Properties

Label 196.3.c.c.99.2
Level $196$
Weight $3$
Character 196.99
Self dual yes
Analytic conductor $5.341$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,3,Mod(99,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.99");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 196.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34061318146\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 99.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 196.99

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} +1.41421 q^{5} +8.00000 q^{8} +9.00000 q^{9} +2.82843 q^{10} -24.0416 q^{13} +16.0000 q^{16} +32.5269 q^{17} +18.0000 q^{18} +5.65685 q^{20} -23.0000 q^{25} -48.0833 q^{26} -40.0000 q^{29} +32.0000 q^{32} +65.0538 q^{34} +36.0000 q^{36} -24.0000 q^{37} +11.3137 q^{40} -43.8406 q^{41} +12.7279 q^{45} -46.0000 q^{50} -96.1665 q^{52} -90.0000 q^{53} -80.0000 q^{58} +100.409 q^{61} +64.0000 q^{64} -34.0000 q^{65} +130.108 q^{68} +72.0000 q^{72} -145.664 q^{73} -48.0000 q^{74} +22.6274 q^{80} +81.0000 q^{81} -87.6812 q^{82} +46.0000 q^{85} -57.9828 q^{89} +25.4558 q^{90} +193.747 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 8 q^{4} + 16 q^{8} + 18 q^{9} + 32 q^{16} + 36 q^{18} - 46 q^{25} - 80 q^{29} + 64 q^{32} + 72 q^{36} - 48 q^{37} - 92 q^{50} - 180 q^{53} - 160 q^{58} + 128 q^{64} - 68 q^{65} + 144 q^{72}+ \cdots + 92 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 1.00000
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 4.00000 1.00000
\(5\) 1.41421 0.282843 0.141421 0.989949i \(-0.454833\pi\)
0.141421 + 0.989949i \(0.454833\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 8.00000 1.00000
\(9\) 9.00000 1.00000
\(10\) 2.82843 0.282843
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −24.0416 −1.84936 −0.924678 0.380750i \(-0.875666\pi\)
−0.924678 + 0.380750i \(0.875666\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 1.00000
\(17\) 32.5269 1.91335 0.956674 0.291162i \(-0.0940417\pi\)
0.956674 + 0.291162i \(0.0940417\pi\)
\(18\) 18.0000 1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 5.65685 0.282843
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −23.0000 −0.920000
\(26\) −48.0833 −1.84936
\(27\) 0 0
\(28\) 0 0
\(29\) −40.0000 −1.37931 −0.689655 0.724138i \(-0.742238\pi\)
−0.689655 + 0.724138i \(0.742238\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 32.0000 1.00000
\(33\) 0 0
\(34\) 65.0538 1.91335
\(35\) 0 0
\(36\) 36.0000 1.00000
\(37\) −24.0000 −0.648649 −0.324324 0.945946i \(-0.605137\pi\)
−0.324324 + 0.945946i \(0.605137\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 11.3137 0.282843
\(41\) −43.8406 −1.06928 −0.534642 0.845079i \(-0.679553\pi\)
−0.534642 + 0.845079i \(0.679553\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 12.7279 0.282843
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −46.0000 −0.920000
\(51\) 0 0
\(52\) −96.1665 −1.84936
\(53\) −90.0000 −1.69811 −0.849057 0.528302i \(-0.822829\pi\)
−0.849057 + 0.528302i \(0.822829\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −80.0000 −1.37931
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 100.409 1.64605 0.823026 0.568004i \(-0.192284\pi\)
0.823026 + 0.568004i \(0.192284\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) −34.0000 −0.523077
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 130.108 1.91335
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 72.0000 1.00000
\(73\) −145.664 −1.99540 −0.997699 0.0678048i \(-0.978401\pi\)
−0.997699 + 0.0678048i \(0.978401\pi\)
\(74\) −48.0000 −0.648649
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 22.6274 0.282843
\(81\) 81.0000 1.00000
\(82\) −87.6812 −1.06928
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 46.0000 0.541176
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −57.9828 −0.651492 −0.325746 0.945457i \(-0.605615\pi\)
−0.325746 + 0.945457i \(0.605615\pi\)
\(90\) 25.4558 0.282843
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 193.747 1.99739 0.998697 0.0510283i \(-0.0162499\pi\)
