Properties

Label 195.6.a.e.1.4
Level $195$
Weight $6$
Character 195.1
Self dual yes
Analytic conductor $31.275$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,6,Mod(1,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 195.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2748448635\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 89x^{2} + 82x + 720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-8.46798\) of defining polynomial
Character \(\chi\) \(=\) 195.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.46798 q^{2} -9.00000 q^{3} +57.6426 q^{4} -25.0000 q^{5} -85.2118 q^{6} -87.7314 q^{7} +242.784 q^{8} +81.0000 q^{9} -236.699 q^{10} -70.4184 q^{11} -518.784 q^{12} -169.000 q^{13} -830.639 q^{14} +225.000 q^{15} +454.109 q^{16} -892.889 q^{17} +766.906 q^{18} -1245.32 q^{19} -1441.07 q^{20} +789.583 q^{21} -666.720 q^{22} -1681.71 q^{23} -2185.06 q^{24} +625.000 q^{25} -1600.09 q^{26} -729.000 q^{27} -5057.07 q^{28} -5734.49 q^{29} +2130.30 q^{30} -2679.72 q^{31} -3469.59 q^{32} +633.766 q^{33} -8453.86 q^{34} +2193.29 q^{35} +4669.05 q^{36} +42.9130 q^{37} -11790.7 q^{38} +1521.00 q^{39} -6069.60 q^{40} +15414.3 q^{41} +7475.75 q^{42} +921.195 q^{43} -4059.10 q^{44} -2025.00 q^{45} -15922.4 q^{46} +28502.6 q^{47} -4086.98 q^{48} -9110.20 q^{49} +5917.49 q^{50} +8036.00 q^{51} -9741.60 q^{52} -25572.2 q^{53} -6902.16 q^{54} +1760.46 q^{55} -21299.8 q^{56} +11207.9 q^{57} -54294.0 q^{58} +2102.94 q^{59} +12969.6 q^{60} -19188.5 q^{61} -25371.6 q^{62} -7106.24 q^{63} -47381.5 q^{64} +4225.00 q^{65} +6000.48 q^{66} +13226.2 q^{67} -51468.5 q^{68} +15135.4 q^{69} +20766.0 q^{70} -27465.9 q^{71} +19665.5 q^{72} +85888.9 q^{73} +406.300 q^{74} -5625.00 q^{75} -71783.7 q^{76} +6177.91 q^{77} +14400.8 q^{78} +17713.2 q^{79} -11352.7 q^{80} +6561.00 q^{81} +145942. q^{82} -12373.2 q^{83} +45513.6 q^{84} +22322.2 q^{85} +8721.86 q^{86} +51610.4 q^{87} -17096.5 q^{88} -3584.55 q^{89} -19172.7 q^{90} +14826.6 q^{91} -96938.5 q^{92} +24117.5 q^{93} +269862. q^{94} +31133.1 q^{95} +31226.3 q^{96} +111961. q^{97} -86255.2 q^{98} -5703.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 36 q^{3} + 54 q^{4} - 100 q^{5} - 18 q^{6} + 87 q^{7} + 120 q^{8} + 324 q^{9} - 50 q^{10} - 277 q^{11} - 486 q^{12} - 676 q^{13} + 478 q^{14} + 900 q^{15} + 274 q^{16} + 2017 q^{17} + 162 q^{18}+ \cdots - 22437 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.46798 1.67372 0.836859 0.547418i \(-0.184389\pi\)
0.836859 + 0.547418i \(0.184389\pi\)
\(3\) −9.00000 −0.577350
\(4\) 57.6426 1.80133
\(5\) −25.0000 −0.447214
\(6\) −85.2118 −0.966322
\(7\) −87.7314 −0.676722 −0.338361 0.941016i \(-0.609872\pi\)
−0.338361 + 0.941016i \(0.609872\pi\)
\(8\) 242.784 1.34120
\(9\) 81.0000 0.333333
\(10\) −236.699 −0.748509
\(11\) −70.4184 −0.175471 −0.0877353 0.996144i \(-0.527963\pi\)
−0.0877353 + 0.996144i \(0.527963\pi\)
\(12\) −518.784 −1.04000
\(13\) −169.000 −0.277350
\(14\) −830.639 −1.13264
\(15\) 225.000 0.258199
\(16\) 454.109 0.443466
\(17\) −892.889 −0.749334 −0.374667 0.927160i \(-0.622243\pi\)
−0.374667 + 0.927160i \(0.622243\pi\)
\(18\) 766.906 0.557906
\(19\) −1245.32 −0.791404 −0.395702 0.918379i \(-0.629499\pi\)
−0.395702 + 0.918379i \(0.629499\pi\)
\(20\) −1441.07 −0.805580
\(21\) 789.583 0.390705
\(22\) −666.720 −0.293688
\(23\) −1681.71 −0.662877 −0.331438 0.943477i \(-0.607534\pi\)
−0.331438 + 0.943477i \(0.607534\pi\)
\(24\) −2185.06 −0.774345
\(25\) 625.000 0.200000
\(26\) −1600.09 −0.464206
\(27\) −729.000 −0.192450
\(28\) −5057.07 −1.21900
\(29\) −5734.49 −1.26619 −0.633096 0.774073i \(-0.718216\pi\)
−0.633096 + 0.774073i \(0.718216\pi\)
\(30\) 2130.30 0.432152
\(31\) −2679.72 −0.500824 −0.250412 0.968139i \(-0.580566\pi\)
−0.250412 + 0.968139i \(0.580566\pi\)
\(32\) −3469.59 −0.598968
\(33\) 633.766 0.101308
\(34\) −8453.86 −1.25417
\(35\) 2193.29 0.302639
\(36\) 4669.05 0.600444
\(37\) 42.9130 0.00515329 0.00257665 0.999997i \(-0.499180\pi\)
0.00257665 + 0.999997i \(0.499180\pi\)
\(38\) −11790.7 −1.32459
\(39\) 1521.00 0.160128
\(40\) −6069.60 −0.599805
\(41\) 15414.3 1.43207 0.716034 0.698066i \(-0.245956\pi\)
0.716034 + 0.698066i \(0.245956\pi\)
\(42\) 7475.75 0.653931
\(43\) 921.195 0.0759767 0.0379884 0.999278i \(-0.487905\pi\)
0.0379884 + 0.999278i \(0.487905\pi\)
\(44\) −4059.10 −0.316081
\(45\) −2025.00 −0.149071
\(46\) −15922.4 −1.10947
\(47\) 28502.6 1.88209 0.941045 0.338282i \(-0.109846\pi\)
0.941045 + 0.338282i \(0.109846\pi\)
\(48\) −4086.98 −0.256035
\(49\) −9110.20 −0.542048
\(50\) 5917.49 0.334744
\(51\) 8036.00 0.432628
\(52\) −9741.60 −0.499600
\(53\) −25572.2 −1.25048 −0.625241 0.780432i \(-0.714999\pi\)
−0.625241 + 0.780432i \(0.714999\pi\)
\(54\) −6902.16 −0.322107
\(55\) 1760.46 0.0784728
\(56\) −21299.8 −0.907622
\(57\) 11207.9 0.456917
\(58\) −54294.0 −2.11925
\(59\) 2102.94 0.0786495 0.0393247 0.999226i \(-0.487479\pi\)
0.0393247 + 0.999226i \(0.487479\pi\)
\(60\) 12969.6 0.465102
\(61\) −19188.5 −0.660262 −0.330131 0.943935i \(-0.607093\pi\)
−0.330131 + 0.943935i \(0.607093\pi\)
\(62\) −25371.6 −0.838239
\(63\) −7106.24 −0.225574
\(64\) −47381.5 −1.44597
\(65\) 4225.00 0.124035
\(66\) 6000.48 0.169561
\(67\) 13226.2 0.359955 0.179978 0.983671i \(-0.442397\pi\)
0.179978 + 0.983671i \(0.442397\pi\)
