Properties

Label 195.6.a.i
Level $195$
Weight $6$
Character orbit 195.a
Self dual yes
Analytic conductor $31.275$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,6,Mod(1,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 195.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2748448635\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 201x^{5} + 480x^{4} + 11274x^{3} - 29276x^{2} - 162072x + 455280 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 9 q^{3} + (\beta_{2} - \beta_1 + 26) q^{4} - 25 q^{5} - 9 \beta_1 q^{6} + (\beta_{5} + \beta_{3} + \beta_{2} + \cdots + 4) q^{7} + (\beta_{5} - 2 \beta_{4} + 2 \beta_{3} + \cdots - 56) q^{8}+ \cdots + ( - 81 \beta_{5} + 243 \beta_{4} + \cdots - 10530) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} - 63 q^{3} + 182 q^{4} - 175 q^{5} - 18 q^{6} + 32 q^{7} - 354 q^{8} + 567 q^{9} - 50 q^{10} - 910 q^{11} - 1638 q^{12} + 1183 q^{13} + 1278 q^{14} + 1575 q^{15} + 3290 q^{16} + 142 q^{17}+ \cdots - 73710 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 201x^{5} + 480x^{4} + 11274x^{3} - 29276x^{2} - 162072x + 455280 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 58 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -33\nu^{6} - 96\nu^{5} + 4465\nu^{4} + 12866\nu^{3} - 113758\nu^{2} - 440704\nu + 721272 ) / 37328 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11\nu^{6} + 32\nu^{5} - 2266\nu^{4} - 5844\nu^{3} + 132017\nu^{2} + 257330\nu - 1882856 ) / 4666 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 121\nu^{6} + 352\nu^{5} - 22593\nu^{4} - 40954\nu^{3} + 1151230\nu^{2} + 856912\nu - 13656424 ) / 18664 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -443\nu^{6} + 408\nu^{5} + 84259\nu^{4} - 72178\nu^{3} - 4181362\nu^{2} + 1537040\nu + 43030008 ) / 37328 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 58 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 2\beta_{4} + 2\beta_{3} + \beta_{2} + 87\beta _1 - 56 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{5} - 2\beta_{4} - 20\beta_{3} + 119\beta_{2} - 153\beta _1 + 5018 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 22\beta_{6} + 173\beta_{5} - 260\beta_{4} + 280\beta_{3} + 3\beta_{2} + 8793\beta _1 - 8930 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -64\beta_{6} - 384\beta_{5} - 294\beta_{4} - 3872\beta_{3} + 13035\beta_{2} - 22269\beta _1 + 505014 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−11.0349
−7.90544
−4.78396
3.01237
4.36956
8.06197
10.2804
−11.0349 −9.00000 89.7686 −25.0000 99.3139 −171.189 −637.470 81.0000 275.872
1.2 −7.90544 −9.00000 30.4961 −25.0000 71.1490 176.088 11.8893 81.0000 197.636
1.3 −4.78396 −9.00000 −9.11374 −25.0000 43.0556 73.5517 196.686 81.0000 119.599
1.4 3.01237 −9.00000 −22.9256 −25.0000 −27.1114 −242.606 −165.456 81.0000 −75.3093
1.5 4.36956 −9.00000 −12.9069 −25.0000 −39.3261 51.6597 −196.224 81.0000 −109.239
1.6 8.06197 −9.00000 32.9954 −25.0000 −72.5577 −68.7454 8.02471 81.0000 −201.549
1.7 10.2804 −9.00000 73.6862 −25.0000 −92.5234 213.240 428.550 81.0000 −257.009
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 195.6.a.i 7
3.b odd 2 1 585.6.a.n 7
5.b even 2 1 975.6.a.m 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.6.a.i 7 1.a even 1 1 trivial
585.6.a.n 7 3.b odd 2 1
975.6.a.m 7 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} - 2T_{2}^{6} - 201T_{2}^{5} + 480T_{2}^{4} + 11274T_{2}^{3} - 29276T_{2}^{2} - 162072T_{2} + 455280 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(195))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 2 T^{6} + \cdots + 455280 \) Copy content Toggle raw display
$3$ \( (T + 9)^{7} \) Copy content Toggle raw display
$5$ \( (T + 25)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + \cdots + 407345549010432 \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots + 32\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( (T - 169)^{7} \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 62\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots - 28\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots + 29\!\cdots\!20 \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots + 35\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots - 17\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots - 48\!\cdots\!32 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 52\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots + 84\!\cdots\!08 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots + 72\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots - 11\!\cdots\!28 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 44\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots - 81\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots + 57\!\cdots\!20 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots + 34\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 26\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 33\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots + 20\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
show more
show less