gp: [N,k,chi] = [1950,4,Mod(1,1950)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1950, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1950.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [3,-6,9,12,0,-18,-5,-24,27,0,-51]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
5 5 5
− 1 -1 − 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1950 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1950)) S 4 n e w ( Γ 0 ( 1 9 5 0 ) ) :
T 7 3 + 5 T 7 2 − 407 T 7 − 3849 T_{7}^{3} + 5T_{7}^{2} - 407T_{7} - 3849 T 7 3 + 5 T 7 2 − 4 0 7 T 7 − 3 8 4 9
T7^3 + 5*T7^2 - 407*T7 - 3849
T 11 3 + 51 T 11 2 − 945 T 11 − 50085 T_{11}^{3} + 51T_{11}^{2} - 945T_{11} - 50085 T 1 1 3 + 5 1 T 1 1 2 − 9 4 5 T 1 1 − 5 0 0 8 5
T11^3 + 51*T11^2 - 945*T11 - 50085
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T + 2 ) 3 (T + 2)^{3} ( T + 2 ) 3
(T + 2)^3
3 3 3
( T − 3 ) 3 (T - 3)^{3} ( T − 3 ) 3
(T - 3)^3
5 5 5
T 3 T^{3} T 3
T^3
7 7 7
T 3 + 5 T 2 + ⋯ − 3849 T^{3} + 5 T^{2} + \cdots - 3849 T 3 + 5 T 2 + ⋯ − 3 8 4 9
T^3 + 5*T^2 - 407*T - 3849
11 11 1 1
T 3 + 51 T 2 + ⋯ − 50085 T^{3} + 51 T^{2} + \cdots - 50085 T 3 + 5 1 T 2 + ⋯ − 5 0 0 8 5
T^3 + 51*T^2 - 945*T - 50085
13 13 1 3
( T − 13 ) 3 (T - 13)^{3} ( T − 1 3 ) 3
(T - 13)^3
17 17 1 7
T 3 + T 2 + ⋯ + 200115 T^{3} + T^{2} + \cdots + 200115 T 3 + T 2 + ⋯ + 2 0 0 1 1 5
T^3 + T^2 - 6645*T + 200115
19 19 1 9
T 3 − 26 T 2 + ⋯ + 364940 T^{3} - 26 T^{2} + \cdots + 364940 T 3 − 2 6 T 2 + ⋯ + 3 6 4 9 4 0
T^3 - 26*T^2 - 8740*T + 364940
23 23 2 3
T 3 + 148 T 2 + ⋯ − 282780 T^{3} + 148 T^{2} + \cdots - 282780 T 3 + 1 4 8 T 2 + ⋯ − 2 8 2 7 8 0
T^3 + 148*T^2 + 1560*T - 282780
29 29 2 9
T 3 + 77 T 2 + ⋯ − 1402641 T^{3} + 77 T^{2} + \cdots - 1402641 T 3 + 7 7 T 2 + ⋯ − 1 4 0 2 6 4 1
T^3 + 77*T^2 - 16365*T - 1402641
31 31 3 1
T 3 + 3 T 2 + ⋯ + 479395 T^{3} + 3 T^{2} + \cdots + 479395 T 3 + 3 T 2 + ⋯ + 4 7 9 3 9 5
T^3 + 3*T^2 - 36249*T + 479395
37 37 3 7
T 3 − 466 T 2 + ⋯ + 8257716 T^{3} - 466 T^{2} + \cdots + 8257716 T 3 − 4 6 6 T 2 + ⋯ + 8 2 5 7 7 1 6
T^3 - 466*T^2 - 296*T + 8257716
41 41 4 1
T 3 + 356 T 2 + ⋯ − 612 T^{3} + 356 T^{2} + \cdots - 612 T 3 + 3 5 6 T 2 + ⋯ − 6 1 2
T^3 + 356*T^2 + 20652*T - 612
43 43 4 3
T 3 + 416 T 2 + ⋯ − 9126252 T^{3} + 416 T^{2} + \cdots - 9126252 T 3 + 4 1 6 T 2 + ⋯ − 9 1 2 6 2 5 2
T^3 + 416*T^2 - 57500*T - 9126252
47 47 4 7
T 3 − 311 T 2 + ⋯ + 32713695 T^{3} - 311 T^{2} + \cdots + 32713695 T 3 − 3 1 1 T 2 + ⋯ + 3 2 7 1 3 6 9 5
T^3 - 311*T^2 - 105651*T + 32713695
53 53 5 3
T 3 + 231 T 2 + ⋯ − 116716815 T^{3} + 231 T^{2} + \cdots - 116716815 T 3 + 2 3 1 T 2 + ⋯ − 1 1 6 7 1 6 8 1 5
T^3 + 231*T^2 - 383661*T - 116716815
59 59 5 9
T 3 + 511 T 2 + ⋯ − 98582031 T^{3} + 511 T^{2} + \cdots - 98582031 T 3 + 5 1 1 T 2 + ⋯ − 9 8 5 8 2 0 3 1
T^3 + 511*T^2 - 212691*T - 98582031
61 61 6 1
T 3 − 11 T 2 + ⋯ + 112124615 T^{3} - 11 T^{2} + \cdots + 112124615 T 3 − 1 1 T 2 + ⋯ + 1 1 2 1 2 4 6 1 5
T^3 - 11*T^2 - 607021*T + 112124615
67 67 6 7
T 3 − 911 T 2 + ⋯ + 129699125 T^{3} - 911 T^{2} + \cdots + 129699125 T 3 − 9 1 1 T 2 + ⋯ + 1 2 9 6 9 9 1 2 5
T^3 - 911*T^2 - 34825*T + 129699125
71 71 7 1
T 3 + 114 T 2 + ⋯ + 232982892 T^{3} + 114 T^{2} + \cdots + 232982892 T 3 + 1 1 4 T 2 + ⋯ + 2 3 2 9 8 2 8 9 2
T^3 + 114*T^2 - 785628*T + 232982892
73 73 7 3
T 3 − 50 T 2 + ⋯ − 102088636 T^{3} - 50 T^{2} + \cdots - 102088636 T 3 − 5 0 T 2 + ⋯ − 1 0 2 0 8 8 6 3 6
T^3 - 50*T^2 - 871852*T - 102088636
79 79 7 9
T 3 + 1180 T 2 + ⋯ − 397073692 T^{3} + 1180 T^{2} + \cdots - 397073692 T 3 + 1 1 8 0 T 2 + ⋯ − 3 9 7 0 7 3 6 9 2
T^3 + 1180*T^2 - 506188*T - 397073692
83 83 8 3
T 3 − 243 T 2 + ⋯ + 30880359 T^{3} - 243 T^{2} + \cdots + 30880359 T 3 − 2 4 3 T 2 + ⋯ + 3 0 8 8 0 3 5 9
T^3 - 243*T^2 - 639675*T + 30880359
89 89 8 9
T 3 + 2048 T 2 + ⋯ − 392303664 T^{3} + 2048 T^{2} + \cdots - 392303664 T 3 + 2 0 4 8 T 2 + ⋯ − 3 9 2 3 0 3 6 6 4
T^3 + 2048*T^2 + 478608*T - 392303664
97 97 9 7
T 3 − 194 T 2 + ⋯ + 154309448 T^{3} - 194 T^{2} + \cdots + 154309448 T 3 − 1 9 4 T 2 + ⋯ + 1 5 4 3 0 9 4 4 8
T^3 - 194*T^2 - 540940*T + 154309448
show more
show less