\(68\) −51468.5 −1.34980
\(69\) 15135.4 0.382712
\(70\) 20766.0 0.506533
\(71\) −27465.9 −0.646618 −0.323309 0.946293i \(-0.604795\pi\)
−0.323309 + 0.946293i \(0.604795\pi\)
\(72\) 19665.5 0.447068
\(73\) 85888.9 1.88638 0.943192 0.332249i \(-0.107807\pi\)
0.943192 + 0.332249i \(0.107807\pi\)
\(74\) 406.300 0.00862516
\(75\) −5625.00 −0.115470
\(76\) −71783.7 −1.42558
\(77\) 6177.91 0.118745
\(78\) 14400.8 0.268009
\(79\) 17713.2 0.319323 0.159661 0.987172i \(-0.448960\pi\)
0.159661 + 0.987172i \(0.448960\pi\)
\(80\) −11352.7 −0.198324
\(81\) 6561.00 0.111111
\(82\) 145942. 2.39688
\(83\) −12373.2 −0.197145 −0.0985724 0.995130i \(-0.531428\pi\)
−0.0985724 + 0.995130i \(0.531428\pi\)
\(84\) 45513.6 0.703790
\(85\) 22322.2 0.335112
\(86\) 8721.86 0.127164
\(87\) 51610.4 0.731037
\(88\) −17096.5 −0.235342
\(89\) −3584.55 −0.0479689 −0.0239844 0.999712i \(-0.507635\pi\)
−0.0239844 + 0.999712i \(0.507635\pi\)
\(90\) −19172.7 −0.249503
\(91\) 14826.6 0.187689
\(92\) −96938.5 −1.19406
\(93\) 24117.5 0.289151
\(94\) 269862. 3.15009
\(95\) 31133.1 0.353927
\(96\) 31226.3 0.345814
\(97\) 111961. 1.20820 0.604099 0.796910i \(-0.293533\pi\)
0.604099 + 0.796910i \(0.293533\pi\)
\(98\) −86255.2 −0.907235
\(99\) −5703.89 −0.0584902
\(100\) 36026.6 0.360266
\(101\) −71533.6 −0.697761 −0.348880 0.937167i \(-0.613438\pi\)
−0.348880 + 0.937167i \(0.613438\pi\)
\(102\) 76084.7 0.724097
\(103\) −179.050 −0.00166296 −0.000831479 1.00000i \(-0.500265\pi\)
−0.000831479 1.00000i \(0.500265\pi\)
\(104\) −41030.5 −0.371983
\(105\) −19739.6 −0.174729
\(106\) −242117. −2.09296
\(107\) 93692.3 0.791124 0.395562 0.918439i \(-0.370550\pi\)
0.395562 + 0.918439i \(0.370550\pi\)
\(108\) −42021.5 −0.346667
\(109\) −21332.0 −0.171975 −0.0859875 0.996296i \(-0.527405\pi\)
−0.0859875 + 0.996296i \(0.527405\pi\)
\(110\) 16668.0 0.131341
\(111\) −386.217 −0.00297525
\(112\) −39839.6 −0.300103
\(113\) 21860.1 0.161048 0.0805242 0.996753i \(-0.474341\pi\)
0.0805242 + 0.996753i \(0.474341\pi\)
\(114\) 106116. 0.764751
\(115\) 42042.9 0.296447
\(116\) −330551. −2.28083
\(117\) −13689.0 −0.0924500
\(118\) 19910.6 0.131637
\(119\) 78334.4 0.507090
\(120\) 54626.4 0.346297
\(121\) −156092. −0.969210
\(122\) −181676. −1.10509
\(123\) −138728. −0.826804
\(124\) −154466. −0.902151
\(125\) −15625.0 −0.0894427
\(126\) −67281.8 −0.377547
\(127\) 33539.1 0.184520 0.0922598 0.995735i \(-0.470591\pi\)
0.0922598 + 0.995735i \(0.470591\pi\)
\(128\) −337580. −1.82118
\(129\) −8290.76 −0.0438652
\(130\) 40002.2 0.207599
\(131\) 87609.1 0.446037 0.223019 0.974814i \(-0.428409\pi\)
0.223019 + 0.974814i \(0.428409\pi\)
\(132\) 36531.9 0.182489
\(133\) 109254. 0.535560
\(134\) 125225. 0.602463
\(135\) 18225.0 0.0860663
\(136\) −216779. −1.00501
\(137\) −225234. −1.02526 −0.512629 0.858610i \(-0.671328\pi\)
−0.512629 + 0.858610i \(0.671328\pi\)
\(138\) 143302. 0.640552
\(139\) 72865.4 0.319878 0.159939 0.987127i \(-0.448870\pi\)
0.159939 + 0.987127i \(0.448870\pi\)
\(140\) 126427. 0.545154
\(141\) −256524. −1.08662
\(142\) −260046. −1.08226
\(143\) 11900.7 0.0486668
\(144\) 36782.8 0.147822
\(145\) 143362. 0.566259
\(146\) 813195. 3.15727
\(147\) 81991.8 0.312952
\(148\) 2473.62 0.00928279
\(149\) 200346. 0.739289 0.369645 0.929173i \(-0.379479\pi\)
0.369645 + 0.929173i \(0.379479\pi\)
\(150\) −53257.4 −0.193264
\(151\) −268794. −0.959350 −0.479675 0.877446i \(-0.659245\pi\)
−0.479675 + 0.877446i \(0.659245\pi\)
\(152\) −302345. −1.06143
\(153\) −72324.0 −0.249778
\(154\) 58492.3 0.198745
\(155\) 66993.1 0.223976
\(156\) 87674.4 0.288444
\(157\) −187764. −0.607945 −0.303972 0.952681i \(-0.598313\pi\)
−0.303972 + 0.952681i \(0.598313\pi\)
\(158\) 167708. 0.534456
\(159\) 230149. 0.721966
\(160\) 86739.8 0.267867
\(161\) 147539. 0.448583
\(162\) 62119.4 0.185969
\(163\) −312637. −0.921660 −0.460830 0.887488i \(-0.652448\pi\)
−0.460830 + 0.887488i \(0.652448\pi\)
\(164\) 888519. 2.57963
\(165\) −15844.1 −0.0453063
\(166\) −117149. −0.329965
\(167\) −303566. −0.842292 −0.421146 0.906993i \(-0.638372\pi\)
−0.421146 + 0.906993i \(0.638372\pi\)
\(168\) 191698. 0.524016
\(169\) 28561.0 0.0769231
\(170\) 211346. 0.560883
\(171\) −100871. −0.263801
\(172\) 53100.1 0.136859
\(173\) 199740. 0.507398 0.253699 0.967283i \(-0.418353\pi\)
0.253699 + 0.967283i \(0.418353\pi\)
\(174\) 488646. 1.22355
\(175\) −54832.1 −0.135344
\(176\) −31977.6 −0.0778152
\(177\) −18926.4 −0.0454083
\(178\) −33938.4 −0.0802864
\(179\) 159284. 0.371570 0.185785 0.982590i \(-0.440517\pi\)
0.185785 + 0.982590i \(0.440517\pi\)
\(180\) −116726. −0.268527
\(181\) 109312. 0.248011 0.124005 0.992282i \(-0.460426\pi\)
0.124005 + 0.992282i \(0.460426\pi\)
\(182\) 140378. 0.314138
\(183\) 172696. 0.381202
\(184\) −408293. −0.889053
\(185\) −1072.83 −0.00230462
\(186\) 228344. 0.483957
\(187\) 62875.8 0.131486
\(188\) 1.64297e6 3.39027
\(189\) 63956.2 0.130235
\(190\) 294767. 0.592373
\(191\) 614947. 1.21970 0.609851 0.792516i \(-0.291229\pi\)
0.609851 + 0.792516i \(0.291229\pi\)
\(192\) 426434. 0.834831
\(193\) −636703. −1.23039 −0.615196 0.788374i \(-0.710923\pi\)
−0.615196 + 0.788374i \(0.710923\pi\)
\(194\) 1.06005e6 2.02218
\(195\) −38025.0 −0.0716115
\(196\) −525136. −0.976408
\(197\) −227727. −0.418069 −0.209035 0.977908i \(-0.567032\pi\)
