Properties

Label 195.6.a.e.1.4
Level 195195
Weight 66
Character 195.1
Self dual yes
Analytic conductor 31.27531.275
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,6,Mod(1,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 195=3513 195 = 3 \cdot 5 \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 195.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.274844863531.2748448635
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x389x2+82x+720 x^{4} - 2x^{3} - 89x^{2} + 82x + 720 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 8.46798-8.46798 of defining polynomial
Character χ\chi == 195.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+9.46798q29.00000q3+57.6426q425.0000q585.2118q687.7314q7+242.784q8+81.0000q9236.699q1070.4184q11518.784q12169.000q13830.639q14+225.000q15+454.109q16892.889q17+766.906q181245.32q191441.07q20+789.583q21666.720q221681.71q232185.06q24+625.000q251600.09q26729.000q275057.07q285734.49q29+2130.30q302679.72q313469.59q32+633.766q338453.86q34+2193.29q35+4669.05q36+42.9130q3711790.7q38+1521.00q396069.60q40+15414.3q41+7475.75q42+921.195q434059.10q442025.00q4515922.4q46+28502.6q474086.98q489110.20q49+5917.49q50+8036.00q519741.60q5225572.2q536902.16q54+1760.46q5521299.8q56+11207.9q5754294.0q58+2102.94q59+12969.6q6019188.5q6125371.6q627106.24q6347381.5q64+4225.00q65+6000.48q66+13226.2q6751468.5q68+15135.4q69+20766.0q7027465.9q71+19665.5q72+85888.9q73+406.300q745625.00q7571783.7q76+6177.91q77+14400.8q78+17713.2q7911352.7q80+6561.00q81+145942.q8212373.2q83+45513.6q84+22322.2q85+8721.86q86+51610.4q8717096.5q883584.55q8919172.7q90+14826.6q9196938.5q92+24117.5q93+269862.q94+31133.1q95+31226.3q96+111961.q9786255.2q985703.89q99+O(q100)q+9.46798 q^{2} -9.00000 q^{3} +57.6426 q^{4} -25.0000 q^{5} -85.2118 q^{6} -87.7314 q^{7} +242.784 q^{8} +81.0000 q^{9} -236.699 q^{10} -70.4184 q^{11} -518.784 q^{12} -169.000 q^{13} -830.639 q^{14} +225.000 q^{15} +454.109 q^{16} -892.889 q^{17} +766.906 q^{18} -1245.32 q^{19} -1441.07 q^{20} +789.583 q^{21} -666.720 q^{22} -1681.71 q^{23} -2185.06 q^{24} +625.000 q^{25} -1600.09 q^{26} -729.000 q^{27} -5057.07 q^{28} -5734.49 q^{29} +2130.30 q^{30} -2679.72 q^{31} -3469.59 q^{32} +633.766 q^{33} -8453.86 q^{34} +2193.29 q^{35} +4669.05 q^{36} +42.9130 q^{37} -11790.7 q^{38} +1521.00 q^{39} -6069.60 q^{40} +15414.3 q^{41} +7475.75 q^{42} +921.195 q^{43} -4059.10 q^{44} -2025.00 q^{45} -15922.4 q^{46} +28502.6 q^{47} -4086.98 q^{48} -9110.20 q^{49} +5917.49 q^{50} +8036.00 q^{51} -9741.60 q^{52} -25572.2 q^{53} -6902.16 q^{54} +1760.46 q^{55} -21299.8 q^{56} +11207.9 q^{57} -54294.0 q^{58} +2102.94 q^{59} +12969.6 q^{60} -19188.5 q^{61} -25371.6 q^{62} -7106.24 q^{63} -47381.5 q^{64} +4225.00 q^{65} +6000.48 q^{66} +13226.2 q^{67} -51468.5 q^{68} +15135.4 q^{69} +20766.0 q^{70} -27465.9 q^{71} +19665.5 q^{72} +85888.9 q^{73} +406.300 q^{74} -5625.00 q^{75} -71783.7 q^{76} +6177.91 q^{77} +14400.8 q^{78} +17713.2 q^{79} -11352.7 q^{80} +6561.00 q^{81} +145942. q^{82} -12373.2 q^{83} +45513.6 q^{84} +22322.2 q^{85} +8721.86 q^{86} +51610.4 q^{87} -17096.5 q^{88} -3584.55 q^{89} -19172.7 q^{90} +14826.6 q^{91} -96938.5 q^{92} +24117.5 q^{93} +269862. q^{94} +31133.1 q^{95} +31226.3 q^{96} +111961. q^{97} -86255.2 q^{98} -5703.89 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q236q3+54q4100q518q6+87q7+120q8+324q950q10277q11486q12676q13+478q14+900q15+274q16+2017q17+162q18+22437q99+O(q100) 4 q + 2 q^{2} - 36 q^{3} + 54 q^{4} - 100 q^{5} - 18 q^{6} + 87 q^{7} + 120 q^{8} + 324 q^{9} - 50 q^{10} - 277 q^{11} - 486 q^{12} - 676 q^{13} + 478 q^{14} + 900 q^{15} + 274 q^{16} + 2017 q^{17} + 162 q^{18}+ \cdots - 22437 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 9.46798 1.67372 0.836859 0.547418i 0.184389π-0.184389\pi
0.836859 + 0.547418i 0.184389π0.184389\pi
33 −9.00000 −0.577350
44 57.6426 1.80133
55 −25.0000 −0.447214
66 −85.2118 −0.966322
77 −87.7314 −0.676722 −0.338361 0.941016i 0.609872π-0.609872\pi
−0.338361 + 0.941016i 0.609872π0.609872\pi
88 242.784 1.34120
99 81.0000 0.333333
1010 −236.699 −0.748509
1111 −70.4184 −0.175471 −0.0877353 0.996144i 0.527963π-0.527963\pi
−0.0877353 + 0.996144i 0.527963π0.527963\pi
1212 −518.784 −1.04000
1313 −169.000 −0.277350
1414 −830.639 −1.13264
1515 225.000 0.258199
1616 454.109 0.443466
1717 −892.889 −0.749334 −0.374667 0.927160i 0.622243π-0.622243\pi
−0.374667 + 0.927160i 0.622243π0.622243\pi
1818 766.906 0.557906
1919 −1245.32 −0.791404 −0.395702 0.918379i 0.629499π-0.629499\pi
−0.395702 + 0.918379i 0.629499π0.629499\pi
2020 −1441.07 −0.805580
2121 789.583 0.390705
2222 −666.720 −0.293688
2323 −1681.71 −0.662877 −0.331438 0.943477i 0.607534π-0.607534\pi
−0.331438 + 0.943477i 0.607534π0.607534\pi
2424 −2185.06 −0.774345
2525 625.000 0.200000
2626 −1600.09 −0.464206
2727 −729.000 −0.192450
2828 −5057.07 −1.21900
2929 −5734.49 −1.26619 −0.633096 0.774073i 0.718216π-0.718216\pi
−0.633096 + 0.774073i 0.718216π0.718216\pi
3030 2130.30 0.432152
3131 −2679.72 −0.500824 −0.250412 0.968139i 0.580566π-0.580566\pi
−0.250412 + 0.968139i 0.580566π0.580566\pi
3232 −3469.59 −0.598968
3333 633.766 0.101308
3434 −8453.86 −1.25417
3535 2193.29 0.302639
3636 4669.05 0.600444
3737 42.9130 0.00515329 0.00257665 0.999997i 0.499180π-0.499180\pi
0.00257665 + 0.999997i 0.499180π0.499180\pi
3838 −11790.7 −1.32459
3939 1521.00 0.160128
4040 −6069.60 −0.599805
4141 15414.3 1.43207 0.716034 0.698066i 0.245956π-0.245956\pi
0.716034 + 0.698066i 0.245956π0.245956\pi
4242 7475.75 0.653931
