Properties

Label 1950.4.a.y
Level $1950$
Weight $4$
Character orbit 1950.a
Self dual yes
Analytic conductor $115.054$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,4,Mod(1,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.053724511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{129}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{129}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 3 q^{3} + 4 q^{4} + 6 q^{6} + ( - \beta - 2) q^{7} + 8 q^{8} + 9 q^{9} + (2 \beta + 24) q^{11} + 12 q^{12} - 13 q^{13} + ( - 2 \beta - 4) q^{14} + 16 q^{16} + \beta q^{17} + 18 q^{18} + ( - 3 \beta - 34) q^{19}+ \cdots + (18 \beta + 216) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 12 q^{6} - 4 q^{7} + 16 q^{8} + 18 q^{9} + 48 q^{11} + 24 q^{12} - 26 q^{13} - 8 q^{14} + 32 q^{16} + 36 q^{18} - 68 q^{19} - 12 q^{21} + 96 q^{22} + 60 q^{23} + 48 q^{24}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.17891
−5.17891
2.00000 3.00000 4.00000 0 6.00000 −24.7156 8.00000 9.00000 0
1.2 2.00000 3.00000 4.00000 0 6.00000 20.7156 8.00000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.4.a.y 2
5.b even 2 1 390.4.a.m 2
15.d odd 2 1 1170.4.a.x 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.4.a.m 2 5.b even 2 1
1170.4.a.x 2 15.d odd 2 1
1950.4.a.y 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1950))\):

\( T_{7}^{2} + 4T_{7} - 512 \) Copy content Toggle raw display
\( T_{11}^{2} - 48T_{11} - 1488 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 512 \) Copy content Toggle raw display
$11$ \( T^{2} - 48T - 1488 \) Copy content Toggle raw display
$13$ \( (T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 516 \) Copy content Toggle raw display
$19$ \( T^{2} + 68T - 3488 \) Copy content Toggle raw display
$23$ \( T^{2} - 60T - 12000 \) Copy content Toggle raw display
$29$ \( T^{2} - 120T + 3084 \) Copy content Toggle raw display
$31$ \( T^{2} - 64T - 7232 \) Copy content Toggle raw display
$37$ \( T^{2} - 476T + 38068 \) Copy content Toggle raw display
$41$ \( T^{2} - 444T + 47220 \) Copy content Toggle raw display
$43$ \( T^{2} - 320T + 23536 \) Copy content Toggle raw display
$47$ \( T^{2} + 192T - 197184 \) Copy content Toggle raw display
$53$ \( T^{2} + 684T + 83940 \) Copy content Toggle raw display
$59$ \( T^{2} - 1536 T + 587760 \) Copy content Toggle raw display
$61$ \( T^{2} - 1084 T + 285508 \) Copy content Toggle raw display
$67$ \( T^{2} - 80T - 165584 \) Copy content Toggle raw display
$71$ \( T^{2} - 648T - 144768 \) Copy content Toggle raw display
$73$ \( T^{2} + 232T - 618644 \) Copy content Toggle raw display
$79$ \( T^{2} - 1000T + 256 \) Copy content Toggle raw display
$83$ \( T^{2} + 1440 T + 169584 \) Copy content Toggle raw display
$89$ \( T^{2} + 180 T - 1496556 \) Copy content Toggle raw display
$97$ \( T^{2} + 136T - 144500 \) Copy content Toggle raw display
show more
show less