−0.209035 + 0.977908i \(0.567032\pi\)
\(198\) −54004.3 −0.0978961
\(199\) 693103. 1.24069 0.620347 0.784327i \(-0.286992\pi\)
0.620347 + 0.784327i \(0.286992\pi\)
\(200\) 151740. 0.268241
\(201\) −119036. −0.207820
\(202\) −677278. −1.16785
\(203\) 503095. 0.856860
\(204\) 463216. 0.779307
\(205\) −385357. −0.640440
\(206\) −1695.24 −0.00278332
\(207\) −136219. −0.220959
\(208\) −76744.4 −0.122995
\(209\) 87693.7 0.138868
\(210\) −186894. −0.292447
\(211\) −131810. −0.203818 −0.101909 0.994794i \(-0.532495\pi\)
−0.101909 + 0.994794i \(0.532495\pi\)
\(212\) −1.47405e6 −2.25253
\(213\) 247193. 0.373325
\(214\) 887077. 1.32412
\(215\) −23029.9 −0.0339778
\(216\) −176989. −0.258115
\(217\) 235096. 0.338919
\(218\) −201971. −0.287838
\(219\) −773000. −1.08910
\(220\) 101478. 0.141356
\(221\) 150898. 0.207828
\(222\) −3656.70 −0.00497974
\(223\) −1.20295e6 −1.61989 −0.809946 0.586505i \(-0.800503\pi\)
−0.809946 + 0.586505i \(0.800503\pi\)
\(224\) 304392. 0.405334
\(225\) 50625.0 0.0666667
\(226\) 206971. 0.269550
\(227\) 1.32636e6 1.70843 0.854215 0.519920i \(-0.174038\pi\)
0.854215 + 0.519920i \(0.174038\pi\)
\(228\) 646054. 0.823060
\(229\) −1.31617e6 −1.65853 −0.829267 0.558853i \(-0.811241\pi\)
−0.829267 + 0.558853i \(0.811241\pi\)
\(230\) 398061. 0.496169
\(231\) −55601.1 −0.0685573
\(232\) −1.39224e6 −1.69822
\(233\) −1.25449e6 −1.51383 −0.756913 0.653515i \(-0.773293\pi\)
−0.756913 + 0.653515i \(0.773293\pi\)
\(234\) −129607. −0.154735
\(235\) −712566. −0.841696
\(236\) 121219. 0.141674
\(237\) −159419. −0.184361
\(238\) 741669. 0.848726
\(239\) −1.36373e6 −1.54430 −0.772151 0.635439i \(-0.780819\pi\)
−0.772151 + 0.635439i \(0.780819\pi\)
\(240\) 102174. 0.114502
\(241\) −1.52021e6 −1.68602 −0.843009 0.537899i \(-0.819218\pi\)
−0.843009 + 0.537899i \(0.819218\pi\)
\(242\) −1.47788e6 −1.62218
\(243\) −59049.0 −0.0641500
\(244\) −1.10608e6 −1.18935
\(245\) 227755. 0.242411
\(246\) −1.31348e6 −1.38384
\(247\) 210460. 0.219496
\(248\) −650593. −0.671708
\(249\) 111358. 0.113822
\(250\) −147937. −0.149702
\(251\) −1.15822e6 −1.16040 −0.580198 0.814476i \(-0.697025\pi\)
−0.580198 + 0.814476i \(0.697025\pi\)
\(252\) −409623. −0.406333
\(253\) 118424. 0.116315
\(254\) 317548. 0.308834
\(255\) −200900. −0.193477
\(256\) −1.67999e6 −1.60217
\(257\) 203996. 0.192659 0.0963296 0.995349i \(-0.469290\pi\)
0.0963296 + 0.995349i \(0.469290\pi\)
\(258\) −78496.7 −0.0734180
\(259\) −3764.82 −0.00348734
\(260\) 243540. 0.223428
\(261\) −464494. −0.422064
\(262\) 829481. 0.746540
\(263\) 726824. 0.647948 0.323974 0.946066i \(-0.394981\pi\)
0.323974 + 0.946066i \(0.394981\pi\)
\(264\) 153868. 0.135875
\(265\) 639304. 0.559233
\(266\) 1.03441e6 0.896377
\(267\) 32260.9 0.0276948
\(268\) 762393. 0.648399
\(269\) −488140. −0.411304 −0.205652 0.978625i \(-0.565932\pi\)
−0.205652 + 0.978625i \(0.565932\pi\)
\(270\) 172554. 0.144051
\(271\) −1.25773e6 −1.04031 −0.520157 0.854071i \(-0.674127\pi\)
−0.520157 + 0.854071i \(0.674127\pi\)
\(272\) −405469. −0.332304
\(273\) −133439. −0.108362
\(274\) −2.13251e6 −1.71599
\(275\) −44011.5 −0.0350941
\(276\) 872446. 0.689391
\(277\) 1.35396e6 1.06025 0.530123 0.847921i \(-0.322146\pi\)
0.530123 + 0.847921i \(0.322146\pi\)
\(278\) 689889. 0.535386
\(279\) −217057. −0.166941
\(280\) 532494. 0.405901
\(281\) 1.17153e6 0.885092 0.442546 0.896746i \(-0.354075\pi\)
0.442546 + 0.896746i \(0.354075\pi\)
\(282\) −2.42876e6 −1.81870
\(283\) −1.86173e6 −1.38182 −0.690909 0.722942i \(-0.742789\pi\)
−0.690909 + 0.722942i \(0.742789\pi\)
\(284\) −1.58321e6 −1.16477
\(285\) −280198. −0.204340
\(286\) 112676. 0.0814545
\(287\) −1.35232e6 −0.969111
\(288\) −281037. −0.199656
\(289\) −622606. −0.438499
\(290\) 1.35735e6 0.947757
\(291\) −1.00765e6 −0.697553
\(292\) 4.95086e6 3.39800
\(293\) 1.17629e6 0.800470 0.400235 0.916413i \(-0.368929\pi\)
0.400235 + 0.916413i \(0.368929\pi\)
\(294\) 776297. 0.523793
\(295\) −52573.4 −0.0351731
\(296\) 10418.6 0.00691162
\(297\) 51335.0 0.0337693
\(298\) 1.89687e6 1.23736
\(299\) 284210. 0.183849
\(300\) −324240. −0.208000
\(301\) −80817.8 −0.0514151
\(302\) −2.54494e6 −1.60568
\(303\) 643802. 0.402852
\(304\) −565512. −0.350960
\(305\) 479712. 0.295278
\(306\) −684762. −0.418058
\(307\) 17636.1 0.0106797 0.00533983 0.999986i \(-0.498300\pi\)
0.00533983 + 0.999986i \(0.498300\pi\)
\(308\) 356111. 0.213899
\(309\) 1611.45 0.000960109 0
\(310\) 634289. 0.374872
\(311\) 1.30118e6 0.762844 0.381422 0.924401i \(-0.375435\pi\)
0.381422 + 0.924401i \(0.375435\pi\)
\(312\) 369274. 0.214765
\(313\) −841322. −0.485402 −0.242701 0.970101i \(-0.578033\pi\)
−0.242701 + 0.970101i \(0.578033\pi\)
\(314\) −1.77775e6 −1.01753
\(315\) 177656. 0.100880
\(316\) 1.02104e6 0.575206
\(317\) 169458. 0.0947137 0.0473568 0.998878i \(-0.484920\pi\)
0.0473568 + 0.998878i \(0.484920\pi\)
\(318\) 2.17905e6 1.20837
\(319\) 403814. 0.222180
\(320\) 1.18454e6 0.646657
\(321\) −843231. −0.456755
\(322\) 1.39690e6 0.750801
\(323\) 1.11194e6 0.593026
\(324\) 378193. 0.200148
\(325\) −105625. −0.0554700
\(326\) −2.96004e6 −1.54260
\(327\) 191988. 0.0992899
\(328\) 3.74234e6 1.92069
\(329\) −2.50058e6 −1.27365
\(330\) −150012. −0.0758300
\(331\) −2.64106e6 −1.32498 −0.662489 0.749071i \(-0.730500\pi\)
−0.662489 + 0.749071i \(0.730500\pi\)
