Properties

Label 196.14.a.a
Level 196196
Weight 1414
Character orbit 196.a
Self dual yes
Analytic conductor 210.173210.173
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,14,Mod(1,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: N N == 196=2272 196 = 2^{2} \cdot 7^{2}
Weight: k k == 14 14
Character orbit: [χ][\chi] == 196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 210.172620746210.172620746
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 4)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q468q356214q51375299q96397380q1115199742q13+26308152q1543114194q17+365115484q1957226824q23+1939310671q25+1389783096q2746418994q29++8798310316620q99+O(q100) q - 468 q^{3} - 56214 q^{5} - 1375299 q^{9} - 6397380 q^{11} - 15199742 q^{13} + 26308152 q^{15} - 43114194 q^{17} + 365115484 q^{19} - 57226824 q^{23} + 1939310671 q^{25} + 1389783096 q^{27} - 46418994 q^{29}+ \cdots + 8798310316620 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −468.000 0 −56214.0 0 0 0 −1.37530e6 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.14.a.a 1
7.b odd 2 1 4.14.a.a 1
7.c even 3 2 196.14.e.b 2
7.d odd 6 2 196.14.e.a 2
21.c even 2 1 36.14.a.a 1
28.d even 2 1 16.14.a.b 1
35.c odd 2 1 100.14.a.a 1
35.f even 4 2 100.14.c.a 2
56.e even 2 1 64.14.a.g 1
56.h odd 2 1 64.14.a.c 1
84.h odd 2 1 144.14.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.14.a.a 1 7.b odd 2 1
16.14.a.b 1 28.d even 2 1
36.14.a.a 1 21.c even 2 1
64.14.a.c 1 56.h odd 2 1
64.14.a.g 1 56.e even 2 1
100.14.a.a 1 35.c odd 2 1
100.14.c.a 2 35.f even 4 2
144.14.a.a 1 84.h odd 2 1
196.14.a.a 1 1.a even 1 1 trivial
196.14.e.a 2 7.d odd 6 2
196.14.e.b 2 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+468 T_{3} + 468 acting on S14new(Γ0(196))S_{14}^{\mathrm{new}}(\Gamma_0(196)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+468 T + 468 Copy content Toggle raw display
55 T+56214 T + 56214 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+6397380 T + 6397380 Copy content Toggle raw display
1313 T+15199742 T + 15199742 Copy content Toggle raw display
1717 T+43114194 T + 43114194 Copy content Toggle raw display
1919 T365115484 T - 365115484 Copy content Toggle raw display
2323 T+57226824 T + 57226824 Copy content Toggle raw display
2929 T+46418994 T + 46418994 Copy content Toggle raw display
3131 T5682185824 T - 5682185824 Copy content Toggle raw display
3737 T+1887185098 T + 1887185098 Copy content Toggle raw display
4141 T7336802934 T - 7336802934 Copy content Toggle raw display
4343 T+26886674980 T + 26886674980 Copy content Toggle raw display
4747 T+101839834224 T + 101839834224 Copy content Toggle raw display
5353 T278731884294 T - 278731884294 Copy content Toggle raw display
5959 T+59573945772 T + 59573945772 Copy content Toggle raw display
6161 T27484470418 T - 27484470418 Copy content Toggle raw display
6767 T784410054932 T - 784410054932 Copy content Toggle raw display
7171 T+360365227992 T + 360365227992 Copy content Toggle raw display
7373 T1592635413718 T - 1592635413718 Copy content Toggle raw display
7979 T+23161184752 T + 23161184752 Copy content Toggle raw display
8383 T+2050158110436 T + 2050158110436 Copy content Toggle raw display
8989 T3485391237126 T - 3485391237126 Copy content Toggle raw display
9797 T+6706667416802 T + 6706667416802 Copy content Toggle raw display
show more
show less