.671320\pi\)
\(602\) 5.58253e6 0.627827
\(603\) 2.36626e6 0.265014
\(604\) 1.88630e6 0.210387
\(605\) 8.99906e6 0.999559
\(606\) 3.18720e6 0.352556
\(607\) −1.40774e6 −0.155078 −0.0775389 0.996989i \(-0.524706\pi\)
−0.0775389 + 0.996989i \(0.524706\pi\)
\(608\) 1.28557e7 1.41039
\(609\) 4.84393e6 0.529242
\(610\) −7.13691e6 −0.776579
\(611\) −1.72459e6 −0.186889
\(612\) 1.07383e6 0.115893
\(613\) −7.66603e6 −0.823985 −0.411992 0.911187i \(-0.635167\pi\)
−0.411992 + 0.911187i \(0.635167\pi\)
\(614\) −5.84866e6 −0.626088
\(615\) 2.26689e6 0.241682
\(616\) 5.08434e6 0.539862
\(617\) 8.80623e6 0.931273 0.465636 0.884976i \(-0.345825\pi\)
0.465636 + 0.884976i \(0.345825\pi\)
\(618\) 3.94569e6 0.415578
\(619\) 1.40197e6 0.147066 0.0735331 0.997293i \(-0.476573\pi\)
0.0735331 + 0.997293i \(0.476573\pi\)
\(620\) −1.93821e6 −0.202498
\(621\) −2.43375e6 −0.253248
\(622\) −7.43829e6 −0.770899
\(623\) 1.37538e6 0.141972
\(624\) 1.94546e6 0.200014
\(625\) 390625. 0.0400000
\(626\) −1.07886e7 −1.10035
\(627\) −1.49558e7 −1.51930
\(628\) −4.40306e6 −0.445508
\(629\) −9.72783e6 −0.980368
\(630\) 948812. 0.0952421
\(631\) −9.84323e6 −0.984157 −0.492078 0.870551i \(-0.663763\pi\)
−0.492078 + 0.870551i \(0.663763\pi\)
\(632\) −1.07913e7 −1.07468
\(633\) 1.02809e7 1.01982
\(634\) −2.97019e6 −0.293468
\(635\) −7.36844e6 −0.725172
\(636\) 2.08528e6 0.204419
\(637\) −2.08268e6 −0.203364
\(638\) 4.05999e7 3.94888
\(639\) 5.76583e6 0.558611
\(640\) 4.79174e6 0.462427
\(641\) −1.74155e7 −1.67414 −0.837070 0.547096i \(-0.815733\pi\)
−0.837070 + 0.547096i \(0.815733\pi\)
\(642\) −3.37487e6 −0.323161
\(643\) 1.23961e7 1.18238 0.591190 0.806533i \(-0.298659\pi\)
0.591190 + 0.806533i \(0.298659\pi\)
\(644\) 3.79271e6 0.360359
\(645\) −2.68076e6 −0.253723
\(646\) −1.25877e7 −1.18677
\(647\) −1.89320e7 −1.77802 −0.889010 0.457887i \(-0.848606\pi\)
−0.889010 + 0.457887i \(0.848606\pi\)
\(648\) −690200. −0.0645710
\(649\) −5.17118e6 −0.481923
\(650\) 739124. 0.0686173
\(651\) 2.75366e6 0.254659
\(652\) 3.80268e6 0.350325
\(653\) 1.33112e7 1.22161 0.610806 0.791780i \(-0.290845\pi\)
0.610806 + 0.791780i \(0.290845\pi\)
\(654\) 1.29058e6 0.117989
\(655\) −1.59610e6 −0.145364
\(656\) 1.28867e7 1.16918
\(657\) 3.02208e6 0.273145
\(658\) −4.78139e6 −0.430517
\(659\) −6.04189e6 −0.541950 −0.270975 0.962586i \(-0.587346\pi\)
−0.270975 + 0.962586i \(0.587346\pi\)
\(660\) 2.75552e6 0.246232
\(661\) 6.74321e6 0.600293 0.300146 0.953893i \(-0.402964\pi\)
0.300146 + 0.953893i \(0.402964\pi\)
\(662\) 1.02428e7 0.908393
\(663\) −1.18845e6 −0.105002
\(664\) −9.57960e6 −0.843193
\(665\) −3.85380e6 −0.337936