\(332\) −713221. −0.355123
\(333\) 3475.95 0.00171776
\(334\) −2.87416e6 −1.40976
\(335\) −330655. −0.160977
\(336\) 358556. 0.173264
\(337\) 1.80911e6 0.867740 0.433870 0.900975i \(-0.357148\pi\)
0.433870 + 0.900975i \(0.357148\pi\)
\(338\) 270415. 0.128748
\(339\) −196741. −0.0929813
\(340\) 1.28671e6 0.603648
\(341\) 188702. 0.0878800
\(342\) −955047. −0.441529
\(343\) 2.27375e6 1.04354
\(344\) 223651. 0.101900
\(345\) −378386. −0.171154
\(346\) 1.89113e6 0.849242
\(347\) −1.16255e6 −0.518309 −0.259155 0.965836i \(-0.583444\pi\)
−0.259155 + 0.965836i \(0.583444\pi\)
\(348\) 2.97496e6 1.31684
\(349\) −3.29498e6 −1.44807 −0.724034 0.689764i \(-0.757714\pi\)
−0.724034 + 0.689764i \(0.757714\pi\)
\(350\) −519149. −0.226528
\(351\) 123201. 0.0533761
\(352\) 244323. 0.105101
\(353\) 1.42638e6 0.609253 0.304627 0.952472i \(-0.401468\pi\)
0.304627 + 0.952472i \(0.401468\pi\)
\(354\) −179195. −0.0760007
\(355\) 686647. 0.289176
\(356\) −206623. −0.0864079
\(357\) −705010. −0.292769
\(358\) 1.50810e6 0.621903
\(359\) −895639. −0.366773 −0.183386 0.983041i \(-0.558706\pi\)
−0.183386 + 0.983041i \(0.558706\pi\)
\(360\) −491637. −0.199935
\(361\) −925268. −0.373680
\(362\) 1.03496e6 0.415100
\(363\) 1.40483e6 0.559574
\(364\) 854645. 0.338090
\(365\) −2.14722e6 −0.843616
\(366\) 1.63509e6 0.638025
\(367\) 715834. 0.277426 0.138713 0.990333i \(-0.455703\pi\)
0.138713 + 0.990333i \(0.455703\pi\)
\(368\) −763681. −0.293963
\(369\) 1.24856e6 0.477356
\(370\) −10157.5 −0.00385729
\(371\) 2.24348e6 0.846229
\(372\) 1.39020e6 0.520857
\(373\) −2.73534e6 −1.01798 −0.508990 0.860773i \(-0.669981\pi\)
−0.508990 + 0.860773i \(0.669981\pi\)
\(374\) 595307. 0.220071
\(375\) 140625. 0.0516398
\(376\) 6.91998e6 2.52427
\(377\) 969129. 0.351179
\(378\) 605536. 0.217977
\(379\) −1.85409e6 −0.663029 −0.331515 0.943450i \(-0.607560\pi\)
−0.331515 + 0.943450i \(0.607560\pi\)
\(380\) 1.79459e6 0.637539
\(381\) −301852. −0.106532
\(382\) 5.82230e6 2.04144
\(383\) 1.41765e6 0.493825 0.246912 0.969038i \(-0.420584\pi\)
0.246912 + 0.969038i \(0.420584\pi\)
\(384\) 3.03822e6 1.05146
\(385\) −154448. −0.0531043
\(386\) −6.02829e6 −2.05933
\(387\) 74616.8 0.0253256
\(388\) 6.45373e6 2.17636
\(389\) −620930. −0.208050 −0.104025 0.994575i \(-0.533172\pi\)
−0.104025 + 0.994575i \(0.533172\pi\)
\(390\) −360020. −0.119857
\(391\) 1.50158e6 0.496716
\(392\) −2.21181e6 −0.726997
\(393\) −788482. −0.257520
\(394\) −2.15611e6 −0.699730
\(395\) −442831. −0.142805
\(396\) −328787. −0.105360
\(397\) −17627.9 −0.00561339 −0.00280670 0.999996i \(-0.500893\pi\)
−0.00280670 + 0.999996i \(0.500893\pi\)
\(398\) 6.56228e6 2.07657
\(399\) −983286. −0.309206
\(400\) 283818. 0.0886931
\(401\) −3.13600e6 −0.973903 −0.486951 0.873429i \(-0.661891\pi\)
−0.486951 + 0.873429i \(0.661891\pi\)
\(402\) −1.12703e6 −0.347832
\(403\) 452873. 0.138904
\(404\) −4.12338e6 −1.25690
\(405\) −164025. −0.0496904
\(406\) 4.76329e6 1.43414
\(407\) −3021.87 −0.000904251 0
\(408\) 1.95101e6 0.580242
\(409\) −4.54221e6 −1.34264 −0.671319 0.741169i \(-0.734272\pi\)
−0.671319 + 0.741169i \(0.734272\pi\)
\(410\) −3.64855e6 −1.07192
\(411\) 2.02711e6 0.591933
\(412\) −10320.9 −0.00299554
\(413\) −184494. −0.0532238
\(414\) −1.28972e6 −0.369823
\(415\) 309329. 0.0881658
\(416\) 586361. 0.166124
\(417\) −655789. −0.184682
\(418\) 830282. 0.232426
\(419\) 6.13384e6 1.70686 0.853430 0.521208i \(-0.174519\pi\)
0.853430 + 0.521208i \(0.174519\pi\)
\(420\) −1.13784e6 −0.314745
\(421\) 441743. 0.121469 0.0607343 0.998154i \(-0.480656\pi\)
0.0607343 + 0.998154i \(0.480656\pi\)
\(422\) −1.24798e6 −0.341135
\(423\) 2.30871e6 0.627363
\(424\) −6.20851e6 −1.67715
\(425\) −558056. −0.149867
\(426\) 2.34042e6 0.624841
\(427\) 1.68343e6 0.446814
\(428\) 5.40067e6 1.42508
\(429\) −107106. −0.0280978
\(430\) −218046. −0.0568693
\(431\) 4.05311e6 1.05098 0.525491 0.850799i \(-0.323882\pi\)
0.525491 + 0.850799i \(0.323882\pi\)
\(432\) −331045. −0.0853450
\(433\) 2.15043e6 0.551195 0.275597 0.961273i \(-0.411124\pi\)
0.275597 + 0.961273i \(0.411124\pi\)
\(434\) 2.22588e6 0.567254
\(435\) −1.29026e6 −0.326930
\(436\) −1.22963e6 −0.309784
\(437\) 2.09428e6 0.524603
\(438\) −7.31875e6 −1.82285
\(439\) −2.96948e6 −0.735391 −0.367696 0.929946i \(-0.619853\pi\)
−0.367696 + 0.929946i \(0.619853\pi\)
\(440\) 427411. 0.105248
\(441\) −737926. −0.180683
\(442\) 1.42870e6 0.347845
\(443\) 222455. 0.0538558 0.0269279 0.999637i \(-0.491428\pi\)
0.0269279 + 0.999637i \(0.491428\pi\)
\(444\) −22262.6 −0.00535942
\(445\) 89613.7 0.0214523
\(446\) −1.13895e7 −2.71124
\(447\) −1.80311e6 −0.426829
\(448\) 4.15685e6 0.978518
\(449\) 6.44827e6 1.50948 0.754740 0.656024i \(-0.227763\pi\)
0.754740 + 0.656024i \(0.227763\pi\)
\(450\) 479316. 0.111581
\(451\) −1.08545e6 −0.251286
\(452\) 1.26007e6 0.290102
\(453\) 2.41915e6 0.553881
\(454\) 1.25580e7 2.85943
\(455\) −370665. −0.0839370
\(456\) 2.72110e6 0.612819
\(457\) 4.52847e6 1.01429 0.507144 0.861862i \(-0.330701\pi\)
0.507144 + 0.861862i \(0.330701\pi\)
\(458\) −1.24615e7 −2.77592
\(459\) 650916. 0.144209
\(460\) 2.42346e6 0.534000
\(461\) −8.97112e6 −1.96605 −0.983024 0.183475i \(-0.941265\pi\)
−0.983024 + 0.183475i \(0.941265\pi\)
\(462\) −526431. −0.114746
\(463\) 5.51660e6 1.19597 0.597984 0.801508i \(-0.295969\pi\)