4343 921.195 0.0759767 0.0379884 0.999278i 0.487905π-0.487905\pi
0.0379884 + 0.999278i 0.487905π0.487905\pi
4444 −4059.10 −0.316081
4545 −2025.00 −0.149071
4646 −15922.4 −1.10947
4747 28502.6 1.88209 0.941045 0.338282i 0.109846π-0.109846\pi
0.941045 + 0.338282i 0.109846π0.109846\pi
4848 −4086.98 −0.256035
4949 −9110.20 −0.542048
5050 5917.49 0.334744
5151 8036.00 0.432628
5252 −9741.60 −0.499600
5353 −25572.2 −1.25048 −0.625241 0.780432i 0.714999π-0.714999\pi
−0.625241 + 0.780432i 0.714999π0.714999\pi
5454 −6902.16 −0.322107
5555 1760.46 0.0784728
5656 −21299.8 −0.907622
5757 11207.9 0.456917
5858 −54294.0 −2.11925
5959 2102.94 0.0786495 0.0393247 0.999226i 0.487479π-0.487479\pi
0.0393247 + 0.999226i 0.487479π0.487479\pi
6060 12969.6 0.465102
6161 −19188.5 −0.660262 −0.330131 0.943935i 0.607093π-0.607093\pi
−0.330131 + 0.943935i 0.607093π0.607093\pi
6262 −25371.6 −0.838239
6363 −7106.24 −0.225574
6464 −47381.5 −1.44597
6565 4225.00 0.124035
6666 6000.48 0.169561
6767 13226.2 0.359955 0.179978 0.983671i 0.442397π-0.442397\pi
0.179978 + 0.983671i 0.442397π0.442397\pi
6868 −51468.5 −1.34980
6969 15135.4 0.382712
7070 20766.0 0.506533
7171 −27465.9 −0.646618 −0.323309 0.946293i 0.604795π-0.604795\pi
−0.323309 + 0.946293i 0.604795π0.604795\pi
7272 19665.5 0.447068
7373 85888.9 1.88638 0.943192 0.332249i 0.107807π-0.107807\pi
0.943192 + 0.332249i 0.107807π0.107807\pi
7474 406.300 0.00862516
7575 −5625.00 −0.115470
7676 −71783.7 −1.42558
7777 6177.91 0.118745
7878 14400.8 0.268009
7979 17713.2 0.319323 0.159661 0.987172i 0.448960π-0.448960\pi
0.159661 + 0.987172i 0.448960π0.448960\pi
8080 −11352.7 −0.198324
8181 6561.00 0.111111
8282 145942. 2.39688
8383 −12373.2 −0.197145 −0.0985724 0.995130i 0.531428π-0.531428\pi
−0.0985724 + 0.995130i 0.531428π0.531428\pi
8484 45513.6 0.703790
8585 22322.2 0.335112
8686 8721.86 0.127164
8787 51610.4 0.731037
8888 −17096.5 −0.235342
8989 −3584.55 −0.0479689 −0.0239844 0.999712i 0.507635π-0.507635\pi
−0.0239844 + 0.999712i 0.507635π0.507635\pi
9090 −19172.7 −0.249503
9191 14826.6 0.187689
9292 −96938.5 −1.19406
9393 24117.5 0.289151
9494 269862. 3.15009
9595 31133.1 0.353927
9696 31226.3 0.345814
9797 111961. 1.20820 0.604099 0.796910i 0.293533π-0.293533\pi
0.604099 + 0.796910i 0.293533π0.293533\pi
9898 −86255.2 −0.907235
9999 −5703.89 −0.0584902
100100 36026.6 0.360266
101101 −71533.6 −0.697761 −0.348880 0.937167i 0.613438π-0.613438\pi
−0.348880 + 0.937167i 0.613438π0.613438\pi
102102 76084.7 0.724097
103103 −179.050 −0.00166296 −0.000831479 1.00000i 0.500265π-0.500265\pi
−0.000831479 1.00000i 0.500265π0.500265\pi
104104 −41030.5 −0.371983
105105 −19739.6 −0.174729
106106 −242117. −2.09296
107107 93692.3 0.791124 0.395562 0.918439i 0.370550π-0.370550\pi
0.395562 + 0.918439i 0.370550π0.370550\pi
108108 −42021.5 −0.346667
109109 −21332.0 −0.171975 −0.0859875 0.996296i 0.527405π-0.527405\pi
−0.0859875 + 0.996296i 0.527405π0.527405\pi
110110 16668.0 0.131341
111111 −386.217 −0.00297525
112112 −39839.6 −0.300103
113113 21860.1 0.161048 0.0805242 0.996753i 0.474341π-0.474341\pi
0.0805242 + 0.996753i 0.474341π0.474341\pi
114114 106116. 0.764751
115115 42042.9 0.296447
116116 −330551. −2.28083
117117 −13689.0 −0.0924500
118118 19910.6 0.131637
119119 78334.4 0.507090
120120 54626.4 0.346297
121121 −156092. −0.969210
122122 −181676. −1.10509
123123 −138728. −0.826804
124124 −154466. −0.902151
125125 −15625.0 −0.0894427
126126 −67281.8 −0.377547
127127 33539.1 0.184520 0.0922598 0.995735i 0.470591π-0.470591\pi
0.0922598 + 0.995735i 0.470591π0.470591\pi
128128 −337580. −1.82118
129129 −8290.76 −0.0438652
130130 40002.2 0.207599
131131 87609.1 0.446037 0.223019 0.974814i 0.428409π-0.428409\pi
0.223019 + 0.974814i 0.428409π0.428409\pi
132132 36531.9 0.182489
133133 109254. 0.535560
134134 125225. 0.602463
135135 18225.0 0.0860663
136136 −216779. −1.00501
137137 −225234. −1.02526 −0.512629 0.858610i 0.671328π-0.671328\pi
−0.512629 + 0.858610i 0.671328π0.671328\pi
138138 143302. 0.640552
139139 72865.4 0.319878 0.159939 0.987127i 0.448870π-0.448870\pi
0.159939 + 0.987127i 0.448870π0.448870\pi
140140 126427. 0.545154
141141 −256524. −1.08662
142142 −260046. −1.08226
143143 11900.7 0.0486668
144144 36782.8 0.147822
145145 143362. 0.566259
146146 813195. 3.15727
147147 81991.8 0.312952
148148 2473.62 0.00928279
149149 200346. 0.739289 0.369645 0.929173i 0.379479π-0.379479\pi
0.369645 + 0.929173i 0.379479π0.379479\pi
150150 −53257.4 −0.193264
151151 −268794. −0.959350 −0.479675 0.877446i 0.659245π-0.659245\pi
−0.479675 + 0.877446i 0.659245π0.659245\pi
152152 −302345. −1.06143
153153 −72324.0 −0.249778
154154 58492.3 0.198745
155155 66993.1 0.223976
156156 87674.4 0.288444
157157 −187764. −0.607945 −0.303972 0.952681i 0.598313π-0.598313\pi
−0.303972 + 0.952681i 0.598313π0.598313\pi
158158 167708. 0.534456
159159 230149. 0.721966
160160 86739.8 0.267867
161161 147539. 0.448583
162162 62119.4 0.185969
163163 −312637. −0.921660 −0.460830 0.887488i 0.652448π-0.652448\pi
−0.460830 + 0.887488i 0.652448π0.652448\pi
164164 888519. 2.57963
165165 −15844.1 −0.0453063
166166 −117149. −0.329965
167167 −303566. −0.842292 −0.421146 0.906993i 0.638372π-0.638372\pi
−0.421146 + 0.906993i 0.638372π0.638372\pi
168168 191698. 0.524016
169169 28561.0 0.0769231
170170 211346. 0.560883
171171 −100871. −0.263801
172172 53100.1 0.136859
173173 199740. 0.507398 0.253699 0.967283i 0.418353π-0.418353\pi
0.253699 + 0.967283i 0.418353π0.418353\pi
174174 488646. 1.22355