\(666\) −7.05666e6 −0.616472
\(667\) −2.68348e7 −2.33552
\(668\) 1.02496e7 0.888718
\(669\) 266705. 0.0230391
\(670\) 5.11055e6 0.439826
\(671\) 2.94472e7 2.52487
\(672\) 3.36512e6 0.287460
\(673\) −9.59924e6 −0.816957 −0.408478 0.912768i \(-0.633940\pi\)
−0.408478 + 0.912768i \(0.633940\pi\)
\(674\) −1.75045e7 −1.48423
\(675\) −455625. −0.0384900
\(676\) 484585. 0.0407853
\(677\) 3.66549e6 0.307369 0.153685 0.988120i \(-0.450886\pi\)
0.153685 + 0.988120i \(0.450886\pi\)
\(678\) 6.62600e6 0.553576
\(679\) 2.55075e6 0.212322
\(680\) −2.05493e6 −0.170422
\(681\) −1.28831e6 −0.106451
\(682\) 2.30801e7 1.90010
\(683\) 9.53070e6 0.781759 0.390879 0.920442i \(-0.372171\pi\)
0.390879 + 0.920442i \(0.372171\pi\)
\(684\) −3.16392e6 −0.258575
\(685\) 4.25978e6 0.346865
\(686\) −1.36491e7 −1.10737
\(687\) 1.30542e7 1.05526
\(688\) −1.52394e7 −1.22743
\(689\) −2.30787e6 −0.185210
\(690\) −5.25631e6 −0.420299
\(691\) 9.67074e6 0.770486 0.385243 0.922815i \(-0.374118\pi\)
0.385243 + 0.922815i \(0.374118\pi\)
\(692\) 2.96448e6 0.235333
\(693\) −3.91484e6 −0.309657
\(694\) 1.20057e7 0.946212
\(695\) −9.30798e6 −0.730960
\(696\) −7.61024e6 −0.595491
\(697\) −7.87229e6 −0.613789
\(698\) 2.18881e7 1.70047
\(699\) −161223. −0.0124805
\(700\) 710038. 0.0547692
\(701\) 1.03870e7 0.798356 0.399178 0.916873i \(-0.369295\pi\)
0.399178 + 0.916873i \(0.369295\pi\)
\(702\) −862114. −0.0660270
\(703\) 2.86621e7 2.18736
\(704\) −1.33875e6 −0.101805
\(705\) 2.29605e6 0.173984
\(706\) −1.28086e7 −0.967143
\(707\) −3.38861e6 −0.254960
\(708\) −1.09397e6 −0.0820203
\(709\) 3.75669e6 0.280666 0.140333 0.990104i \(-0.455183\pi\)
0.140333 + 0.990104i \(0.455183\pi\)
\(710\) 1.24528e7 0.927088
\(711\) 8.30907e6 0.616423
\(712\) −2.16084e6 −0.159743
\(713\) −1.52550e7 −1.12380
\(714\) −3.29496e6 −0.241882
\(715\) −3.04966e6 −0.223093
\(716\) −1.04279e7 −0.760173
\(717\) −3.58523e6 −0.260447
\(718\) −1.60829e7 −1.16427
\(719\) 161631. 0.0116601 0.00583006 0.999983i \(-0.498144\pi\)
0.00583006 + 0.999983i \(0.498144\pi\)
\(720\) −2.59011e6 −0.186203
\(721\) −4.19503e6 −0.300536
\(722\) 1.97616e7 1.41085
\(723\) 1.03691e7 0.737729
\(724\) 9.67068e6 0.685663
\(725\) −5.02378e6 −0.354965
\(726\) −2.26699e7 −1.59628
\(727\) −1.05397e7 −0.739594 −0.369797 0.929112i \(-0.620573\pi\)
−0.369797 + 0.929112i \(0.620573\pi\)
\(728\) −1.19041e6 −0.0832469
\(729\) 531441. 0.0370370
\(730\) 6.52697e6 0.453320
\(731\) 9.30954e6 0.644369
\(732\) 6.22959e6 0.429716
\(733\) 1.40432e7 0.965400 0.482700 0.875786i \(-0.339656\pi\)
0.482700 + 0.875786i \(0.339656\pi\)
\(734\) −3.20716e7 −2.19726
\(735\) 2.77281e6 0.189322
