Properties

Label 196.14.a.a
Level $196$
Weight $14$
Character orbit 196.a
Self dual yes
Analytic conductor $210.173$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,14,Mod(1,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(210.172620746\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 468 q^{3} - 56214 q^{5} - 1375299 q^{9} - 6397380 q^{11} - 15199742 q^{13} + 26308152 q^{15} - 43114194 q^{17} + 365115484 q^{19} - 57226824 q^{23} + 1939310671 q^{25} + 1389783096 q^{27} - 46418994 q^{29}+ \cdots + 8798310316620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −468.000 0 −56214.0 0 0 0 −1.37530e6 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.14.a.a 1
7.b odd 2 1 4.14.a.a 1
7.c even 3 2 196.14.e.b 2
7.d odd 6 2 196.14.e.a 2
21.c even 2 1 36.14.a.a 1
28.d even 2 1 16.14.a.b 1
35.c odd 2 1 100.14.a.a 1
35.f even 4 2 100.14.c.a 2
56.e even 2 1 64.14.a.g 1
56.h odd 2 1 64.14.a.c 1
84.h odd 2 1 144.14.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.14.a.a 1 7.b odd 2 1
16.14.a.b 1 28.d even 2 1
36.14.a.a 1 21.c even 2 1
64.14.a.c 1 56.h odd 2 1
64.14.a.g 1 56.e even 2 1
100.14.a.a 1 35.c odd 2 1
100.14.c.a 2 35.f even 4 2
144.14.a.a 1 84.h odd 2 1
196.14.a.a 1 1.a even 1 1 trivial
196.14.e.a 2 7.d odd 6 2
196.14.e.b 2 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 468 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(196))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 468 \) Copy content Toggle raw display
$5$ \( T + 56214 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 6397380 \) Copy content Toggle raw display
$13$ \( T + 15199742 \) Copy content Toggle raw display
$17$ \( T + 43114194 \) Copy content Toggle raw display
$19$ \( T - 365115484 \) Copy content Toggle raw display
$23$ \( T + 57226824 \) Copy content Toggle raw display
$29$ \( T + 46418994 \) Copy content Toggle raw display
$31$ \( T - 5682185824 \) Copy content Toggle raw display
$37$ \( T + 1887185098 \) Copy content Toggle raw display
$41$ \( T - 7336802934 \) Copy content Toggle raw display
$43$ \( T + 26886674980 \) Copy content Toggle raw display
$47$ \( T + 101839834224 \) Copy content Toggle raw display
$53$ \( T - 278731884294 \) Copy content Toggle raw display
$59$ \( T + 59573945772 \) Copy content Toggle raw display
$61$ \( T - 27484470418 \) Copy content Toggle raw display
$67$ \( T - 784410054932 \) Copy content Toggle raw display
$71$ \( T + 360365227992 \) Copy content Toggle raw display
$73$ \( T - 1592635413718 \) Copy content Toggle raw display
$79$ \( T + 23161184752 \) Copy content Toggle raw display
$83$ \( T + 2050158110436 \) Copy content Toggle raw display
$89$ \( T - 3485391237126 \) Copy content Toggle raw display
$97$ \( T + 6706667416802 \) Copy content Toggle raw display
show more
show less