175175 −54832.1 −0.135344
176176 −31977.6 −0.0778152
177177 −18926.4 −0.0454083
178178 −33938.4 −0.0802864
179179 159284. 0.371570 0.185785 0.982590i 0.440517π-0.440517\pi
0.185785 + 0.982590i 0.440517π0.440517\pi
180180 −116726. −0.268527
181181 109312. 0.248011 0.124005 0.992282i 0.460426π-0.460426\pi
0.124005 + 0.992282i 0.460426π0.460426\pi
182182 140378. 0.314138
183183 172696. 0.381202
184184 −408293. −0.889053
185185 −1072.83 −0.00230462
186186 228344. 0.483957
187187 62875.8 0.131486
188188 1.64297e6 3.39027
189189 63956.2 0.130235
190190 294767. 0.592373
191191 614947. 1.21970 0.609851 0.792516i 0.291229π-0.291229\pi
0.609851 + 0.792516i 0.291229π0.291229\pi
192192 426434. 0.834831
193193 −636703. −1.23039 −0.615196 0.788374i 0.710923π-0.710923\pi
−0.615196 + 0.788374i 0.710923π0.710923\pi
194194 1.06005e6 2.02218
195195 −38025.0 −0.0716115
196196 −525136. −0.976408
197197 −227727. −0.418069 −0.209035 0.977908i 0.567032π-0.567032\pi
−0.209035 + 0.977908i 0.567032π0.567032\pi
198198 −54004.3 −0.0978961
199199 693103. 1.24069 0.620347 0.784327i 0.286992π-0.286992\pi
0.620347 + 0.784327i 0.286992π0.286992\pi
200200 151740. 0.268241
201201 −119036. −0.207820
202202 −677278. −1.16785
203203 503095. 0.856860
204204 463216. 0.779307
205205 −385357. −0.640440
206206 −1695.24 −0.00278332
207207 −136219. −0.220959
208208 −76744.4 −0.122995
209209 87693.7 0.138868
210210 −186894. −0.292447
211211 −131810. −0.203818 −0.101909 0.994794i 0.532495π-0.532495\pi
−0.101909 + 0.994794i 0.532495π0.532495\pi
212212 −1.47405e6 −2.25253
213213 247193. 0.373325
214214 887077. 1.32412
215215 −23029.9 −0.0339778
216216 −176989. −0.258115
217217 235096. 0.338919
218218 −201971. −0.287838
219219 −773000. −1.08910
220220 101478. 0.141356
221221 150898. 0.207828
222222 −3656.70 −0.00497974
223223 −1.20295e6 −1.61989 −0.809946 0.586505i 0.800503π-0.800503\pi
−0.809946 + 0.586505i 0.800503π0.800503\pi
224224 304392. 0.405334
225225 50625.0 0.0666667
226226 206971. 0.269550
227227 1.32636e6 1.70843 0.854215 0.519920i 0.174038π-0.174038\pi
0.854215 + 0.519920i 0.174038π0.174038\pi
228228 646054. 0.823060
229229 −1.31617e6 −1.65853 −0.829267 0.558853i 0.811241π-0.811241\pi
−0.829267 + 0.558853i 0.811241π0.811241\pi
230230 398061. 0.496169
231231 −55601.1 −0.0685573
232232 −1.39224e6 −1.69822
233233 −1.25449e6 −1.51383 −0.756913 0.653515i 0.773293π-0.773293\pi
−0.756913 + 0.653515i 0.773293π0.773293\pi
234234 −129607. −0.154735
235235 −712566. −0.841696
236236 121219. 0.141674
237237 −159419. −0.184361
238238 741669. 0.848726
239239 −1.36373e6 −1.54430 −0.772151 0.635439i 0.780819π-0.780819\pi
−0.772151 + 0.635439i 0.780819π0.780819\pi
240240 102174. 0.114502
241241 −1.52021e6 −1.68602 −0.843009 0.537899i 0.819218π-0.819218\pi
−0.843009 + 0.537899i 0.819218π0.819218\pi
242242 −1.47788e6 −1.62218
243243 −59049.0 −0.0641500
244244 −1.10608e6 −1.18935
245245 227755. 0.242411
246246 −1.31348e6 −1.38384
247247 210460. 0.219496
248248 −650593. −0.671708
249249 111358. 0.113822
250250 −147937. −0.149702
251251 −1.15822e6 −1.16040 −0.580198 0.814476i 0.697025π-0.697025\pi
−0.580198 + 0.814476i 0.697025π0.697025\pi
252252 −409623. −0.406333
253253 118424. 0.116315
254254 317548. 0.308834
255255 −200900. −0.193477
256256 −1.67999e6 −1.60217
257257 203996. 0.192659 0.0963296 0.995349i 0.469290π-0.469290\pi
0.0963296 + 0.995349i 0.469290π0.469290\pi
258258 −78496.7 −0.0734180
259259 −3764.82 −0.00348734
260260 243540. 0.223428
261261 −464494. −0.422064
262262 829481. 0.746540
263263 726824. 0.647948 0.323974 0.946066i 0.394981π-0.394981\pi
0.323974 + 0.946066i 0.394981π0.394981\pi
264264 153868. 0.135875
265265 639304. 0.559233
266266 1.03441e6 0.896377
267267 32260.9 0.0276948
268268 762393. 0.648399
269269 −488140. −0.411304 −0.205652 0.978625i 0.565932π-0.565932\pi
−0.205652 + 0.978625i 0.565932π0.565932\pi
270270 172554. 0.144051
271271 −1.25773e6 −1.04031 −0.520157 0.854071i 0.674127π-0.674127\pi
−0.520157 + 0.854071i 0.674127π0.674127\pi
272272 −405469. −0.332304
273273 −133439. −0.108362
274274 −2.13251e6 −1.71599
275275 −44011.5 −0.0350941
276276 872446. 0.689391
277277 1.35396e6 1.06025 0.530123 0.847921i 0.322146π-0.322146\pi
0.530123 + 0.847921i 0.322146π0.322146\pi
278278 689889. 0.535386
279279 −217057. −0.166941
280280 532494. 0.405901
281281 1.17153e6 0.885092 0.442546 0.896746i 0.354075π-0.354075\pi
0.442546 + 0.896746i 0.354075π0.354075\pi
282282 −2.42876e6 −1.81870
283283 −1.86173e6 −1.38182 −0.690909 0.722942i 0.742789π-0.742789\pi
−0.690909 + 0.722942i 0.742789π0.742789\pi
284284 −1.58321e6 −1.16477
285285 −280198. −0.204340
286286 112676. 0.0814545
287287 −1.35232e6 −0.969111
288288 −281037. −0.199656
289289 −622606. −0.438499
290290 1.35735e6 0.947757
291291 −1.00765e6 −0.697553
292292 4.95086e6 3.39800
293293 1.17629e6 0.800470 0.400235 0.916413i 0.368929π-0.368929\pi
0.400235 + 0.916413i 0.368929π0.368929\pi
294294 776297. 0.523793
295295 −52573.4 −0.0351731
296296 10418.6 0.00691162
297297 51335.0 0.0337693
298298 1.89687e6 1.23736
299299 284210. 0.183849
300300 −324240. −0.208000
301301 −80817.8 −0.0514151
302302 −2.54494e6 −1.60568
303303 643802. 0.402852
304304 −565512. −0.350960
305305 479712. 0.295278
306306 −684762. −0.418058
307307 17636.1 0.0106797 0.00533983 0.999986i 0.498300π-0.498300\pi
0.00533983 + 0.999986i 0.498300π0.498300\pi
308308 356111. 0.213899
309309 1611.45 0.000960109 0
310310 634289. 0.374872
311311 1.30118e6 0.762844 0.381422 0.924401i 0.375435π-0.375435\pi
