Properties

Label 1950.4.a.bb
Level $1950$
Weight $4$
Character orbit 1950.a
Self dual yes
Analytic conductor $115.054$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,4,Mod(1,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.053724511\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.37940.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 38x - 82 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 6 q^{6} + ( - \beta_{2} - \beta_1 - 1) q^{7} - 8 q^{8} + 9 q^{9} + (4 \beta_{2} - \beta_1 - 18) q^{11} + 12 q^{12} + 13 q^{13} + (2 \beta_{2} + 2 \beta_1 + 2) q^{14} + 16 q^{16}+ \cdots + (36 \beta_{2} - 9 \beta_1 - 162) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 9 q^{3} + 12 q^{4} - 18 q^{6} - 5 q^{7} - 24 q^{8} + 27 q^{9} - 51 q^{11} + 36 q^{12} + 39 q^{13} + 10 q^{14} + 48 q^{16} - q^{17} - 54 q^{18} + 26 q^{19} - 15 q^{21} + 102 q^{22} - 148 q^{23}+ \cdots - 459 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 38x - 82 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu - 25 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4\nu - 25 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 4\beta _1 + 75 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.04547
−4.40080
−2.64468
−2.00000 3.00000 4.00000 0 −6.00000 −15.0500 −8.00000 9.00000 0
1.2 −2.00000 3.00000 4.00000 0 −6.00000 −11.7380 −8.00000 9.00000 0
1.3 −2.00000 3.00000 4.00000 0 −6.00000 21.7880 −8.00000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.4.a.bb 3
5.b even 2 1 1950.4.a.bi yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.4.a.bb 3 1.a even 1 1 trivial
1950.4.a.bi yes 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1950))\):

\( T_{7}^{3} + 5T_{7}^{2} - 407T_{7} - 3849 \) Copy content Toggle raw display
\( T_{11}^{3} + 51T_{11}^{2} - 945T_{11} - 50085 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 5 T^{2} + \cdots - 3849 \) Copy content Toggle raw display
$11$ \( T^{3} + 51 T^{2} + \cdots - 50085 \) Copy content Toggle raw display
$13$ \( (T - 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + T^{2} + \cdots + 200115 \) Copy content Toggle raw display
$19$ \( T^{3} - 26 T^{2} + \cdots + 364940 \) Copy content Toggle raw display
$23$ \( T^{3} + 148 T^{2} + \cdots - 282780 \) Copy content Toggle raw display
$29$ \( T^{3} + 77 T^{2} + \cdots - 1402641 \) Copy content Toggle raw display
$31$ \( T^{3} + 3 T^{2} + \cdots + 479395 \) Copy content Toggle raw display
$37$ \( T^{3} - 466 T^{2} + \cdots + 8257716 \) Copy content Toggle raw display
$41$ \( T^{3} + 356 T^{2} + \cdots - 612 \) Copy content Toggle raw display
$43$ \( T^{3} + 416 T^{2} + \cdots - 9126252 \) Copy content Toggle raw display
$47$ \( T^{3} - 311 T^{2} + \cdots + 32713695 \) Copy content Toggle raw display
$53$ \( T^{3} + 231 T^{2} + \cdots - 116716815 \) Copy content Toggle raw display
$59$ \( T^{3} + 511 T^{2} + \cdots - 98582031 \) Copy content Toggle raw display
$61$ \( T^{3} - 11 T^{2} + \cdots + 112124615 \) Copy content Toggle raw display
$67$ \( T^{3} - 911 T^{2} + \cdots + 129699125 \) Copy content Toggle raw display
$71$ \( T^{3} + 114 T^{2} + \cdots + 232982892 \) Copy content Toggle raw display
$73$ \( T^{3} - 50 T^{2} + \cdots - 102088636 \) Copy content Toggle raw display
$79$ \( T^{3} + 1180 T^{2} + \cdots - 397073692 \) Copy content Toggle raw display
$83$ \( T^{3} - 243 T^{2} + \cdots + 30880359 \) Copy content Toggle raw display
$89$ \( T^{3} + 2048 T^{2} + \cdots - 392303664 \) Copy content Toggle raw display
$97$ \( T^{3} - 194 T^{2} + \cdots + 154309448 \) Copy content Toggle raw display
show more
show less