0.998697 + 0.0510283i \(0.0162499\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −92.0000 −0.920000
\(101\) 111.723 1.10617 0.553084 0.833126i \(-0.313451\pi\)
0.553084 + 0.833126i \(0.313451\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −192.333 −1.84936
\(105\) 0 0
\(106\) −180.000 −1.69811
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 120.000 1.10092 0.550459 0.834862i \(-0.314453\pi\)
0.550459 + 0.834862i \(0.314453\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 30.0000 0.265487 0.132743 0.991150i \(-0.457621\pi\)
0.132743 + 0.991150i \(0.457621\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −160.000 −1.37931
\(117\) −216.375 −1.84936
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 200.818 1.64605
\(123\) 0 0
\(124\) 0 0
\(125\) −67.8823 −0.543058
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 128.000 1.00000
\(129\) 0 0
\(130\) −68.0000 −0.523077
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 260.215 1.91335
\(137\) 176.000 1.28467 0.642336 0.766423i \(-0.277965\pi\)
0.642336 + 0.766423i \(0.277965\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 144.000 1.00000
\(145\) −56.5685 −0.390128
\(146\) −291.328 −1.99540
\(147\) 0 0
\(148\) −96.0000 −0.648649
\(149\) 102.000 0.684564 0.342282 0.939597i \(-0.388800\pi\)
0.342282 + 0.939597i \(0.388800\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 292.742 1.91335
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −66.4680 −0.423363 −0.211682 0.977339i \(-0.567894\pi\)
−0.211682 + 0.977339i \(0.567894\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 45.2548 0.282843
\(161\) 0 0
\(162\) 162.000 1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −175.362 −1.06928
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 409.000 2.42012
\(170\) 92.0000 0.541176
\(171\) 0 0
\(172\) 0 0
\(173\) 159.806 0.923735 0.461867 0.886949i \(-0.347180\pi\)
0.461867 + 0.886949i \(0.347180\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −115.966 −0.651492
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 50.9117 0.282843
\(181\) −281.428 −1.55485 −0.777427 0.628973i \(-0.783475\pi\)
−0.777427 + 0.628973i \(0.783475\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −33.9411 −0.183466
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 190.000 0.984456 0.492228 0.870466i \(-0.336183\pi\)
0.492228 + 0.870466i \(0.336183\pi\)
\(194\) 387.495 1.99739
\(195\) 0 0
\(196\) 0 0
\(197\) −390.000 −1.97970 −0.989848 0.142132i \(-0.954604\pi\)
−0.989848 + 0.142132i \(0.954604\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −184.000 −0.920000
\(201\) 0 0
\(202\) 223.446 1.10617
\(203\) 0 0
\(204\) 0 0
\(205\) −62.0000 −0.302439
\(206\) 0 0
\(207\) 0 0
\(208\) −384.666 −1.84936
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −360.000 −1.69811
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 240.000 1.10092
\(219\) 0 0
\(220\) 0 0
\(221\) −782.000 −3.53846
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −207.000 −0.920000
\(226\) 60.0000 0.265487
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 397.394 1.73535 0.867673 0.497136i \(-0.165615\pi\)
0.867673 + 0.497136i \(0.165615\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −320.000 −1.37931
\(233\) −416.000 −1.78541 −0.892704 0.450644i \(-0.851194\pi\)
−0.892704 + 0.450644i \(0.851194\pi\)
\(234\) −432.749 −1.84936
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −125.865 −0.522261 −0.261131 0.965303i \(-0.584095\pi\)
−0.261131 + 0.965303i \(0.584095\pi\)
\(242\) 242.000 1.00000
\(243\) 0 0
\(244\) 401.637 1.64605
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −135.765 −0.543058
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) −315.370 −1.22712 −0.613560 0.789648i \(-0.710263\pi\)
−0.613560 + 0.789648i \(0.710263\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −136.000 −0.523077
\(261\) −360.000 −1.37931
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −127.279 −0.480299
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 270.115 1.00414 0.502072 0.864826i \(-0.332571\pi\)