0.381422 + 0.924401i 0.375435π0.375435\pi
312312 369274. 0.214765
313313 −841322. −0.485402 −0.242701 0.970101i 0.578033π-0.578033\pi
−0.242701 + 0.970101i 0.578033π0.578033\pi
314314 −1.77775e6 −1.01753
315315 177656. 0.100880
316316 1.02104e6 0.575206
317317 169458. 0.0947137 0.0473568 0.998878i 0.484920π-0.484920\pi
0.0473568 + 0.998878i 0.484920π0.484920\pi
318318 2.17905e6 1.20837
319319 403814. 0.222180
320320 1.18454e6 0.646657
321321 −843231. −0.456755
322322 1.39690e6 0.750801
323323 1.11194e6 0.593026
324324 378193. 0.200148
325325 −105625. −0.0554700
326326 −2.96004e6 −1.54260
327327 191988. 0.0992899
328328 3.74234e6 1.92069
329329 −2.50058e6 −1.27365
330330 −150012. −0.0758300
331331 −2.64106e6 −1.32498 −0.662489 0.749071i 0.730500π-0.730500\pi
−0.662489 + 0.749071i 0.730500π0.730500\pi
332332 −713221. −0.355123
333333 3475.95 0.00171776
334334 −2.87416e6 −1.40976
335335 −330655. −0.160977
336336 358556. 0.173264
337337 1.80911e6 0.867740 0.433870 0.900975i 0.357148π-0.357148\pi
0.433870 + 0.900975i 0.357148π0.357148\pi
338338 270415. 0.128748
339339 −196741. −0.0929813
340340 1.28671e6 0.603648
341341 188702. 0.0878800
342342 −955047. −0.441529
343343 2.27375e6 1.04354
344344 223651. 0.101900
345345 −378386. −0.171154
346346 1.89113e6 0.849242
347347 −1.16255e6 −0.518309 −0.259155 0.965836i 0.583444π-0.583444\pi
−0.259155 + 0.965836i 0.583444π0.583444\pi
348348 2.97496e6 1.31684
349349 −3.29498e6 −1.44807 −0.724034 0.689764i 0.757714π-0.757714\pi
−0.724034 + 0.689764i 0.757714π0.757714\pi
350350 −519149. −0.226528
351351 123201. 0.0533761
352352 244323. 0.105101
353353 1.42638e6 0.609253 0.304627 0.952472i 0.401468π-0.401468\pi
0.304627 + 0.952472i 0.401468π0.401468\pi
354354 −179195. −0.0760007
355355 686647. 0.289176
356356 −206623. −0.0864079
357357 −705010. −0.292769
358358 1.50810e6 0.621903
359359 −895639. −0.366773 −0.183386 0.983041i 0.558706π-0.558706\pi
−0.183386 + 0.983041i 0.558706π0.558706\pi
360360 −491637. −0.199935
361361 −925268. −0.373680
362362 1.03496e6 0.415100
363363 1.40483e6 0.559574
364364 854645. 0.338090
365365 −2.14722e6 −0.843616
366366 1.63509e6 0.638025
367367 715834. 0.277426 0.138713 0.990333i 0.455703π-0.455703\pi
0.138713 + 0.990333i 0.455703π0.455703\pi
368368 −763681. −0.293963
369369 1.24856e6 0.477356
370370 −10157.5 −0.00385729
371371 2.24348e6 0.846229
372372 1.39020e6 0.520857
373373 −2.73534e6 −1.01798 −0.508990 0.860773i 0.669981π-0.669981\pi
−0.508990 + 0.860773i 0.669981π0.669981\pi
374374 595307. 0.220071
375375 140625. 0.0516398
376376 6.91998e6 2.52427
377377 969129. 0.351179
378378 605536. 0.217977
379379 −1.85409e6 −0.663029 −0.331515 0.943450i 0.607560π-0.607560\pi
−0.331515 + 0.943450i 0.607560π0.607560\pi
380380 1.79459e6 0.637539
381381 −301852. −0.106532
382382 5.82230e6 2.04144
383383 1.41765e6 0.493825 0.246912 0.969038i 0.420584π-0.420584\pi
0.246912 + 0.969038i 0.420584π0.420584\pi
384384 3.03822e6 1.05146
385385 −154448. −0.0531043
386386 −6.02829e6 −2.05933
387387 74616.8 0.0253256
388388 6.45373e6 2.17636
389389 −620930. −0.208050 −0.104025 0.994575i 0.533172π-0.533172\pi
−0.104025 + 0.994575i 0.533172π0.533172\pi
390390 −360020. −0.119857
391391 1.50158e6 0.496716
392392 −2.21181e6 −0.726997
393393 −788482. −0.257520
394394 −2.15611e6 −0.699730
395395 −442831. −0.142805
396396 −328787. −0.105360
397397 −17627.9 −0.00561339 −0.00280670 0.999996i 0.500893π-0.500893\pi
−0.00280670 + 0.999996i 0.500893π0.500893\pi
398398 6.56228e6 2.07657
399399 −983286. −0.309206
400400 283818. 0.0886931
401401 −3.13600e6 −0.973903 −0.486951 0.873429i 0.661891π-0.661891\pi
−0.486951 + 0.873429i 0.661891π0.661891\pi
402402 −1.12703e6 −0.347832
403403 452873. 0.138904
404404 −4.12338e6 −1.25690
405405 −164025. −0.0496904
406406 4.76329e6 1.43414
407407 −3021.87 −0.000904251 0
408408 1.95101e6 0.580242
409409 −4.54221e6 −1.34264 −0.671319 0.741169i 0.734272π-0.734272\pi
−0.671319 + 0.741169i 0.734272π0.734272\pi
410410 −3.64855e6 −1.07192
411411 2.02711e6 0.591933
412412 −10320.9 −0.00299554
413413 −184494. −0.0532238
414414 −1.28972e6 −0.369823
415415 309329. 0.0881658
416416 586361. 0.166124
417417 −655789. −0.184682
418418 830282. 0.232426
419419 6.13384e6 1.70686 0.853430 0.521208i 0.174519π-0.174519\pi
0.853430 + 0.521208i 0.174519π0.174519\pi
420420 −1.13784e6 −0.314745
421421 441743. 0.121469 0.0607343 0.998154i 0.480656π-0.480656\pi
0.0607343 + 0.998154i 0.480656π0.480656\pi
422422 −1.24798e6 −0.341135
423423 2.30871e6 0.627363
424424 −6.20851e6 −1.67715
425425 −558056. −0.149867
426426 2.34042e6 0.624841
427427 1.68343e6 0.446814
428428 5.40067e6 1.42508
429429 −107106. −0.0280978
430430 −218046. −0.0568693
431431 4.05311e6 1.05098 0.525491 0.850799i 0.323882π-0.323882\pi
0.525491 + 0.850799i 0.323882π0.323882\pi
432432 −331045. −0.0853450
433433 2.15043e6 0.551195 0.275597 0.961273i 0.411124π-0.411124\pi
0.275597 + 0.961273i 0.411124π0.411124\pi
434434 2.22588e6 0.567254
435435 −1.29026e6 −0.326930
436436 −1.22963e6 −0.309784
437437 2.09428e6 0.524603
438438 −7.31875e6 −1.82285
439439 −2.96948e6 −0.735391 −0.367696 0.929946i 0.619853π-0.619853\pi
−0.367696 + 0.929946i 0.619853π0.619853\pi
440440 427411. 0.105248
441441 −737926. −0.180683
442442 1.42870e6 0.347845
443443 222455. 0.0538558 0.0269279 0.999637i 0.491428π-0.491428\pi
0.0269279 + 0.999637i 0.491428π0.491428\pi
444444 −22262.6 −0.00535942
445445 89613.7 0.0214523
446446 −1.13895e7 −2.71124
447447 −1.80311e6 −0.426829
448448 4.15685e6 0.978518