0.597984 + 0.801508i \(0.295969\pi\)
\(464\) −2.60408e6 −0.561513
\(465\) −602937. −0.129312
\(466\) −1.18774e7 −2.53372
\(467\) 6.47012e6 1.37284 0.686421 0.727205i \(-0.259181\pi\)
0.686421 + 0.727205i \(0.259181\pi\)
\(468\) −789070. −0.166533
\(469\) −1.16035e6 −0.243589
\(470\) −6.74656e6 −1.40876
\(471\) 1.68988e6 0.350997
\(472\) 510559. 0.105485
\(473\) −64869.1 −0.0133317
\(474\) −1.50938e6 −0.308568
\(475\) −778327. −0.158281
\(476\) 4.51540e6 0.913438
\(477\) −2.07134e6 −0.416828
\(478\) −1.29117e7 −2.58473
\(479\) 7.88628e6 1.57048 0.785242 0.619189i \(-0.212538\pi\)
0.785242 + 0.619189i \(0.212538\pi\)
\(480\) −780658. −0.154653
\(481\) −7252.30 −0.00142927
\(482\) −1.43934e7 −2.82192
\(483\) −1.32785e6 −0.258989
\(484\) −8.99757e6 −1.74587
\(485\) −2.79903e6 −0.540322
\(486\) −559075. −0.107369
\(487\) −4.37472e6 −0.835848 −0.417924 0.908482i \(-0.637242\pi\)
−0.417924 + 0.908482i \(0.637242\pi\)
\(488\) −4.65866e6 −0.885546
\(489\) 2.81373e6 0.532121
\(490\) 2.15638e6 0.405728
\(491\) −285109. −0.0533711 −0.0266856 0.999644i \(-0.508495\pi\)
−0.0266856 + 0.999644i \(0.508495\pi\)
\(492\) −7.99667e6 −1.48935
\(493\) 5.12026e6 0.948801
\(494\) 1.99263e6 0.367374
\(495\) 142597. 0.0261576
\(496\) −1.21689e6 −0.222098
\(497\) 2.40962e6 0.437580
\(498\) 1.05434e6 0.190505
\(499\) 6.31747e6 1.13577 0.567887 0.823106i \(-0.307761\pi\)
0.567887 + 0.823106i \(0.307761\pi\)
\(500\) −900666. −0.161116
\(501\) 2.73210e6 0.486297
\(502\) −1.09660e7 −1.94217
\(503\) −5.68821e6 −1.00243 −0.501217 0.865322i \(-0.667114\pi\)
−0.501217 + 0.865322i \(0.667114\pi\)
\(504\) −1.72528e6 −0.302541
\(505\) 1.78834e6 0.312048
\(506\) 1.12123e6 0.194679
\(507\) −257049. −0.0444116
\(508\) 1.93328e6 0.332381
\(509\) 3.61839e6 0.619043 0.309522 0.950892i \(-0.399831\pi\)
0.309522 + 0.950892i \(0.399831\pi\)
\(510\) −1.90212e6 −0.323826
\(511\) −7.53516e6 −1.27656
\(512\) −5.10358e6 −0.860400
\(513\) 907841. 0.152306
\(514\) 1.93143e6 0.322457
\(515\) 4476.25 0.000743697 0
\(516\) −477901. −0.0790158
\(517\) −2.00711e6 −0.330251
\(518\) −35645.2 −0.00583683
\(519\) −1.79766e6 −0.292947
\(520\) 1.02576e6 0.166356
\(521\) −1.67303e6 −0.270028 −0.135014 0.990844i \(-0.543108\pi\)
−0.135014 + 0.990844i \(0.543108\pi\)
\(522\) −4.39782e6 −0.706417
\(523\) 1.31354e6 0.209986 0.104993 0.994473i \(-0.466518\pi\)
0.104993 + 0.994473i \(0.466518\pi\)
\(524\) 5.05002e6 0.803461
\(525\) 493489. 0.0781411
\(526\) 6.88156e6 1.08448
\(527\) 2.39269e6 0.375285
\(528\) 287798. 0.0449266
\(529\) −3.60818e6 −0.560595
\(530\) 6.05292e6 0.935998
\(531\) 170338. 0.0262165
\(532\) 6.29769e6 0.964722
\(533\) −2.60501e6 −0.397184
\(534\) 305446. 0.0463533
\(535\) −2.34231e6 −0.353801
\(536\) 3.21111e6 0.482773
\(537\) −1.43356e6 −0.214526
\(538\) −4.62169e6 −0.688407
\(539\) 641526. 0.0951135
\(540\) 1.05054e6 0.155034
\(541\) 229926. 0.0337750 0.0168875 0.999857i \(-0.494624\pi\)
0.0168875 + 0.999857i \(0.494624\pi\)
\(542\) −1.19082e7 −1.74119
\(543\) −983807. −0.143189
\(544\) 3.09796e6 0.448827
\(545\) 533300. 0.0769096
\(546\) −1.26340e6 −0.181368
\(547\) 7.70690e6 1.10132 0.550658 0.834731i \(-0.314377\pi\)
0.550658 + 0.834731i \(0.314377\pi\)
\(548\) −1.29831e7 −1.84683
\(549\) −1.55427e6 −0.220087
\(550\) −416700. −0.0587377
\(551\) 7.14130e6 1.00207
\(552\) 3.67464e6 0.513295
\(553\) −1.55401e6 −0.216093
\(554\) 1.28193e7 1.77455
\(555\) 9655.43 0.00133057
\(556\) 4.20016e6 0.576207
\(557\) −8.73237e6 −1.19260 −0.596299 0.802763i \(-0.703363\pi\)
−0.596299 + 0.802763i \(0.703363\pi\)
\(558\) −2.05510e6 −0.279413
\(559\) −155682. −0.0210722
\(560\) 995990. 0.134210
\(561\) −565882. −0.0759135
\(562\) 1.10920e7 1.48139
\(563\) 1.04109e7 1.38426 0.692128 0.721775i \(-0.256673\pi\)
0.692128 + 0.721775i \(0.256673\pi\)
\(564\) −1.47867e7 −1.95737
\(565\) −546503. −0.0720230
\(566\) −1.76268e7 −2.31277
\(567\) −575606. −0.0751913
\(568\) −6.66828e6 −0.867247
\(569\) 1.00943e7 1.30706 0.653531 0.756900i \(-0.273287\pi\)
0.653531 + 0.756900i \(0.273287\pi\)
\(570\) −2.65291e6 −0.342007
\(571\) 1.22705e7 1.57497 0.787483 0.616337i \(-0.211384\pi\)
0.787483 + 0.616337i \(0.211384\pi\)
\(572\) 685988. 0.0876651
\(573\) −5.53452e6 −0.704196
\(574\) −1.28037e7 −1.62202
\(575\) −1.05107e6 −0.132575
\(576\) −3.83790e6 −0.481990
\(577\) 2.77864e6 0.347451 0.173725 0.984794i \(-0.444419\pi\)
0.173725 + 0.984794i \(0.444419\pi\)
\(578\) −5.89482e6 −0.733924
\(579\) 5.73033e6 0.710368
\(580\) 8.26378e6 1.02002
\(581\) 1.08551e6 0.133412
\(582\) −9.54041e6 −1.16751
\(583\) 1.80075e6 0.219423
\(584\) 2.08524e7 2.53003
\(585\) 342225. 0.0413449
\(586\) 1.11371e7 1.33976
\(587\) 1.45815e7 1.74666 0.873328 0.487133i \(-0.161957\pi\)
0.873328 + 0.487133i \(0.161957\pi\)
\(588\) 4.72622e6 0.563730
\(589\) 3.33712e6 0.396355
\(590\) −497764. −0.0588699
\(591\) 2.04954e6 0.241372
\(592\) 19487.2 0.00228531
\(593\) 1.24857e7 1.45806 0.729031 0.684480i \(-0.239971\pi\)
0.729031 + 0.684480i \(0.239971\pi\)
\(594\) 486039. 0.0565204
\(595\) −1.95836e6 −0.226778
\(596\) 1.15485e7 1.33171
\(597\) −6.23792e6 −0.716315
\(598\) 2.69089e6 0.307711
\(599\) 1.85120e6 0.210807 0.105404 0.994430i \(-0.466387\pi\)
0.105404 + 0.994430i \(0.466387\pi\)
\(600\) −1.36566e6 −0.154869
