Properties

Label 1950.4.a.bb
Level 19501950
Weight 44
Character orbit 1950.a
Self dual yes
Analytic conductor 115.054115.054
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,4,Mod(1,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1950=235213 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,9,12,0,-18,-5,-24,27,0,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 115.053724511115.053724511
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.37940.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x338x82 x^{3} - 38x - 82 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 3 3
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2q2+3q3+4q46q6+(β2β11)q78q8+9q9+(4β2β118)q11+12q12+13q13+(2β2+2β1+2)q14+16q16++(36β29β1162)q99+O(q100) q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 6 q^{6} + ( - \beta_{2} - \beta_1 - 1) q^{7} - 8 q^{8} + 9 q^{9} + (4 \beta_{2} - \beta_1 - 18) q^{11} + 12 q^{12} + 13 q^{13} + (2 \beta_{2} + 2 \beta_1 + 2) q^{14} + 16 q^{16}+ \cdots + (36 \beta_{2} - 9 \beta_1 - 162) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q6q2+9q3+12q418q65q724q8+27q951q11+36q12+39q13+10q14+48q16q1754q18+26q1915q21+102q22148q23+459q99+O(q100) 3 q - 6 q^{2} + 9 q^{3} + 12 q^{4} - 18 q^{6} - 5 q^{7} - 24 q^{8} + 27 q^{9} - 51 q^{11} + 36 q^{12} + 39 q^{13} + 10 q^{14} + 48 q^{16} - q^{17} - 54 q^{18} + 26 q^{19} - 15 q^{21} + 102 q^{22} - 148 q^{23}+ \cdots - 459 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x338x82 x^{3} - 38x - 82 : Copy content Toggle raw display

β1\beta_{1}== ν2ν25 \nu^{2} - \nu - 25 Copy content Toggle raw display
β2\beta_{2}== ν24ν25 \nu^{2} - 4\nu - 25 Copy content Toggle raw display
ν\nu== (β2+β1)/3 ( -\beta_{2} + \beta_1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β2+4β1+75)/3 ( -\beta_{2} + 4\beta _1 + 75 ) / 3 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
7.04547
−4.40080
−2.64468
−2.00000 3.00000 4.00000 0 −6.00000 −15.0500 −8.00000 9.00000 0
1.2 −2.00000 3.00000 4.00000 0 −6.00000 −11.7380 −8.00000 9.00000 0
1.3 −2.00000 3.00000 4.00000 0 −6.00000 21.7880 −8.00000 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
55 1 -1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.4.a.bb 3
5.b even 2 1 1950.4.a.bi yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.4.a.bb 3 1.a even 1 1 trivial
1950.4.a.bi yes 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1950))S_{4}^{\mathrm{new}}(\Gamma_0(1950)):

T73+5T72407T73849 T_{7}^{3} + 5T_{7}^{2} - 407T_{7} - 3849 Copy content Toggle raw display
T113+51T112945T1150085 T_{11}^{3} + 51T_{11}^{2} - 945T_{11} - 50085 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+2)3 (T + 2)^{3} Copy content Toggle raw display
33 (T3)3 (T - 3)^{3} Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3+5T2+3849 T^{3} + 5 T^{2} + \cdots - 3849 Copy content Toggle raw display
1111 T3+51T2+50085 T^{3} + 51 T^{2} + \cdots - 50085 Copy content Toggle raw display
1313 (T13)3 (T - 13)^{3} Copy content Toggle raw display
1717 T3+T2++200115 T^{3} + T^{2} + \cdots + 200115 Copy content Toggle raw display
1919 T326T2++364940 T^{3} - 26 T^{2} + \cdots + 364940 Copy content Toggle raw display
2323 T3+148T2+282780 T^{3} + 148 T^{2} + \cdots - 282780 Copy content Toggle raw display
2929 T3+77T2+1402641 T^{3} + 77 T^{2} + \cdots - 1402641 Copy content Toggle raw display
3131 T3+3T2++479395 T^{3} + 3 T^{2} + \cdots + 479395 Copy content Toggle raw display
3737 T3466T2++8257716 T^{3} - 466 T^{2} + \cdots + 8257716 Copy content Toggle raw display
4141 T3+356T2+612 T^{3} + 356 T^{2} + \cdots - 612 Copy content Toggle raw display
4343 T3+416T2+9126252 T^{3} + 416 T^{2} + \cdots - 9126252 Copy content Toggle raw display
4747 T3311T2++32713695 T^{3} - 311 T^{2} + \cdots + 32713695 Copy content Toggle raw display
5353 T3+231T2+116716815 T^{3} + 231 T^{2} + \cdots - 116716815 Copy content Toggle raw display
5959 T3+511T2+98582031 T^{3} + 511 T^{2} + \cdots - 98582031 Copy content Toggle raw display
6161 T311T2++112124615 T^{3} - 11 T^{2} + \cdots + 112124615 Copy content Toggle raw display
6767 T3911T2++129699125 T^{3} - 911 T^{2} + \cdots + 129699125 Copy content Toggle raw display
7171 T3+114T2++232982892 T^{3} + 114 T^{2} + \cdots + 232982892 Copy content Toggle raw display
7373 T350T2+102088636 T^{3} - 50 T^{2} + \cdots - 102088636 Copy content Toggle raw display
7979 T3+1180T2+397073692 T^{3} + 1180 T^{2} + \cdots - 397073692 Copy content Toggle raw display
8383 T3243T2++30880359 T^{3} - 243 T^{2} + \cdots + 30880359 Copy content Toggle raw display
8989 T3+2048T2+392303664 T^{3} + 2048 T^{2} + \cdots - 392303664 Copy content Toggle raw display
9797 T3194T2++154309448 T^{3} - 194 T^{2} + \cdots + 154309448 Copy content Toggle raw display
show more
show less