449449 6.44827e6 1.50948 0.754740 0.656024i 0.227763π-0.227763\pi
0.754740 + 0.656024i 0.227763π0.227763\pi
450450 479316. 0.111581
451451 −1.08545e6 −0.251286
452452 1.26007e6 0.290102
453453 2.41915e6 0.553881
454454 1.25580e7 2.85943
455455 −370665. −0.0839370
456456 2.72110e6 0.612819
457457 4.52847e6 1.01429 0.507144 0.861862i 0.330701π-0.330701\pi
0.507144 + 0.861862i 0.330701π0.330701\pi
458458 −1.24615e7 −2.77592
459459 650916. 0.144209
460460 2.42346e6 0.534000
461461 −8.97112e6 −1.96605 −0.983024 0.183475i 0.941265π-0.941265\pi
−0.983024 + 0.183475i 0.941265π0.941265\pi
462462 −526431. −0.114746
463463 5.51660e6 1.19597 0.597984 0.801508i 0.295969π-0.295969\pi
0.597984 + 0.801508i 0.295969π0.295969\pi
464464 −2.60408e6 −0.561513
465465 −602937. −0.129312
466466 −1.18774e7 −2.53372
467467 6.47012e6 1.37284 0.686421 0.727205i 0.259181π-0.259181\pi
0.686421 + 0.727205i 0.259181π0.259181\pi
468468 −789070. −0.166533
469469 −1.16035e6 −0.243589
470470 −6.74656e6 −1.40876
471471 1.68988e6 0.350997
472472 510559. 0.105485
473473 −64869.1 −0.0133317
474474 −1.50938e6 −0.308568
475475 −778327. −0.158281
476476 4.51540e6 0.913438
477477 −2.07134e6 −0.416828
478478 −1.29117e7 −2.58473
479479 7.88628e6 1.57048 0.785242 0.619189i 0.212538π-0.212538\pi
0.785242 + 0.619189i 0.212538π0.212538\pi
480480 −780658. −0.154653
481481 −7252.30 −0.00142927
482482 −1.43934e7 −2.82192
483483 −1.32785e6 −0.258989
484484 −8.99757e6 −1.74587
485485 −2.79903e6 −0.540322
486486 −559075. −0.107369
487487 −4.37472e6 −0.835848 −0.417924 0.908482i 0.637242π-0.637242\pi
−0.417924 + 0.908482i 0.637242π0.637242\pi
488488 −4.65866e6 −0.885546
489489 2.81373e6 0.532121
490490 2.15638e6 0.405728
491491 −285109. −0.0533711 −0.0266856 0.999644i 0.508495π-0.508495\pi
−0.0266856 + 0.999644i 0.508495π0.508495\pi
492492 −7.99667e6 −1.48935
493493 5.12026e6 0.948801
494494 1.99263e6 0.367374
495495 142597. 0.0261576
496496 −1.21689e6 −0.222098
497497 2.40962e6 0.437580
498498 1.05434e6 0.190505
499499 6.31747e6 1.13577 0.567887 0.823106i 0.307761π-0.307761\pi
0.567887 + 0.823106i 0.307761π0.307761\pi
500500 −900666. −0.161116
501501 2.73210e6 0.486297
502502 −1.09660e7 −1.94217
503503 −5.68821e6 −1.00243 −0.501217 0.865322i 0.667114π-0.667114\pi
−0.501217 + 0.865322i 0.667114π0.667114\pi
504504 −1.72528e6 −0.302541
505505 1.78834e6 0.312048
506506 1.12123e6 0.194679
507507 −257049. −0.0444116
508508 1.93328e6 0.332381
509509 3.61839e6 0.619043 0.309522 0.950892i 0.399831π-0.399831\pi
0.309522 + 0.950892i 0.399831π0.399831\pi
510510 −1.90212e6 −0.323826
511511 −7.53516e6 −1.27656
512512 −5.10358e6 −0.860400
513513 907841. 0.152306
514514 1.93143e6 0.322457
515515 4476.25 0.000743697 0
516516 −477901. −0.0790158
517517 −2.00711e6 −0.330251
518518 −35645.2 −0.00583683
519519 −1.79766e6 −0.292947
520520 1.02576e6 0.166356
521521 −1.67303e6 −0.270028 −0.135014 0.990844i 0.543108π-0.543108\pi
−0.135014 + 0.990844i 0.543108π0.543108\pi
522522 −4.39782e6 −0.706417
523523 1.31354e6 0.209986 0.104993 0.994473i 0.466518π-0.466518\pi
0.104993 + 0.994473i 0.466518π0.466518\pi
524524 5.05002e6 0.803461
525525 493489. 0.0781411
526526 6.88156e6 1.08448
527527 2.39269e6 0.375285
528528 287798. 0.0449266
529529 −3.60818e6 −0.560595
530530 6.05292e6 0.935998
531531 170338. 0.0262165
532532 6.29769e6 0.964722
533533 −2.60501e6 −0.397184
534534 305446. 0.0463533
535535 −2.34231e6 −0.353801
536536 3.21111e6 0.482773
537537 −1.43356e6 −0.214526
538538 −4.62169e6 −0.688407
539539 641526. 0.0951135
540540 1.05054e6 0.155034
541541 229926. 0.0337750 0.0168875 0.999857i 0.494624π-0.494624\pi
0.0168875 + 0.999857i 0.494624π0.494624\pi
542542 −1.19082e7 −1.74119
543543 −983807. −0.143189
544544 3.09796e6 0.448827
545545 533300. 0.0769096
546546 −1.26340e6 −0.181368
547547 7.70690e6 1.10132 0.550658 0.834731i 0.314377π-0.314377\pi
0.550658 + 0.834731i 0.314377π0.314377\pi
548548 −1.29831e7 −1.84683
549549 −1.55427e6 −0.220087
550550 −416700. −0.0587377
551551 7.14130e6 1.00207
552552 3.67464e6 0.513295
553553 −1.55401e6 −0.216093
554554 1.28193e7 1.77455
555555 9655.43 0.00133057
556556 4.20016e6 0.576207
557557 −8.73237e6 −1.19260 −0.596299 0.802763i 0.703363π-0.703363\pi
−0.596299 + 0.802763i 0.703363π0.703363\pi
558558 −2.05510e6 −0.279413
559559 −155682. −0.0210722
560560 995990. 0.134210
561561 −565882. −0.0759135
562562 1.10920e7 1.48139
563563 1.04109e7 1.38426 0.692128 0.721775i 0.256673π-0.256673\pi
0.692128 + 0.721775i 0.256673π0.256673\pi
564564 −1.47867e7 −1.95737
565565 −546503. −0.0720230
566566 −1.76268e7 −2.31277
567567 −575606. −0.0751913
568568 −6.66828e6 −0.867247
569569 1.00943e7 1.30706 0.653531 0.756900i 0.273287π-0.273287\pi
0.653531 + 0.756900i 0.273287π0.273287\pi
570570 −2.65291e6 −0.342007
571571 1.22705e7 1.57497 0.787483 0.616337i 0.211384π-0.211384\pi
0.787483 + 0.616337i 0.211384π0.211384\pi
572572 685988. 0.0876651
573573 −5.53452e6 −0.704196
574574 −1.28037e7 −1.62202
575575 −1.05107e6 −0.132575
576576 −3.83790e6 −0.481990
577577 2.77864e6 0.347451 0.173725 0.984794i 0.444419π-0.444419\pi
0.173725 + 0.984794i 0.444419π0.444419\pi
578578 −5.89482e6 −0.733924
579579 5.73033e6 0.710368
580580 8.26378e6 1.02002
581581 1.08551e6 0.133412
582582 −9.54041e6 −1.16751
583583 1.80075e6 0.219423
584584 2.08524e7 2.53003
585585 342225. 0.0413449
586586 1.11371e7 1.33976
587587 1.45815e7 1.74666 0.873328 0.487133i 0.161957π-0.161957\pi
0.873328 + 0.487133i 0.161957π0.161957\pi
588588 4.72622e6 0.563730