\(601\) 5.47054e6 0.617795 0.308897 0.951095i \(-0.400040\pi\)
0.308897 + 0.951095i \(0.400040\pi\)
\(602\) −765181. −0.0860544
\(603\) 1.07132e6 0.119985
\(604\) −1.54940e7 −1.72811
\(605\) 3.90231e6 0.433444
\(606\) 6.09550e6 0.674261
\(607\) −127671. −0.0140644 −0.00703220 0.999975i \(-0.502238\pi\)
−0.00703220 + 0.999975i \(0.502238\pi\)
\(608\) 4.32077e6 0.474026
\(609\) −4.52785e6 −0.494708
\(610\) 4.54191e6 0.494212
\(611\) −4.81694e6 −0.521998
\(612\) −4.16895e6 −0.449933
\(613\) −1.25347e7 −1.34730 −0.673648 0.739052i \(-0.735274\pi\)
−0.673648 + 0.739052i \(0.735274\pi\)
\(614\) 166979. 0.0178748
\(615\) 3.46821e6 0.369758
\(616\) 1.49990e6 0.159261
\(617\) 1.44144e7 1.52434 0.762172 0.647374i \(-0.224133\pi\)
0.762172 + 0.647374i \(0.224133\pi\)
\(618\) 15257.2 0.00160695
\(619\) −9.76407e6 −1.02425 −0.512123 0.858912i \(-0.671141\pi\)
−0.512123 + 0.858912i \(0.671141\pi\)
\(620\) 3.86166e6 0.403454
\(621\) 1.22597e6 0.127571
\(622\) 1.23195e7 1.27679
\(623\) 314478. 0.0324616
\(624\) 690699. 0.0710113
\(625\) 390625. 0.0400000
\(626\) −7.96562e6 −0.812426
\(627\) −789243. −0.0801756
\(628\) −1.08232e7 −1.09511
\(629\) −38316.6 −0.00386153
\(630\) 1.68204e6 0.168844
\(631\) −1.89186e7 −1.89154 −0.945768 0.324843i \(-0.894688\pi\)
−0.945768 + 0.324843i \(0.894688\pi\)
\(632\) 4.30049e6 0.428277
\(633\) 1.18629e6 0.117675
\(634\) 1.60442e6 0.158524
\(635\) −838478. −0.0825197
\(636\) 1.32664e7 1.30050
\(637\) 1.53962e6 0.150337
\(638\) 3.82330e6 0.371866
\(639\) −2.22474e6 −0.215539
\(640\) 8.43951e6 0.814455
\(641\) −1.68562e7 −1.62038 −0.810188 0.586171i \(-0.800635\pi\)
−0.810188 + 0.586171i \(0.800635\pi\)
\(642\) −7.98369e6 −0.764480
\(643\) 1.31206e6 0.125149 0.0625744 0.998040i \(-0.480069\pi\)
0.0625744 + 0.998040i \(0.480069\pi\)
\(644\) 8.50455e6 0.808047
\(645\) 207269. 0.0196171
\(646\) 1.05278e7 0.992558
\(647\) 1.84547e7 1.73319 0.866596 0.499010i \(-0.166303\pi\)
0.866596 + 0.499010i \(0.166303\pi\)
\(648\) 1.59291e6 0.149023
\(649\) −148085. −0.0138007
\(650\) −1.00006e6 −0.0928412
\(651\) −2.11586e6 −0.195675
\(652\) −1.80212e7 −1.66022
\(653\) −7.98759e6 −0.733048 −0.366524 0.930409i \(-0.619452\pi\)
−0.366524 + 0.930409i \(0.619452\pi\)
\(654\) 1.81774e6 0.166183
\(655\) −2.19023e6 −0.199474
\(656\) 6.99976e6 0.635073
\(657\) 6.95700e6 0.628795
\(658\) −2.36754e7 −2.13173
\(659\) −1.16048e7 −1.04094 −0.520468 0.853881i \(-0.674243\pi\)
−0.520468 + 0.853881i \(0.674243\pi\)
\(660\) −913298. −0.0816117
\(661\) −9.83454e6 −0.875489 −0.437744 0.899099i \(-0.644223\pi\)
−0.437744 + 0.899099i \(0.644223\pi\)
\(662\) −2.50055e7 −2.21764
\(663\) −1.35808e6 −0.119989
\(664\) −3.00400e6 −0.264411
\(665\) −2.73135e6 −0.239510
\(666\) 32910.3 0.00287505
\(667\) 9.64378e6 0.839330
\(668\) −1.74984e7 −1.51725
\(669\) 1.08266e7 0.935245
\(670\) −3.13064e6 −0.269430
\(671\) 1.35122e6 0.115857
\(672\) −2.73953e6 −0.234020
\(673\) −2.05002e7 −1.74470 −0.872351 0.488881i \(-0.837405\pi\)
−0.872351 + 0.488881i \(0.837405\pi\)
\(674\) 1.71286e7 1.45235
\(675\) −455625. −0.0384900
\(676\) 1.64633e6 0.138564
\(677\) 5.19490e6 0.435618 0.217809 0.975991i \(-0.430109\pi\)
0.217809 + 0.975991i \(0.430109\pi\)
\(678\) −1.86274e6 −0.155625
\(679\) −9.82251e6 −0.817613
\(680\) 5.41948e6 0.449454
\(681\) −1.19372e7 −0.986362
\(682\) 1.78662e6 0.147086
\(683\) −1.91454e7 −1.57041 −0.785206 0.619234i \(-0.787443\pi\)
−0.785206 + 0.619234i \(0.787443\pi\)
\(684\) −5.81448e6 −0.475194
\(685\) 5.63086e6 0.458509
\(686\) 2.15278e7 1.74659
\(687\) 1.18456e7 0.957554
\(688\) 418323. 0.0336931
\(689\) 4.32169e6 0.346821
\(690\) −3.58255e6 −0.286464
\(691\) −1.95284e7 −1.55586 −0.777932 0.628349i \(-0.783731\pi\)
−0.777932 + 0.628349i \(0.783731\pi\)
\(692\) 1.15135e7 0.913993
\(693\) 500410. 0.0395816
\(694\) −1.10070e7 −0.867503
\(695\) −1.82164e6 −0.143054
\(696\) 1.25302e7 0.980470
\(697\) −1.37632e7 −1.07310
\(698\) −3.11968e7 −2.42366
\(699\) 1.12904e7 0.874008
\(700\) −3.16067e6 −0.243800
\(701\) 4.01022e6 0.308229 0.154114 0.988053i \(-0.450748\pi\)
0.154114 + 0.988053i \(0.450748\pi\)
\(702\) 1.16646e6 0.0893365
\(703\) −53440.6 −0.00407834
\(704\) 3.33653e6 0.253725
\(705\) 6.41309e6 0.485953
\(706\) 1.35049e7 1.01972
\(707\) 6.27574e6 0.472190
\(708\) −1.09097e6 −0.0817955
\(709\) 1.14260e7 0.853647 0.426823 0.904335i \(-0.359633\pi\)
0.426823 + 0.904335i \(0.359633\pi\)
\(710\) 6.50116e6 0.484000
\(711\) 1.43477e6 0.106441
\(712\) −870271. −0.0643360
\(713\) 4.50653e6 0.331985
\(714\) −6.67502e6 −0.490012
\(715\) −297518. −0.0217645
\(716\) 9.18156e6 0.669320
\(717\) 1.22735e7 0.891604
\(718\) −8.47989e6 −0.613874
\(719\) 1.79890e7 1.29773 0.648865 0.760903i \(-0.275244\pi\)
0.648865 + 0.760903i \(0.275244\pi\)
\(720\) −919570. −0.0661079
\(721\) 15708.3 0.00112536
\(722\) −8.76042e6 −0.625434
\(723\) 1.36819e7 0.973423
\(724\) 6.30102e6 0.446750
\(725\) −3.58406e6 −0.253239
\(726\) 1.33009e7 0.936569
\(727\) 8.92635e6 0.626380 0.313190 0.949690i \(-0.398602\pi\)
0.313190 + 0.949690i \(0.398602\pi\)
\(728\) 3.59966e6 0.251729
\(729\) 531441. 0.0370370
\(730\) −2.03299e7 −1.41198
\(731\) −822525. −0.0569319
\(732\) 9.95468e6 0.686672
\(733\) −2.67429e7 −1.83844 −0.919219 0.393746i \(-0.871179\pi\)
−0.919219 + 0.393746i \(0.871179\pi\)
\(734\) 6.77750e6 0.464333