\(736\) −1.86424e7 −1.26855
\(737\) −2.10864e7 −1.42999
\(738\) −5.71063e6 −0.385961
\(739\) −1.13745e6 −0.0766165 −0.0383083 0.999266i \(-0.512197\pi\)
−0.0383083 + 0.999266i \(0.512197\pi\)
\(740\) −5.28081e6 −0.354504
\(741\) 3.50165e6 0.234276
\(742\) −6.39852e6 −0.426648
\(743\) 2.74898e6 0.182684 0.0913419 0.995820i \(-0.470884\pi\)
0.0913419 + 0.995820i \(0.470884\pi\)
\(744\) −4.32625e6 −0.286536
\(745\) −1.29770e7 −0.856611
\(746\) 3.45775e6 0.227482
\(747\) 7.37611e6 0.483644
\(748\) −9.56916e6 −0.625345
\(749\) 3.58814e6 0.233703
\(750\) −984040. −0.0638792
\(751\) 2.22457e6 0.143928 0.0719642 0.997407i \(-0.477073\pi\)
0.0719642 + 0.997407i \(0.477073\pi\)
\(752\) 1.30525e7 0.841681
\(753\) 7.20075e6 0.462797
\(754\) −9.50577e6 −0.608918
\(755\) 2.77942e6 0.177454
\(756\) −828189. −0.0527017
\(757\) −1.01829e7 −0.645849 −0.322924 0.946425i \(-0.604666\pi\)
−0.322924 + 0.946425i \(0.604666\pi\)
\(758\) 1.75641e7 1.11033
\(759\) 2.16878e7 1.36650
\(760\) 6.05465e6 0.380238
\(761\) 7.31991e6 0.458189 0.229094 0.973404i \(-0.426424\pi\)
0.229094 + 0.973404i \(0.426424\pi\)
\(762\) 1.85622e7 1.15809
\(763\) −1.37214e6 −0.0853269
\(764\) 4.31187e6 0.267259
\(765\) 1.58226e6 0.0977516
\(766\) 1.18698e7 0.730924
\(767\) 1.21074e6 0.0743128
\(768\) −1.15369e7 −0.705809
\(769\) 739800. 0.0451126 0.0225563 0.999746i \(-0.492819\pi\)
0.0225563 + 0.999746i \(0.492819\pi\)
\(770\) −8.45512e6 −0.513917
\(771\) 6.02876e6 0.365252
\(772\) 468540. 0.0282946
\(773\) 2.62668e7 1.58110 0.790549 0.612399i \(-0.209795\pi\)
0.790549 + 0.612399i \(0.209795\pi\)
\(774\) 6.75322e6 0.405190
\(775\) −2.85590e6 −0.170801
\(776\) −4.00746e6 −0.238899
\(777\) 7.50259e6 0.445819
\(778\) −2.09489e6 −0.124083
\(779\) 2.31949e7 1.36946
\(780\) −645158. −0.0379690
\(781\) −5.13808e7 −3.01421
\(782\) 1.82537e7 1.06742
\(783\) 5.85974e6 0.341565
\(784\) 1.57627e7 0.915882
\(785\) −6.48780e6 −0.375771
\(786\) 4.02080e6 0.232143
\(787\) −216388. −0.0124537 −0.00622683 0.999981i \(-0.501982\pi\)
−0.00622683 + 0.999981i \(0.501982\pi\)
\(788\) 1.49950e7 0.860260
\(789\) 4.44539e6 0.254224
\(790\) 1.79456e7 1.02303
\(791\) −7.04472e6 −0.400334
\(792\) 6.15056e6 0.348419
\(793\) −6.89456e6 −0.389335
\(794\) −9.80998e6 −0.552226
\(795\) 3.07261e6 0.172421
\(796\) 6.35637e6 0.355571
\(797\) −2.35778e7 −1.31479 −0.657395 0.753546i \(-0.728342\pi\)
−0.657395 + 0.753546i \(0.728342\pi\)
\(798\) 9.70827e6 0.539678
\(799\) −7.97355e6 −0.441860
\(800\) −3.49006e6 −0.192800
\(801\) 1.66381e6 0.0916266
\(802\) 1.62922e7 0.894423
\(803\) −2.69306e7 −1.47386
\(804\) −4.46084e6 −0.243375