0.502072 + 0.864826i \(0.332571\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 520.431 1.91335
\(273\) 0 0
\(274\) 352.000 1.28467
\(275\) 0 0
\(276\) 0 0
\(277\) −230.000 −0.830325 −0.415162 0.909747i \(-0.636275\pi\)
−0.415162 + 0.909747i \(0.636275\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −320.000 −1.13879 −0.569395 0.822064i \(-0.692822\pi\)
−0.569395 + 0.822064i \(0.692822\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 288.000 1.00000
\(289\) 769.000 2.66090
\(290\) −113.137 −0.390128
\(291\) 0 0
\(292\) −582.656 −1.99540
\(293\) −499.217 −1.70381 −0.851907 0.523693i \(-0.824554\pi\)
−0.851907 + 0.523693i \(0.824554\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −192.000 −0.648649
\(297\) 0 0
\(298\) 204.000 0.684564
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 142.000 0.465574
\(306\) 585.484 1.91335
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 476.590 1.52265 0.761326 0.648369i \(-0.224549\pi\)
0.761326 + 0.648369i \(0.224549\pi\)
\(314\) −132.936 −0.423363
\(315\) 0 0
\(316\) 0 0
\(317\) −150.000 −0.473186 −0.236593 0.971609i \(-0.576031\pi\)
−0.236593 + 0.971609i \(0.576031\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 90.5097 0.282843
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 324.000 1.00000
\(325\) 552.958 1.70141
\(326\) 0 0
\(327\) 0 0
\(328\) −350.725 −1.06928
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −216.000 −0.648649
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 576.000 1.70920 0.854599 0.519288i \(-0.173803\pi\)
0.854599 + 0.519288i \(0.173803\pi\)
\(338\) 818.000 2.42012
\(339\) 0 0
\(340\) 184.000 0.541176
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 319.612 0.923735
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −677.408 −1.94100 −0.970499 0.241105i \(-0.922490\pi\)
−0.970499 + 0.241105i \(0.922490\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −66.4680 −0.188295 −0.0941474 0.995558i \(-0.530012\pi\)
−0.0941474 + 0.995558i \(0.530012\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −231.931 −0.651492
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 101.823 0.282843
\(361\) 361.000 1.00000
\(362\) −562.857 −1.55485
\(363\) 0 0
\(364\) 0 0
\(365\) −206.000 −0.564384
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −394.566 −1.06928
\(370\) −67.8823 −0.183466
\(371\) 0 0
\(372\) 0 0
\(373\) 550.000 1.47453 0.737265 0.675603i \(-0.236117\pi\)
0.737265 + 0.675603i \(0.236117\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 961.665 2.55084
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 380.000 0.984456
\(387\) 0 0
\(388\) 774.989 1.99739
\(389\) 680.000 1.74807 0.874036 0.485861i \(-0.161494\pi\)
0.874036 + 0.485861i \(0.161494\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −780.000 −1.97970
\(395\) 0 0
\(396\) 0 0
\(397\) −137.179 −0.345538 −0.172769 0.984962i \(-0.555271\pi\)
−0.172769 + 0.984962i \(0.555271\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −368.000 −0.920000
\(401\) −80.0000 −0.199501 −0.0997506 0.995012i \(-0.531805\pi\)
−0.0997506 + 0.995012i \(0.531805\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 446.891 1.10617
\(405\) 114.551 0.282843
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −383.252 −0.937046 −0.468523 0.883451i \(-0.655214\pi\)
−0.468523 + 0.883451i \(0.655214\pi\)
\(410\) −124.000 −0.302439
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −769.332 −1.84936
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 58.0000 0.137767 0.0688836 0.997625i \(-0.478056\pi\)
0.0688836 + 0.997625i \(0.478056\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −720.000 −1.69811
\(425\) −748.119 −1.76028
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 371.938 0.858980 0.429490 0.903072i \(-0.358693\pi\)
0.429490 + 0.903072i \(0.358693\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 480.000 1.10092
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1564.00 −3.53846
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −82.0000 −0.184270