589589 3.33712e6 0.396355
590590 −497764. −0.0588699
591591 2.04954e6 0.241372
592592 19487.2 0.00228531
593593 1.24857e7 1.45806 0.729031 0.684480i 0.239971π-0.239971\pi
0.729031 + 0.684480i 0.239971π0.239971\pi
594594 486039. 0.0565204
595595 −1.95836e6 −0.226778
596596 1.15485e7 1.33171
597597 −6.23792e6 −0.716315
598598 2.69089e6 0.307711
599599 1.85120e6 0.210807 0.105404 0.994430i 0.466387π-0.466387\pi
0.105404 + 0.994430i 0.466387π0.466387\pi
600600 −1.36566e6 −0.154869
601601 5.47054e6 0.617795 0.308897 0.951095i 0.400040π-0.400040\pi
0.308897 + 0.951095i 0.400040π0.400040\pi
602602 −765181. −0.0860544
603603 1.07132e6 0.119985
604604 −1.54940e7 −1.72811
605605 3.90231e6 0.433444
606606 6.09550e6 0.674261
607607 −127671. −0.0140644 −0.00703220 0.999975i 0.502238π-0.502238\pi
−0.00703220 + 0.999975i 0.502238π0.502238\pi
608608 4.32077e6 0.474026
609609 −4.52785e6 −0.494708
610610 4.54191e6 0.494212
611611 −4.81694e6 −0.521998
612612 −4.16895e6 −0.449933
613613 −1.25347e7 −1.34730 −0.673648 0.739052i 0.735274π-0.735274\pi
−0.673648 + 0.739052i 0.735274π0.735274\pi
614614 166979. 0.0178748
615615 3.46821e6 0.369758
616616 1.49990e6 0.159261
617617 1.44144e7 1.52434 0.762172 0.647374i 0.224133π-0.224133\pi
0.762172 + 0.647374i 0.224133π0.224133\pi
618618 15257.2 0.00160695
619619 −9.76407e6 −1.02425 −0.512123 0.858912i 0.671141π-0.671141\pi
−0.512123 + 0.858912i 0.671141π0.671141\pi
620620 3.86166e6 0.403454
621621 1.22597e6 0.127571
622622 1.23195e7 1.27679
623623 314478. 0.0324616
624624 690699. 0.0710113
625625 390625. 0.0400000
626626 −7.96562e6 −0.812426
627627 −789243. −0.0801756
628628 −1.08232e7 −1.09511
629629 −38316.6 −0.00386153
630630 1.68204e6 0.168844
631631 −1.89186e7 −1.89154 −0.945768 0.324843i 0.894688π-0.894688\pi
−0.945768 + 0.324843i 0.894688π0.894688\pi
632632 4.30049e6 0.428277
633633 1.18629e6 0.117675
634634 1.60442e6 0.158524
635635 −838478. −0.0825197
636636 1.32664e7 1.30050
637637 1.53962e6 0.150337
638638 3.82330e6 0.371866
639639 −2.22474e6 −0.215539
640640 8.43951e6 0.814455
641641 −1.68562e7 −1.62038 −0.810188 0.586171i 0.800635π-0.800635\pi
−0.810188 + 0.586171i 0.800635π0.800635\pi
642642 −7.98369e6 −0.764480
643643 1.31206e6 0.125149 0.0625744 0.998040i 0.480069π-0.480069\pi
0.0625744 + 0.998040i 0.480069π0.480069\pi
644644 8.50455e6 0.808047
645645 207269. 0.0196171
646646 1.05278e7 0.992558
647647 1.84547e7 1.73319 0.866596 0.499010i 0.166303π-0.166303\pi
0.866596 + 0.499010i 0.166303π0.166303\pi
648648 1.59291e6 0.149023
649649 −148085. −0.0138007
650650 −1.00006e6 −0.0928412
651651 −2.11586e6 −0.195675
652652 −1.80212e7 −1.66022
653653 −7.98759e6 −0.733048 −0.366524 0.930409i 0.619452π-0.619452\pi
−0.366524 + 0.930409i 0.619452π0.619452\pi
654654 1.81774e6 0.166183
655655 −2.19023e6 −0.199474
656656 6.99976e6 0.635073
657657 6.95700e6 0.628795
658658 −2.36754e7 −2.13173
659659 −1.16048e7 −1.04094 −0.520468 0.853881i 0.674243π-0.674243\pi
−0.520468 + 0.853881i 0.674243π0.674243\pi
660660 −913298. −0.0816117
661661 −9.83454e6 −0.875489 −0.437744 0.899099i 0.644223π-0.644223\pi
−0.437744 + 0.899099i 0.644223π0.644223\pi
662662 −2.50055e7 −2.21764
663663 −1.35808e6 −0.119989
664664 −3.00400e6 −0.264411
665665 −2.73135e6 −0.239510
666666 32910.3 0.00287505
667667 9.64378e6 0.839330
668668 −1.74984e7 −1.51725
669669 1.08266e7 0.935245
670670 −3.13064e6 −0.269430
671671 1.35122e6 0.115857
672672 −2.73953e6 −0.234020
673673 −2.05002e7 −1.74470 −0.872351 0.488881i 0.837405π-0.837405\pi
−0.872351 + 0.488881i 0.837405π0.837405\pi
674674 1.71286e7 1.45235
675675 −455625. −0.0384900
676676 1.64633e6 0.138564
677677 5.19490e6 0.435618 0.217809 0.975991i 0.430109π-0.430109\pi
0.217809 + 0.975991i 0.430109π0.430109\pi
678678 −1.86274e6 −0.155625
679679 −9.82251e6 −0.817613
680680 5.41948e6 0.449454
681681 −1.19372e7 −0.986362
682682 1.78662e6 0.147086
683683 −1.91454e7 −1.57041 −0.785206 0.619234i 0.787443π-0.787443\pi
−0.785206 + 0.619234i 0.787443π0.787443\pi
684684 −5.81448e6 −0.475194
685685 5.63086e6 0.458509
686686 2.15278e7 1.74659
687687 1.18456e7 0.957554
688688 418323. 0.0336931
689689 4.32169e6 0.346821
690690 −3.58255e6 −0.286464
691691 −1.95284e7 −1.55586 −0.777932 0.628349i 0.783731π-0.783731\pi
−0.777932 + 0.628349i 0.783731π0.783731\pi
692692 1.15135e7 0.913993
693693 500410. 0.0395816
694694 −1.10070e7 −0.867503
695695 −1.82164e6 −0.143054
696696 1.25302e7 0.980470
697697 −1.37632e7 −1.07310
698698 −3.11968e7 −2.42366
699699 1.12904e7 0.874008
700700 −3.16067e6 −0.243800
701701 4.01022e6 0.308229 0.154114 0.988053i 0.450748π-0.450748\pi
0.154114 + 0.988053i 0.450748π0.450748\pi
702702 1.16646e6 0.0893365
703703 −53440.6 −0.00407834
704704 3.33653e6 0.253725
705705 6.41309e6 0.485953
706706 1.35049e7 1.01972
707707 6.27574e6 0.472190
708708 −1.09097e6 −0.0817955
709709 1.14260e7 0.853647 0.426823 0.904335i 0.359633π-0.359633\pi
0.426823 + 0.904335i 0.359633π0.359633\pi
710710 6.50116e6 0.484000
711711 1.43477e6 0.106441
712712 −870271. −0.0643360
713713 4.50653e6 0.331985
714714 −6.67502e6 −0.490012
715715 −297518. −0.0217645
716716 9.18156e6 0.669320
717717 1.22735e7 0.891604
718718 −8.47989e6 −0.613874
719719 1.79890e7 1.29773 0.648865 0.760903i 0.275244π-0.275244\pi
0.648865 + 0.760903i 0.275244π0.275244\pi
720720 −919570. −0.0661079
721721 15708.3 0.00112536
722722 −8.76042e6 −0.625434
723723 1.36819e7 0.973423
724724 6.30102e6 0.446750
725725 −3.58406e6 −0.253239
726726 1.33009e7 0.936569