\(805\) 5.58847e6 0.303951
\(806\) −5.40382e6 −0.292997
\(807\) −1.94152e7 −1.04944
\(808\) 5.32380e6 0.286875
\(809\) −2.22061e7 −1.19289 −0.596445 0.802654i \(-0.703421\pi\)
−0.596445 + 0.802654i \(0.703421\pi\)
\(810\) 1.14778e6 0.0614678
\(811\) −2.16203e7 −1.15428 −0.577138 0.816646i \(-0.695831\pi\)
−0.577138 + 0.816646i \(0.695831\pi\)
\(812\) −9.13171e6 −0.486029
\(813\) −1.32192e7 −0.701419
\(814\) 6.28838e7 3.32642
\(815\) 5.60316e6 0.295487
\(816\) 8.99472e6 0.472892
\(817\) −2.74296e7 −1.43769
\(818\) 4.37970e6 0.228855
\(819\) 916593. 0.0477493
\(820\) −4.27352e6 −0.221948
\(821\) 2.37570e6 0.123008 0.0615039 0.998107i \(-0.480410\pi\)
0.0615039 + 0.998107i \(0.480410\pi\)
\(822\) −1.07310e7 −0.553937
\(823\) 8.01991e6 0.412733 0.206367 0.978475i \(-0.433836\pi\)
0.206367 + 0.978475i \(0.433836\pi\)
\(824\) 6.59076e6 0.338156
\(825\) 4.06020e6 0.207688
\(826\) 3.35676e6 0.171187
\(827\) 2.57093e6 0.130715 0.0653576 0.997862i \(-0.479181\pi\)
0.0653576 + 0.997862i \(0.479181\pi\)
\(828\) 4.58807e6 0.232570
\(829\) 1.48897e7 0.752488 0.376244 0.926521i \(-0.377215\pi\)
0.376244 + 0.926521i \(0.377215\pi\)
\(830\) 1.59306e7 0.802671
\(831\) 2.28994e7 1.15033
\(832\) 313446. 0.0156984
\(833\) −9.62918e6 −0.480813
\(834\) 2.34481e7 1.16733
\(835\) 1.51025e7 0.749605
\(836\) 2.81946e7 1.39524
\(837\) 3.33113e6 0.164353
\(838\) −9.71784e6 −0.478035
\(839\) 2.00964e7 0.985628 0.492814 0.870135i \(-0.335968\pi\)
0.492814 + 0.870135i \(0.335968\pi\)
\(840\) 1.58487e6 0.0774987
\(841\) 4.40990e7 2.15000
\(842\) −4.52029e7 −2.19728
\(843\) 4.87075e6 0.236063
\(844\) −1.93815e7 −0.936551
\(845\) 714025. 0.0344010
\(846\) −5.78409e6 −0.277849
\(847\) 2.41025e7 1.15439
\(848\) 1.74670e7 0.834119
\(849\) −6.72395e6 −0.320151
\(850\) 3.41730e6 0.162232
\(851\) −4.15635e7 −1.96738
\(852\) −1.08697e7 −0.513000
\(853\) 1.06206e7 0.499779 0.249889 0.968274i \(-0.419606\pi\)
0.249889 + 0.968274i \(0.419606\pi\)
\(854\) −1.91150e7 −0.896872
\(855\) −4.66197e6 −0.218099
\(856\) −5.63728e6 −0.262957
\(857\) −2.58569e7 −1.20261 −0.601304 0.799020i \(-0.705352\pi\)
−0.601304 + 0.799020i \(0.705352\pi\)
\(858\) 7.68253e6 0.356275
\(859\) −9.62997e6 −0.445289 −0.222644 0.974900i \(-0.571469\pi\)
−0.222644 + 0.974900i \(0.571469\pi\)
\(860\) 5.05374e6 0.233006
\(861\) 6.07150e6 0.279118
\(862\) −2.16006e7 −0.990140
\(863\) 7.06988e6 0.323136 0.161568 0.986862i \(-0.448345\pi\)
0.161568 + 0.986862i \(0.448345\pi\)
\(864\) 4.07081e6 0.185522
\(865\) 4.36808e6 0.198496
\(866\) −3.21602e7 −1.45722
\(867\) 7.28397e6 0.329095
\(868\) −5.19117e6 −0.233865
\(869\) −7.40444e7 −3.32616