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 702.000 1.56347 0.781737 0.623608i \(-0.214334\pi\)
0.781737 + 0.623608i \(0.214334\pi\)
\(450\) −414.000 −0.920000
\(451\) 0 0
\(452\) 120.000 0.265487
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −850.000 −1.85996 −0.929978 0.367615i \(-0.880174\pi\)
−0.929978 + 0.367615i \(0.880174\pi\)
\(458\) 794.788 1.73535
\(459\) 0 0
\(460\) 0 0
\(461\) 906.511 1.96640 0.983201 0.182529i \(-0.0584282\pi\)
0.983201 + 0.182529i \(0.0584282\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −640.000 −1.37931
\(465\) 0 0
\(466\) −832.000 −1.78541
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −865.499 −1.84936
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −810.000 −1.69811
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 576.999 1.19958
\(482\) −251.730 −0.522261
\(483\) 0 0
\(484\) 484.000 1.00000
\(485\) 274.000 0.564948
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 803.273 1.64605
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −1301.08 −2.63910
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −271.529 −0.543058
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 158.000 0.312871
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 337.997 0.664041 0.332021 0.943272i \(-0.392270\pi\)
0.332021 + 0.943272i \(0.392270\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 512.000 1.00000
\(513\) 0 0
\(514\) −630.739 −1.22712
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −272.000 −0.523077
\(521\) −1016.82 −1.95167 −0.975835 0.218511i \(-0.929880\pi\)
−0.975835 + 0.218511i \(0.929880\pi\)
\(522\) −720.000 −1.37931
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 529.000 1.00000
\(530\) −254.558 −0.480299
\(531\) 0 0
\(532\) 0 0
\(533\) 1054.00 1.97749
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 540.230 1.00414
\(539\) 0 0
\(540\) 0 0
\(541\) −682.000 −1.26063 −0.630314 0.776340i \(-0.717074\pi\)
−0.630314 + 0.776340i \(0.717074\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1040.86 1.91335
\(545\) 169.706 0.311386
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 704.000 1.28467
\(549\) 903.682 1.64605
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −460.000 −0.830325
\(555\) 0 0
\(556\) 0 0
\(557\) 330.000 0.592460 0.296230 0.955117i \(-0.404271\pi\)
0.296230 + 0.955117i \(0.404271\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −640.000 −1.13879
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 42.4264 0.0750910
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1040.00 1.82777 0.913884 0.405975i \(-0.133068\pi\)
0.913884 + 0.405975i \(0.133068\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 576.000 1.00000
\(577\) 745.291 1.29166 0.645832 0.763479i \(-0.276510\pi\)
0.645832 + 0.763479i \(0.276510\pi\)
\(578\) 1538.00 2.66090
\(579\) 0 0
\(580\) −226.274 −0.390128
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1165.31 −1.99540
\(585\) −306.000 −0.523077
\(586\) −998.435 −1.70381
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −384.000 −0.648649
\(593\) −137.179 −0.231330 −0.115665 0.993288i \(-0.536900\pi\)
−0.115665 + 0.993288i \(0.536900\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 408.000 0.684564
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −439.820 −0.731814 −0.365907 0.930651i \(-0.619241\pi\)
−0.365907 + 0.930651i \(0.619241\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 171.120 0.282843
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 284.000 0.465574
\(611\) 0 0
\(612\) 1170.97 1.91335
\(613\) −1224.00 −1.99674 −0.998369 0.0570962i \(-0.981816\pi\)
−0.998369 + 0.0570962i \(0.981816\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1216.00 −1.97083 −0.985413 0.170178i \(-0.945566\pi\)
−0.985413 + 0.170178i \(0.945566\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 479.000 0.766400
\(626\) 953.180 1.52265
\(627\) 0 0
\(628\) −265.872 −0.423363
\(629\) −780.646 −1.24109
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −300.000 −0.473186
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 181.019 0.282843