727727 8.92635e6 0.626380 0.313190 0.949690i 0.398602π-0.398602\pi
0.313190 + 0.949690i 0.398602π0.398602\pi
728728 3.59966e6 0.251729
729729 531441. 0.0370370
730730 −2.03299e7 −1.41198
731731 −822525. −0.0569319
732732 9.95468e6 0.686672
733733 −2.67429e7 −1.83844 −0.919219 0.393746i 0.871179π-0.871179\pi
−0.919219 + 0.393746i 0.871179π0.871179\pi
734734 6.77750e6 0.464333
735735 −2.04979e6 −0.139956
736736 5.83486e6 0.397042
737737 −931368. −0.0631615
738738 1.18213e7 0.798959
739739 −1.52087e6 −0.102443 −0.0512213 0.998687i 0.516311π-0.516311\pi
−0.0512213 + 0.998687i 0.516311π0.516311\pi
740740 −61840.5 −0.00415139
741741 −1.89414e6 −0.126726
742742 2.12412e7 1.41635
743743 1.77630e7 1.18044 0.590222 0.807241i 0.299040π-0.299040\pi
0.590222 + 0.807241i 0.299040π0.299040\pi
744744 5.85534e6 0.387811
745745 −5.00864e6 −0.330620
746746 −2.58981e7 −1.70381
747747 −1.00223e6 −0.0657149
748748 3.62433e6 0.236850
749749 −8.21976e6 −0.535370
750750 1.33143e6 0.0864304
751751 1.81110e6 0.117177 0.0585884 0.998282i 0.481340π-0.481340\pi
0.0585884 + 0.998282i 0.481340π0.481340\pi
752752 1.29433e7 0.834642
753753 1.04240e7 0.669955
754754 9.17569e6 0.587774
755755 6.71985e6 0.429034
756756 3.68660e6 0.234597
757757 1.79449e7 1.13815 0.569077 0.822285i 0.307301π-0.307301\pi
0.569077 + 0.822285i 0.307301π0.307301\pi
758758 −1.75545e7 −1.10972
759759 −1.06581e6 −0.0671547
760760 7.55861e6 0.474688
761761 −2.89207e7 −1.81029 −0.905143 0.425108i 0.860236π-0.860236\pi
−0.905143 + 0.425108i 0.860236π0.860236\pi
762762 −2.85793e6 −0.178305
763763 1.87149e6 0.116379
764764 3.54471e7 2.19709
765765 1.80810e6 0.111704
766766 1.34223e7 0.826524
767767 −355396. −0.0218134
768768 1.51199e7 0.925012
769769 1.41345e7 0.861914 0.430957 0.902373i 0.358176π-0.358176\pi
0.430957 + 0.902373i 0.358176π0.358176\pi
770770 −1.46231e6 −0.0888816
771771 −1.83597e6 −0.111232
772772 −3.67012e7 −2.21635
773773 −2.44736e7 −1.47316 −0.736578 0.676353i 0.763560π-0.763560\pi
−0.736578 + 0.676353i 0.763560π0.763560\pi
774774 706471. 0.0423879
775775 −1.67483e6 −0.100165
776776 2.71824e7 1.62044
777777 33883.4 0.00201342
778778 −5.87895e6 −0.348218
779779 −1.91958e7 −1.13334
780780 −2.19186e6 −0.128996
781781 1.93410e6 0.113462
782782 1.42170e7 0.831362
783783 4.18044e6 0.243679
784784 −4.13702e6 −0.240380
785785 4.69411e6 0.271881
786786 −7.46533e6 −0.431015
787787 2.64173e7 1.52038 0.760189 0.649702i 0.225106π-0.225106\pi
0.760189 + 0.649702i 0.225106π0.225106\pi
788788 −1.31268e7 −0.753082
789789 −6.54142e6 −0.374093
790790 −4.19271e6 −0.239016
791791 −1.91782e6 −0.108985
792792 −1.38481e6 −0.0784473
793793 3.24286e6 0.183124
794794 −166901. −0.00939523
795795 −5.75373e6 −0.322873
796796 3.99523e7 2.23490
797797 1.16049e7 0.647134 0.323567 0.946205i 0.395118π-0.395118\pi
0.323567 + 0.946205i 0.395118π0.395118\pi
798798 −9.30973e6 −0.517523
799799 −2.54497e7 −1.41031
800800 −2.16850e6 −0.119794
801801 −290348. −0.0159896
802802 −2.96916e7 −1.63004
803803 −6.04816e6 −0.331005
804804 −6.86154e6 −0.374353
805805 −3.68848e6 −0.200612
806806 4.28779e6 0.232486
807807 4.39326e6 0.237467
808808 −1.73672e7 −0.935839
809809 −1.74431e7 −0.937029 −0.468515 0.883456i 0.655211π-0.655211\pi
−0.468515 + 0.883456i 0.655211π0.655211\pi
810810 −1.55299e6 −0.0831677
811811 6.63388e6 0.354173 0.177087 0.984195i 0.443333π-0.443333\pi
0.177087 + 0.984195i 0.443333π0.443333\pi
812812 2.89997e7 1.54349
813813 1.13196e7 0.600626
814814 −28611.0 −0.00151346
815815 7.81591e6 0.412179
816816 3.64922e6 0.191856
817817 −1.14719e6 −0.0601283
818818 −4.30055e7 −2.24720
819819 1.20096e6 0.0625629
820820 −2.22130e7 −1.15365
821821 −1.50323e7 −0.778339 −0.389169 0.921166i 0.627238π-0.627238\pi
−0.389169 + 0.921166i 0.627238π0.627238\pi
822822 1.91926e7 0.990729
823823 1.50676e7 0.775433 0.387716 0.921779i 0.373264π-0.373264\pi
0.387716 + 0.921779i 0.373264π0.373264\pi
824824 −43470.4 −0.00223037
825825 396103. 0.0202616
826826 −1.74678e6 −0.0890817
827827 −3.56260e7 −1.81135 −0.905677 0.423969i 0.860636π-0.860636\pi
−0.905677 + 0.423969i 0.860636π0.860636\pi
828828 −7.85202e6 −0.398020
829829 −5.83029e6 −0.294648 −0.147324 0.989088i 0.547066π-0.547066\pi
−0.147324 + 0.989088i 0.547066π0.547066\pi
830830 2.92872e6 0.147565
831831 −1.21857e7 −0.612134
832832 8.00748e6 0.401040
833833 8.13440e6 0.406175
834834 −6.20900e6 −0.309105
835835 7.58916e6 0.376684
836836 5.05490e6 0.250148
837837 1.95352e6 0.0963837
838838 5.80751e7 2.85680
839839 −3.42304e7 −1.67883 −0.839415 0.543492i 0.817102π-0.817102\pi
−0.839415 + 0.543492i 0.817102π0.817102\pi
840840 −4.79245e6 −0.234347
841841 1.23732e7 0.603244
842842 4.18241e6 0.203304
843843 −1.05438e7 −0.511008
844844 −7.59790e6 −0.367145
845845 −714025. −0.0344010
846846 2.18588e7 1.05003
847847 1.36942e7 0.655885
848848 −1.16125e7 −0.554546
849849 1.67556e7 0.797793
850850 −5.28366e6 −0.250835
851851 −72167.4 −0.00341600
852852 1.42489e7 0.672482
853853 1.15393e7 0.543011 0.271505 0.962437i 0.412479π-0.412479\pi
0.271505 + 0.962437i 0.412479π0.412479\pi
854854 1.59387e7 0.747840
855855 2.52178e6 0.117976
856856 2.27470e7 1.06106
857857 −2.89877e7 −1.34822 −0.674111 0.738630i 0.735473π-0.735473\pi
−0.674111 + 0.738630i 0.735473π0.735473\pi
858858 −1.01408e6 −0.0470278
859859 1.73688e7 0.803132 0.401566 0.915830i 0.368466π-0.368466\pi
0.401566 + 0.915830i 0.368466π0.368466\pi
860860 −1.32750e6 −0.0612054
861861 1.21708e7 0.559516
862862 3.83748e7 1.75905
863863 3.46809e7 1.58512 0.792562 0.609791i 0.208747π-0.208747\pi