\(870\) 1.26556e7 0.566872
\(871\) 4.93701e6 0.220505
\(872\) 2.15575e6 0.0960078
\(873\) 3.08567e6 0.137029
\(874\) −5.37827e7 −2.38157
\(875\) 1.04622e6 0.0461960
\(876\) −5.69719e6 −0.250842
\(877\) 1.37524e7 0.603781 0.301890 0.953343i \(-0.402382\pi\)
0.301890 + 0.953343i \(0.402382\pi\)
\(878\) −1.99041e7 −0.871378
\(879\) −5.28345e6 −0.230646
\(880\) 2.30811e7 1.00473
\(881\) −2.92730e7 −1.27066 −0.635328 0.772242i \(-0.719135\pi\)
−0.635328 + 0.772242i \(0.719135\pi\)
\(882\) −6.98509e6 −0.302344
\(883\) 1.86050e7 0.803022 0.401511 0.915854i \(-0.368485\pi\)
0.401511 + 0.915854i \(0.368485\pi\)
\(884\) 2.24045e6 0.0964285
\(885\) −1.61194e6 −0.0691814
\(886\) 2.93950e7 1.25803
\(887\) 3.85656e7 1.64585 0.822926 0.568148i \(-0.192340\pi\)
0.822926 + 0.568148i \(0.192340\pi\)
\(888\) −1.17872e7 −0.501625
\(889\) −1.97351e7 −0.837502
\(890\) 3.59342e6 0.152066
\(891\) −4.73581e6 −0.199848
\(892\) −502788. −0.0211579
\(893\) 2.34933e7 0.985859
\(894\) 3.26909e7 1.36799
\(895\) −1.53652e7 −0.641181
\(896\) 1.28339e7 0.534058
\(897\) −5.07782e6 −0.210715
\(898\) −1.95784e7 −0.810190
\(899\) 3.67294e7 1.51571
\(900\) 858938. 0.0353473
\(901\) −1.06703e7 −0.437890
\(902\) 5.08890e7 2.08261
\(903\) −7.17998e6 −0.293024
\(904\) 1.10679e7 0.450446
\(905\) 1.42495e7 0.578334
\(906\) −7.00175e6 −0.283391
\(907\) −2.62084e7 −1.05785 −0.528923 0.848670i \(-0.677404\pi\)
−0.528923 + 0.848670i \(0.677404\pi\)
\(908\) 2.42870e6 0.0977596
\(909\) −4.09922e6 −0.164548
\(910\) 1.97962e6 0.0792462
\(911\) −4.34825e7 −1.73587 −0.867937 0.496674i \(-0.834554\pi\)
−0.867937 + 0.496674i \(0.834554\pi\)
\(912\) −2.65020e7 −1.05510
\(913\) −6.57305e7 −2.60970
\(914\) 1.82878e7 0.724098
\(915\) 9.17915e6 0.362451
\(916\) −2.46097e7 −0.969097
\(917\) −4.27488e6 −0.167881
\(918\) −3.98593e6 −0.156107
\(919\) −9.36547e6 −0.365798 −0.182899 0.983132i \(-0.558548\pi\)
−0.182899 + 0.983132i \(0.558548\pi\)
\(920\) −8.77998e6 −0.341998
\(921\) 7.52226e6 0.292213
\(922\) 3.58425e7 1.38858
\(923\) 1.20299e7 0.464792
\(924\) 7.38021e6 0.284373
\(925\) −7.78115e6 −0.299013
\(926\) 3.81350e7 1.46149
\(927\) −5.07476e6 −0.193962
\(928\) 4.48852e7 1.71093
\(929\) 7.22351e6 0.274605 0.137303 0.990529i \(-0.456157\pi\)
0.137303 + 0.990529i \(0.456157\pi\)
\(930\) 7.19443e6 0.272765
\(931\) 2.83714e7 1.07277
\(932\) 303935. 0.0114615
\(933\) 9.56677e6 0.359800
\(934\) 1.00597e7 0.377328
\(935\) −1.40999e7 −0.527458
\(936\) −1.44005e6 −0.0537263
\(937\) 2.98628e7 1.11117 0.555587 0.831458i \(-0.312494\pi\)
0.555587 + 0.831458i \(0.312494\pi\)
\(938\) 1.36878e7 0.507955
\(939\) 1.38758e7 0.513565