\(641\) 400.000 0.624025 0.312012 0.950078i \(-0.398997\pi\)
0.312012 + 0.950078i \(0.398997\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 648.000 1.00000
\(649\) 0 0
\(650\) 1105.92 1.70141
\(651\) 0 0
\(652\) 0 0
\(653\) −1144.00 −1.75191 −0.875957 0.482389i \(-0.839769\pi\)
−0.875957 + 0.482389i \(0.839769\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −701.450 −1.06928
\(657\) −1310.98 −1.99540
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 408.708 0.618317 0.309159 0.951010i \(-0.399953\pi\)
0.309159 + 0.951010i \(0.399953\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −432.000 −0.648649
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1104.00 −1.64042 −0.820208 0.572065i \(-0.806142\pi\)
−0.820208 + 0.572065i \(0.806142\pi\)
\(674\) 1152.00 1.70920
\(675\) 0 0
\(676\) 1636.00 2.42012
\(677\) −1028.13 −1.51866 −0.759330 0.650705i \(-0.774473\pi\)
−0.759330 + 0.650705i \(0.774473\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 368.000 0.541176
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 248.902 0.363360
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2163.75 3.14042
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 639.225 0.923735
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1426.00 −2.04591
\(698\) −1354.82 −1.94100
\(699\) 0 0
\(700\) 0 0
\(701\) 520.000 0.741797 0.370899 0.928673i \(-0.379050\pi\)
0.370899 + 0.928673i \(0.379050\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −132.936 −0.188295
\(707\) 0 0
\(708\) 0 0
\(709\) 1320.00 1.86178 0.930889 0.365303i \(-0.119035\pi\)
0.930889 + 0.365303i \(0.119035\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −463.862 −0.651492
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 203.647 0.282843
\(721\) 0 0
\(722\) 722.000 1.00000
\(723\) 0 0
\(724\) −1125.71 −1.55485
\(725\) 920.000 1.26897
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) −412.000 −0.564384
\(731\) 0 0
\(732\) 0 0
\(733\) 872.570 1.19041 0.595204 0.803574i \(-0.297071\pi\)
0.595204 + 0.803574i \(0.297071\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −789.131 −1.06928
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −135.765 −0.183466
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 144.250 0.193624
\(746\) 1100.00 1.47453
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1923.33 2.55084
\(755\) 0 0
\(756\) 0 0
\(757\) −936.000 −1.23646 −0.618230 0.785997i \(-0.712150\pi\)
−0.618230 + 0.785997i \(0.712150\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1129.96 1.48483 0.742416 0.669940i \(-0.233680\pi\)
0.742416 + 0.669940i \(0.233680\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 414.000 0.541176
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1528.76 −1.98799 −0.993995 0.109422i \(-0.965100\pi\)
−0.993995 + 0.109422i \(0.965100\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 760.000 0.984456
\(773\) −1333.60 −1.72523 −0.862615 0.505860i \(-0.831175\pi\)
−0.862615 + 0.505860i \(0.831175\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1549.98 1.99739
\(777\) 0 0
\(778\) 1360.00 1.74807
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −94.0000 −0.119745
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −1560.00 −1.97970
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2414.00 −3.04414
\(794\) −274.357 −0.345538
\(795\) 0 0
\(796\) 0 0
\(797\) −24.0416 −0.0301652 −0.0150826 0.999886i \(-0.504801\pi\)
−0.0150826 + 0.999886i \(0.504801\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −736.000 −0.920000
\(801\) −521.845 −0.651492
\(802\) −160.000 −0.199501
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 893.783 1.10617
\(809\) −1518.00 −1.87639 −0.938195 0.346106i \(-0.887504\pi\)
−0.938195 + 0.346106i \(0.887504\pi\)
\(810\) 229.103 0.282843
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −766.504 −0.937046
\(819\) 0 0
\(820\) −248.000 −0.302439
\(821\) 858.000 1.04507 0.522533 0.852619i \(-0.324987\pi\)
0.522533 + 0.852619i \(0.324987\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −125.865 −0.151828 −0.0759138 0.997114i \(-0.524187\pi\)