0.792562 + 0.609791i 0.208747π0.208747\pi
864864 2.52933e6 0.115271
865865 −4.99349e6 −0.226915
866866 2.03602e7 0.922545
867867 5.60345e6 0.253168
868868 1.35515e7 0.610505
869869 −1.24734e6 −0.0560318
870870 −1.22162e7 −0.547188
871871 −2.23523e6 −0.0998336
872872 −5.17907e6 −0.230654
873873 9.06885e6 0.402732
874874 1.98286e7 0.878038
875875 1.37080e6 0.0605278
876876 −4.45578e7 −1.96184
877877 5.12506e6 0.225009 0.112504 0.993651i 0.464113π-0.464113\pi
0.112504 + 0.993651i 0.464113π0.464113\pi
878878 −2.81149e7 −1.23084
879879 −1.05866e7 −0.462151
880880 799440. 0.0348000
881881 1.54340e7 0.669946 0.334973 0.942228i 0.391273π-0.391273\pi
0.334973 + 0.942228i 0.391273π0.391273\pi
882882 −6.98667e6 −0.302412
883883 −4.05392e7 −1.74974 −0.874870 0.484358i 0.839053π-0.839053\pi
−0.874870 + 0.484358i 0.839053π0.839053\pi
884884 8.69817e6 0.374367
885885 473161. 0.0203072
886886 2.10620e6 0.0901394
887887 −2.14344e7 −0.914748 −0.457374 0.889275i 0.651210π-0.651210\pi
−0.457374 + 0.889275i 0.651210π0.651210\pi
888888 −93767.3 −0.00399042
889889 −2.94244e6 −0.124868
890890 848461. 0.0359052
891891 −462015. −0.0194967
892892 −6.93413e7 −2.91796
893893 −3.54950e7 −1.48949
894894 −1.70718e7 −0.714391
895895 −3.98210e6 −0.166171
896896 2.96164e7 1.23243
897897 −2.55789e6 −0.106145
898898 6.10521e7 2.52644
899899 1.53668e7 0.634140
900900 2.91816e6 0.120089
901901 2.28331e7 0.937029
902902 −1.02770e7 −0.420582
903903 727360. 0.0296845
904904 5.30728e6 0.215999
905905 −2.73280e6 −0.110914
906906 2.29044e7 0.927041
907907 −4.74313e7 −1.91446 −0.957231 0.289325i 0.906569π-0.906569\pi
−0.957231 + 0.289325i 0.906569π0.906569\pi
908908 7.64549e7 3.07745
909909 −5.79422e6 −0.232587
910910 −3.50945e6 −0.140487
911911 −2.73179e7 −1.09056 −0.545282 0.838253i 0.683577π-0.683577\pi
−0.545282 + 0.838253i 0.683577π0.683577\pi
912912 5.08961e6 0.202627
913913 871298. 0.0345931
914914 4.28755e7 1.69763
915915 −4.31741e6 −0.170479
916916 −7.58677e7 −2.98757
917917 −7.68607e6 −0.301843
918918 6.16286e6 0.241366
919919 1.66893e7 0.651853 0.325926 0.945395i 0.394324π-0.394324\pi
0.325926 + 0.945395i 0.394324π0.394324\pi
920920 1.02073e7 0.397597
921921 −158725. −0.00616591
922922 −8.49384e7 −3.29061
923923 4.64173e6 0.179340
924924 −3.20500e6 −0.123495
925925 26820.6 0.00103066
926926 5.22311e7 2.00171
927927 −14503.0 −0.000554319 0
928928 1.98963e7 0.758409
929929 −4.29509e7 −1.63280 −0.816401 0.577486i 0.804034π-0.804034\pi
−0.816401 + 0.577486i 0.804034π0.804034\pi
930930 −5.70860e6 −0.216432
931931 1.13451e7 0.428979
932932 −7.23119e7 −2.72690
933933 −1.17106e7 −0.440428
934934 6.12590e7 2.29775
935935 −1.57190e6 −0.0588023
936936 −3.32347e6 −0.123994
937937 1.68472e7 0.626872 0.313436 0.949609i 0.398520π-0.398520\pi
0.313436 + 0.949609i 0.398520π0.398520\pi
938938 −1.09862e7 −0.407700
939939 7.57190e6 0.280247
940940 −4.10742e7 −1.51617
941941 3.62444e6 0.133434 0.0667171 0.997772i 0.478747π-0.478747\pi
0.0667171 + 0.997772i 0.478747π0.478747\pi
942942 1.59997e7 0.587470
943943 −2.59224e7 −0.949284
944944 954962. 0.0348783
945945 −1.59890e6 −0.0582429
946946 −614179. −0.0223135
947947 4.52224e7 1.63862 0.819311 0.573349i 0.194356π-0.194356\pi
0.819311 + 0.573349i 0.194356π0.194356\pi
948948 −9.18933e6 −0.332096
949949 −1.45152e7 −0.523189
950950 −7.36919e6 −0.264917
951951 −1.52512e6 −0.0546830
952952 1.90183e7 0.680112
953953 −2.74542e7 −0.979210 −0.489605 0.871944i 0.662859π-0.662859\pi
−0.489605 + 0.871944i 0.662859π0.662859\pi
954954 −1.96114e7 −0.697652
955955 −1.53737e7 −0.545468
956956 −7.86088e7 −2.78180
957957 −3.63432e6 −0.128275
958958 7.46672e7 2.62855
959959 1.97601e7 0.693814
960960 −1.06608e7 −0.373348
961961 −2.14482e7 −0.749175
962962 −68664.6 −0.00239219
963963 7.58908e6 0.263708
964964 −8.76292e7 −3.03708
965965 1.59176e7 0.550248
966966 −1.25721e7 −0.433475
967967 4.89480e7 1.68333 0.841663 0.540003i 0.181577π-0.181577\pi
0.841663 + 0.540003i 0.181577π0.181577\pi
968968 −3.78967e7 −1.29991
969969 −1.00074e7 −0.342384
970970 −2.65011e7 −0.904347
971971 1.24516e7 0.423817 0.211908 0.977290i 0.432032π-0.432032\pi
0.211908 + 0.977290i 0.432032π0.432032\pi
972972 −3.40374e6 −0.115556
973973 −6.39259e6 −0.216468
974974 −4.14197e7 −1.39897
975975 950625. 0.0320256
976976 −8.71366e6 −0.292804
977977 −3.68879e7 −1.23637 −0.618183 0.786034i 0.712131π-0.712131\pi
−0.618183 + 0.786034i 0.712131π0.712131\pi
978978 2.66403e7 0.890620
979979 252418. 0.00841713
980980 1.31284e7 0.436663
981981 −1.72789e6 −0.0573250
982982 −2.69940e6 −0.0893282
983983 −4.90111e7 −1.61775 −0.808874 0.587982i 0.799923π-0.799923\pi
−0.808874 + 0.587982i 0.799923π0.799923\pi
984984 −3.36810e7 −1.10891
985985 5.69317e6 0.186966
986986 4.84785e7 1.58802
987987 2.25052e7 0.735342
988988 1.21315e7 0.395385
989989 −1.54919e6 −0.0503632
990990 1.35011e6 0.0437805
991991 −5.67096e6 −0.183431 −0.0917154 0.995785i 0.529235π-0.529235\pi
−0.0917154 + 0.995785i 0.529235π0.529235\pi
992992 9.29754e6 0.299978
993993 2.37696e7 0.764977
994994 2.28142e7 0.732386
995995 −1.73276e7 −0.554855
996996 6.41899e6 0.205031
997997 −4.31243e7 −1.37399 −0.686995 0.726662i 0.741071π-0.741071\pi
−0.686995 + 0.726662i 0.741071π0.741071\pi
998998 5.98137e7 1.90097
999999 −31283.6 −0.000991751 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.6.a.e.1.4 4
3.2 odd 2 585.6.a.d.1.1 4
5.4 even 2 975.6.a.f.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.6.a.e.1.4 4 1.1 even 1 trivial
585.6.a.d.1.1 4 3.2 odd 2
975.6.a.f.1.1 4 5.4 even 2