\(940\) −4.32849e6 −0.159778
\(941\) 8.04485e6 0.296172 0.148086 0.988974i \(-0.452689\pi\)
0.148086 + 0.988974i \(0.452689\pi\)
\(942\) 1.63437e7 0.600099
\(943\) −3.36354e7 −1.23174
\(944\) −9.16343e6 −0.334679
\(945\) −1.22032e6 −0.0444521
\(946\) −6.01798e7 −2.18637
\(947\) −1.71255e7 −0.620539 −0.310270 0.950649i \(-0.600419\pi\)
−0.310270 + 0.950649i \(0.600419\pi\)
\(948\) −1.56642e7 −0.566091
\(949\) 6.30534e6 0.227270
\(950\) −1.00687e7 −0.361964
\(951\) 3.82012e6 0.136970
\(952\) −5.50379e6 −0.196820
\(953\) −1.12629e7 −0.401715 −0.200857 0.979620i \(-0.564373\pi\)
−0.200857 + 0.979620i \(0.564373\pi\)
\(954\) −7.74034e6 −0.275353
\(955\) 6.35344e6 0.225424
\(956\) 6.75884e6 0.239181
\(957\) −5.22177e7 −1.84305
\(958\) −3.90939e7 −1.37624
\(959\) 1.14091e7 0.400595
\(960\) −417310. −0.0146144
\(961\) −7.74932e6 −0.270679
\(962\) −1.47231e7 −0.512936
\(963\) 4.34059e6 0.150829
\(964\) −1.95478e7 −0.677493
\(965\) 690383. 0.0238656
\(966\) −1.40782e7 −0.485404
\(967\) 2.32059e7 0.798054 0.399027 0.916939i \(-0.369348\pi\)
0.399027 + 0.916939i \(0.369348\pi\)
\(968\) −3.78671e7 −1.29889
\(969\) 1.61897e7 0.553897
\(970\) 6.66429e6 0.227418
\(971\) 6.37633e6 0.217031 0.108516 0.994095i \(-0.465390\pi\)
0.108516 + 0.994095i \(0.465390\pi\)
\(972\) −1.00187e6 −0.0340129
\(973\) −2.49299e7 −0.844186
\(974\) −3.25554e7 −1.09958
\(975\) −950625. −0.0320256
\(976\) 5.21811e7 1.75343
\(977\) −3.20525e7 −1.07430 −0.537150 0.843487i \(-0.680499\pi\)
−0.537150 + 0.843487i \(0.680499\pi\)
\(978\) −1.41152e7 −0.471888
\(979\) −1.48266e7 −0.494408
\(980\) −5.22726e6 −0.173864
\(981\) −1.65988e6 −0.0550687
\(982\) −3.38374e6 −0.111974
\(983\) −1.36173e7 −0.449477 −0.224738 0.974419i \(-0.572153\pi\)
−0.224738 + 0.974419i \(0.572153\pi\)
\(984\) −9.53886e6 −0.314057
\(985\) 2.20947e7 0.725601
\(986\) −4.39494e7 −1.43966
\(987\) 6.14960e6 0.200934
\(988\) −6.60127e6 −0.215147
\(989\) 3.97763e7 1.29310
\(990\) −1.02282e7 −0.331674
\(991\) −1.89939e7 −0.614369 −0.307184 0.951650i \(-0.599387\pi\)
−0.307184 + 0.951650i \(0.599387\pi\)
\(992\) 2.55162e7 0.823260
\(993\) −1.31738e7 −0.423973
\(994\) 3.33528e7 1.07069
\(995\) 9.36596e6 0.299912
\(996\) −1.39053e7 −0.444154
\(997\) −4.99689e7 −1.59207 −0.796034 0.605252i \(-0.793073\pi\)
−0.796034 + 0.605252i \(0.793073\pi\)
\(998\) −5.25590e7 −1.67040
\(999\) 9.07593e6 0.287725
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.6.a.d.1.4 4
3.2 odd 2 585.6.a.e.1.1 4
5.4 even 2 975.6.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.6.a.d.1.4 4 1.1 even 1 trivial
585.6.a.e.1.1 4 3.2 odd 2
975.6.a.g.1.1 4 5.4 even 2