−0.0759138 + 0.997114i \(0.524187\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1538.66 −1.84936
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 759.000 0.902497
\(842\) 116.000 0.137767
\(843\) 0 0
\(844\) 0 0
\(845\) 578.413 0.684513
\(846\) 0 0
\(847\) 0 0
\(848\) −1440.00 −1.69811
\(849\) 0 0
\(850\) −1496.24 −1.76028
\(851\) 0 0
\(852\) 0 0
\(853\) 1460.88 1.71264 0.856320 0.516445i \(-0.172745\pi\)
0.856320 + 0.516445i \(0.172745\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −838.629 −0.978563 −0.489282 0.872126i \(-0.662741\pi\)
−0.489282 + 0.872126i \(0.662741\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 226.000 0.261272
\(866\) 743.876 0.858980
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 960.000 1.10092
\(873\) 1743.73 1.99739
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −696.000 −0.793615 −0.396807 0.917902i \(-0.629882\pi\)
−0.396807 + 0.917902i \(0.629882\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 609.526 0.691857 0.345929 0.938261i \(-0.387564\pi\)
0.345929 + 0.938261i \(0.387564\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −3128.00 −3.53846
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −164.000 −0.184270
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 1404.00 1.56347
\(899\) 0 0
\(900\) −828.000 −0.920000
\(901\) −2927.42 −3.24908
\(902\) 0 0
\(903\) 0 0
\(904\) 240.000 0.265487
\(905\) −398.000 −0.439779
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 1005.51 1.10617
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1700.00 −1.85996
\(915\) 0 0
\(916\) 1589.58 1.73535
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1813.02 1.96640
\(923\) 0 0
\(924\) 0 0
\(925\) 552.000 0.596757
\(926\) 0 0
\(927\) 0 0
\(928\) −1280.00 −1.37931
\(929\) −1483.51 −1.59689 −0.798445 0.602068i \(-0.794343\pi\)
−0.798445 + 0.602068i \(0.794343\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1664.00 −1.78541
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −1731.00 −1.84936
\(937\) 985.707 1.05198 0.525991 0.850490i \(-0.323695\pi\)
0.525991 + 0.850490i \(0.323695\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1868.18 −1.98531 −0.992655 0.120982i \(-0.961396\pi\)
−0.992655 + 0.120982i \(0.961396\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 3502.00 3.69020
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1230.00 −1.29066 −0.645331 0.763903i \(-0.723280\pi\)
−0.645331 + 0.763903i \(0.723280\pi\)
\(954\) −1620.00 −1.69811
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 1154.00 1.19958
\(963\) 0 0
\(964\) −503.460 −0.522261
\(965\) 268.701 0.278446
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 968.000 1.00000
\(969\) 0 0
\(970\) 548.000 0.564948
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 1606.55 1.64605
\(977\) −496.000 −0.507677 −0.253838 0.967247i \(-0.581693\pi\)
−0.253838 + 0.967247i \(0.581693\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1080.00 1.10092
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −551.543 −0.559942
\(986\) −2602.15 −2.63910
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1834.23 1.83975 0.919877 0.392207i \(-0.128288\pi\)
0.919877 + 0.392207i \(0.128288\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.3.c.c.99.2 yes 2
4.3 odd 2 CM 196.3.c.c.99.2 yes 2
7.2 even 3 196.3.g.a.67.1 4
7.3 odd 6 196.3.g.a.79.2 4
7.4 even 3 196.3.g.a.79.1 4
7.5 odd 6 196.3.g.a.67.2 4
7.6 odd 2 inner 196.3.c.c.99.1 2
28.3 even 6 196.3.g.a.79.2 4
28.11 odd 6 196.3.g.a.79.1 4
28.19 even 6 196.3.g.a.67.2 4
28.23 odd 6 196.3.g.a.67.1 4
28.27 even 2 inner 196.3.c.c.99.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.3.c.c.99.1 2 7.6 odd 2 inner
196.3.c.c.99.1 2 28.27 even 2 inner
196.3.c.c.99.2 yes 2 1.1 even 1 trivial
196.3.c.c.99.2 yes 2 4.3 odd 2 CM
196.3.g.a.67.1 4 7.2 even 3
196.3.g.a.67.1 4 28.23 odd 6
196.3.g.a.67.2 4 7.5 odd 6
196.3.g.a.67.2 4 28.19 even 6
196.3.g.a.79.1 4 7.4 even 3
196.3.g.a.79.1 4 28.11 odd 6
196.3.g.a.79.2 4 7.3 odd 6
196.3.g.a.79.2 4 28.3 even 6