\(735\) −2.04979e6 −0.139956
\(736\) 5.83486e6 0.397042
\(737\) −931368. −0.0631615
\(738\) 1.18213e7 0.798959
\(739\) −1.52087e6 −0.102443 −0.0512213 0.998687i \(-0.516311\pi\)
−0.0512213 + 0.998687i \(0.516311\pi\)
\(740\) −61840.5 −0.00415139
\(741\) −1.89414e6 −0.126726
\(742\) 2.12412e7 1.41635
\(743\) 1.77630e7 1.18044 0.590222 0.807241i \(-0.299040\pi\)
0.590222 + 0.807241i \(0.299040\pi\)
\(744\) 5.85534e6 0.387811
\(745\) −5.00864e6 −0.330620
\(746\) −2.58981e7 −1.70381
\(747\) −1.00223e6 −0.0657149
\(748\) 3.62433e6 0.236850
\(749\) −8.21976e6 −0.535370
\(750\) 1.33143e6 0.0864304
\(751\) 1.81110e6 0.117177 0.0585884 0.998282i \(-0.481340\pi\)
0.0585884 + 0.998282i \(0.481340\pi\)
\(752\) 1.29433e7 0.834642
\(753\) 1.04240e7 0.669955
\(754\) 9.17569e6 0.587774
\(755\) 6.71985e6 0.429034
\(756\) 3.68660e6 0.234597
\(757\) 1.79449e7 1.13815 0.569077 0.822285i \(-0.307301\pi\)
0.569077 + 0.822285i \(0.307301\pi\)
\(758\) −1.75545e7 −1.10972
\(759\) −1.06581e6 −0.0671547
\(760\) 7.55861e6 0.474688
\(761\) −2.89207e7 −1.81029 −0.905143 0.425108i \(-0.860236\pi\)
−0.905143 + 0.425108i \(0.860236\pi\)
\(762\) −2.85793e6 −0.178305
\(763\) 1.87149e6 0.116379
\(764\) 3.54471e7 2.19709
\(765\) 1.80810e6 0.111704
\(766\) 1.34223e7 0.826524
\(767\) −355396. −0.0218134
\(768\) 1.51199e7 0.925012
\(769\) 1.41345e7 0.861914 0.430957 0.902373i \(-0.358176\pi\)
0.430957 + 0.902373i \(0.358176\pi\)
\(770\) −1.46231e6 −0.0888816
\(771\) −1.83597e6 −0.111232
\(772\) −3.67012e7 −2.21635
\(773\) −2.44736e7 −1.47316 −0.736578 0.676353i \(-0.763560\pi\)
−0.736578 + 0.676353i \(0.763560\pi\)
\(774\) 706471. 0.0423879
\(775\) −1.67483e6 −0.100165
\(776\) 2.71824e7 1.62044
\(777\) 33883.4 0.00201342
\(778\) −5.87895e6 −0.348218
\(779\) −1.91958e7 −1.13334
\(780\) −2.19186e6 −0.128996
\(781\) 1.93410e6 0.113462
\(782\) 1.42170e7 0.831362
\(783\) 4.18044e6 0.243679
\(784\) −4.13702e6 −0.240380
\(785\) 4.69411e6 0.271881
\(786\) −7.46533e6 −0.431015
\(787\) 2.64173e7 1.52038 0.760189 0.649702i \(-0.225106\pi\)
0.760189 + 0.649702i \(0.225106\pi\)
\(788\) −1.31268e7 −0.753082
\(789\) −6.54142e6 −0.374093
\(790\) −4.19271e6 −0.239016
\(791\) −1.91782e6 −0.108985
\(792\) −1.38481e6 −0.0784473
\(793\) 3.24286e6 0.183124
\(794\) −166901. −0.00939523
\(795\) −5.75373e6 −0.322873
\(796\) 3.99523e7 2.23490
\(797\) 1.16049e7 0.647134 0.323567 0.946205i \(-0.395118\pi\)
0.323567 + 0.946205i \(0.395118\pi\)
\(798\) −9.30973e6 −0.517523
\(799\) −2.54497e7 −1.41031
\(800\) −2.16850e6 −0.119794
\(801\) −290348. −0.0159896
\(802\) −2.96916e7 −1.63004
\(803\) −6.04816e6 −0.331005
\(804\) −6.86154e6 −0.374353
\(805\) −3.68848e6 −0.200612
\(806\) 4.28779e6 0.232486
\(807\) 4.39326e6 0.237467
\(808\) −1.73672e7 −0.935839
\(809\) −1.74431e7 −0.937029 −0.468515 0.883456i \(-0.655211\pi\)
−0.468515 + 0.883456i \(0.655211\pi\)
\(810\) −1.55299e6 −0.0831677
\(811\) 6.63388e6 0.354173 0.177087 0.984195i \(-0.443333\pi\)
0.177087 + 0.984195i \(0.443333\pi\)
\(812\) 2.89997e7 1.54349
\(813\) 1.13196e7 0.600626
\(814\) −28611.0 −0.00151346
\(815\) 7.81591e6 0.412179
\(816\) 3.64922e6 0.191856
\(817\) −1.14719e6 −0.0601283
\(818\) −4.30055e7 −2.24720
\(819\) 1.20096e6 0.0625629
\(820\) −2.22130e7 −1.15365
\(821\) −1.50323e7 −0.778339 −0.389169 0.921166i \(-0.627238\pi\)
−0.389169 + 0.921166i \(0.627238\pi\)
\(822\) 1.91926e7 0.990729
\(823\) 1.50676e7 0.775433 0.387716 0.921779i \(-0.373264\pi\)
0.387716 + 0.921779i \(0.373264\pi\)
\(824\) −43470.4 −0.00223037
\(825\) 396103. 0.0202616
\(826\) −1.74678e6 −0.0890817
\(827\) −3.56260e7 −1.81135 −0.905677 0.423969i \(-0.860636\pi\)
−0.905677 + 0.423969i \(0.860636\pi\)
\(828\) −7.85202e6 −0.398020
\(829\) −5.83029e6 −0.294648 −0.147324 0.989088i \(-0.547066\pi\)
−0.147324 + 0.989088i \(0.547066\pi\)
\(830\) 2.92872e6 0.147565
\(831\) −1.21857e7 −0.612134
\(832\) 8.00748e6 0.401040
\(833\) 8.13440e6 0.406175
\(834\) −6.20900e6 −0.309105
\(835\) 7.58916e6 0.376684
\(836\) 5.05490e6 0.250148
\(837\) 1.95352e6 0.0963837
\(838\) 5.80751e7 2.85680
\(839\) −3.42304e7 −1.67883 −0.839415 0.543492i \(-0.817102\pi\)
−0.839415 + 0.543492i \(0.817102\pi\)
\(840\) −4.79245e6 −0.234347
\(841\) 1.23732e7 0.603244
\(842\) 4.18241e6 0.203304
\(843\) −1.05438e7 −0.511008
\(844\) −7.59790e6 −0.367145
\(845\) −714025. −0.0344010
\(846\) 2.18588e7 1.05003
\(847\) 1.36942e7 0.655885
\(848\) −1.16125e7 −0.554546
\(849\) 1.67556e7 0.797793
\(850\) −5.28366e6 −0.250835
\(851\) −72167.4 −0.00341600
\(852\) 1.42489e7 0.672482
\(853\) 1.15393e7 0.543011 0.271505 0.962437i \(-0.412479\pi\)
0.271505 + 0.962437i \(0.412479\pi\)
\(854\) 1.59387e7 0.747840
\(855\) 2.52178e6 0.117976
\(856\) 2.27470e7 1.06106
\(857\) −2.89877e7 −1.34822 −0.674111 0.738630i \(-0.735473\pi\)
−0.674111 + 0.738630i \(0.735473\pi\)
\(858\) −1.01408e6 −0.0470278
\(859\) 1.73688e7 0.803132 0.401566 0.915830i \(-0.368466\pi\)
0.401566 + 0.915830i \(0.368466\pi\)
\(860\) −1.32750e6 −0.0612054
\(861\) 1.21708e7 0.559516
\(862\) 3.83748e7 1.75905
\(863\) 3.46809e7 1.58512 0.792562 0.609791i \(-0.208747\pi\)
0.792562 + 0.609791i \(0.208747\pi\)
\(864\) 2.52933e6 0.115271
\(865\) −4.99349e6 −0.226915
\(866\) 2.03602e7 0.922545
\(867\) 5.60345e6 0.253168
\(868\) 1.35515e7 0.610505
\(869\) −1.24734e6 −0.0560318
\(870\) −1.22162e7 −0.547188
\(871\) −2.23523e6 −0.0998336
\(872\) −5.17907e6 −0.230654
\(873\) 9.06885e6 0.402732
\(874\) 1.98286e7 0.878038
\(875\) 1.37080e6 0.0605278
\(876\) −4.45578e7 −1.96184
\(877\) 5.12506e6 0.225009 0.112504 0.993651i \(-0.464113\pi\)
0.112504 + 0.993651i \(0.464113\pi\)
\(878\) −2.81149e7 −1.23084
\(879\) −1.05866e7 −0.462151
\(880\) 799440. 0.0348000
\(881\) 1.54340e7 0.669946 0.334973 0.942228i \(-0.391273\pi\)
0.334973 + 0.942228i \(0.391273\pi\)
\(882\) −6.98667e6 −0.302412
\(883\) −4.05392e7 −1.74974 −0.874870 0.484358i \(-0.839053\pi\)
−0.874870 + 0.484358i \(0.839053\pi\)
\(884\) 8.69817e6 0.374367
\(885\) 473161. 0.0203072
\(886\) 2.10620e6 0.0901394
\(887\) −2.14344e7 −0.914748 −0.457374 0.889275i \(-0.651210\pi\)
−0.457374 + 0.889275i \(0.651210\pi\)
\(888\) −93767.3 −0.00399042
\(889\) −2.94244e6 −0.124868
\(890\) 848461. 0.0359052
\(891\) −462015. −0.0194967
\(892\) −6.93413e7 −2.91796
\(893\) −3.54950e7 −1.48949
\(894\) −1.70718e7 −0.714391
\(895\) −3.98210e6 −0.166171
\(896\) 2.96164e7 1.23243
\(897\) −2.55789e6 −0.106145
\(898\) 6.10521e7 2.52644
\(899\) 1.53668e7 0.634140
\(900\) 2.91816e6 0.120089
\(901\) 2.28331e7 0.937029
\(902\) −1.02770e7 −0.420582
\(903\) 727360. 0.0296845
\(904\) 5.30728e6 0.215999
\(905\) −2.73280e6 −0.110914
\(906\) 2.29044e7 0.927041
\(907\) −4.74313e7 −1.91446 −0.957231 0.289325i \(-0.906569\pi\)
−0.957231 + 0.289325i \(0.906569\pi\)
\(908\) 7.64549e7 3.07745
\(909\) −5.79422e6 −0.232587
\(910\) −3.50945e6 −0.140487
\(911\) −2.73179e7 −1.09056 −0.545282 0.838253i \(-0.683577\pi\)
−0.545282 + 0.838253i \(0.683577\pi\)
\(912\) 5.08961e6 0.202627
\(913\) 871298. 0.0345931
\(914\) 4.28755e7 1.69763
\(915\) −4.31741e6 −0.170479
\(916\) −7.58677e7 −2.98757
\(917\) −7.68607e6 −0.301843
\(918\) 6.16286e6 0.241366
\(919\) 1.66893e7 0.651853 0.325926 0.945395i \(-0.394324\pi\)
0.325926 + 0.945395i \(0.394324\pi\)
\(920\) 1.02073e7 0.397597
\(921\) −158725. −0.00616591
\(922\) −8.49384e7 −3.29061
\(923\) 4.64173e6 0.179340
\(924\) −3.20500e6 −0.123495
\(925\) 26820.6 0.00103066
\(926\) 5.22311e7 2.00171
\(927\) −14503.0 −0.000554319 0
\(928\) 1.98963e7 0.758409
\(929\) −4.29509e7 −1.63280 −0.816401 0.577486i \(-0.804034\pi\)
−0.816401 + 0.577486i \(0.804034\pi\)
\(930\) −5.70860e6 −0.216432
\(931\) 1.13451e7 0.428979
\(932\) −7.23119e7 −2.72690
\(933\) −1.17106e7 −0.440428
\(934\) 6.12590e7 2.29775
\(935\) −1.57190e6 −0.0588023
\(936\) −3.32347e6 −0.123994
\(937\) 1.68472e7 0.626872 0.313436 0.949609i \(-0.398520\pi\)
0.313436 + 0.949609i \(0.398520\pi\)
\(938\) −1.09862e7 −0.407700
\(939\) 7.57190e6 0.280247
\(940\) −4.10742e7 −1.51617
\(941\) 3.62444e6 0.133434 0.0667171 0.997772i \(-0.478747\pi\)
0.0667171 + 0.997772i \(0.478747\pi\)
\(942\) 1.59997e7 0.587470
\(943\) −2.59224e7 −0.949284
\(944\) 954962. 0.0348783
\(945\) −1.59890e6 −0.0582429
\(946\) −614179. −0.0223135
\(947\) 4.52224e7 1.63862 0.819311 0.573349i \(-0.194356\pi\)
0.819311 + 0.573349i \(0.194356\pi\)
\(948\) −9.18933e6 −0.332096
\(949\) −1.45152e7 −0.523189
\(950\) −7.36919e6 −0.264917
\(951\) −1.52512e6 −0.0546830
\(952\) 1.90183e7 0.680112
\(953\) −2.74542e7 −0.979210 −0.489605 0.871944i \(-0.662859\pi\)
−0.489605 + 0.871944i \(0.662859\pi\)
\(954\) −1.96114e7 −0.697652
\(955\) −1.53737e7 −0.545468
\(956\) −7.86088e7 −2.78180
\(957\) −3.63432e6 −0.128275
\(958\) 7.46672e7 2.62855
\(959\) 1.97601e7 0.693814
\(960\) −1.06608e7 −0.373348
\(961\) −2.14482e7 −0.749175
\(962\) −68664.6 −0.00239219
\(963\) 7.58908e6 0.263708
\(964\) −8.76292e7 −3.03708
\(965\) 1.59176e7 0.550248
\(966\) −1.25721e7 −0.433475
\(967\) 4.89480e7 1.68333 0.841663 0.540003i \(-0.181577\pi\)
0.841663 + 0.540003i \(0.181577\pi\)
\(968\) −3.78967e7 −1.29991
\(969\) −1.00074e7 −0.342384
\(970\) −2.65011e7 −0.904347
\(971\) 1.24516e7 0.423817 0.211908 0.977290i \(-0.432032\pi\)
0.211908 + 0.977290i \(0.432032\pi\)
\(972\) −3.40374e6 −0.115556
\(973\) −6.39259e6 −0.216468
\(974\) −4.14197e7 −1.39897
\(975\) 950625. 0.0320256
\(976\) −8.71366e6 −0.292804
\(977\) −3.68879e7 −1.23637 −0.618183 0.786034i \(-0.712131\pi\)
−0.618183 + 0.786034i \(0.712131\pi\)
\(978\) 2.66403e7 0.890620
\(979\) 252418. 0.00841713
\(980\) 1.31284e7 0.436663
\(981\) −1.72789e6 −0.0573250
\(982\) −2.69940e6 −0.0893282
\(983\) −4.90111e7 −1.61775 −0.808874 0.587982i \(-0.799923\pi\)
−0.808874 + 0.587982i \(0.799923\pi\)
\(984\) −3.36810e7 −1.10891
\(985\) 5.69317e6 0.186966
\(986\) 4.84785e7 1.58802
\(987\) 2.25052e7 0.735342
\(988\) 1.21315e7 0.395385
\(989\) −1.54919e6 −0.0503632
\(990\) 1.35011e6 0.0437805
\(991\) −5.67096e6 −0.183431 −0.0917154 0.995785i \(-0.529235\pi\)
−0.0917154 + 0.995785i \(0.529235\pi\)
\(992\) 9.29754e6 0.299978
\(993\) 2.37696e7 0.764977
\(994\) 2.28142e7 0.732386
\(995\) −1.73276e7 −0.554855
\(996\) 6.41899e6 0.205031
\(997\) −4.31243e7 −1.37399 −0.686995 0.726662i \(-0.741071\pi\)
−0.686995 + 0.726662i \(0.741071\pi\)
\(998\) 5.98137e7 1.90097
\(999\) −31283.6 −0.000991751 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.6.a.e.1.4 4
3.2 odd 2 585.6.a.d.1.1 4
5.4 even 2 975.6.a.f.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.6.a.e.1.4 4 1.1 even 1 trivial
585.6.a.d.1.1 4 3.2 odd 2
975.6.a.f.1.1 4 5.4 even 2