Properties

Label 196.3.c.c.99.2
Level 196196
Weight 33
Character 196.99
Self dual yes
Analytic conductor 5.3415.341
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,3,Mod(99,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.99");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 196=2272 196 = 2^{2} \cdot 7^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 196.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.340613181465.34061318146
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ8)+\Q(\zeta_{8})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 99.2
Root 1.414211.41421 of defining polynomial
Character χ\chi == 196.99

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.00000q2+4.00000q4+1.41421q5+8.00000q8+9.00000q9+2.82843q1024.0416q13+16.0000q16+32.5269q17+18.0000q18+5.65685q2023.0000q2548.0833q2640.0000q29+32.0000q32+65.0538q34+36.0000q3624.0000q37+11.3137q4043.8406q41+12.7279q4546.0000q5096.1665q5290.0000q5380.0000q58+100.409q61+64.0000q6434.0000q65+130.108q68+72.0000q72145.664q7348.0000q74+22.6274q80+81.0000q8187.6812q82+46.0000q8557.9828q89+25.4558q90+193.747q97+O(q100)q+2.00000 q^{2} +4.00000 q^{4} +1.41421 q^{5} +8.00000 q^{8} +9.00000 q^{9} +2.82843 q^{10} -24.0416 q^{13} +16.0000 q^{16} +32.5269 q^{17} +18.0000 q^{18} +5.65685 q^{20} -23.0000 q^{25} -48.0833 q^{26} -40.0000 q^{29} +32.0000 q^{32} +65.0538 q^{34} +36.0000 q^{36} -24.0000 q^{37} +11.3137 q^{40} -43.8406 q^{41} +12.7279 q^{45} -46.0000 q^{50} -96.1665 q^{52} -90.0000 q^{53} -80.0000 q^{58} +100.409 q^{61} +64.0000 q^{64} -34.0000 q^{65} +130.108 q^{68} +72.0000 q^{72} -145.664 q^{73} -48.0000 q^{74} +22.6274 q^{80} +81.0000 q^{81} -87.6812 q^{82} +46.0000 q^{85} -57.9828 q^{89} +25.4558 q^{90} +193.747 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q2+8q4+16q8+18q9+32q16+36q1846q2580q29+64q32+72q3648q3792q50180q53160q58+128q6468q65+144q72++92q85+O(q100) 2 q + 4 q^{2} + 8 q^{4} + 16 q^{8} + 18 q^{9} + 32 q^{16} + 36 q^{18} - 46 q^{25} - 80 q^{29} + 64 q^{32} + 72 q^{36} - 48 q^{37} - 92 q^{50} - 180 q^{53} - 160 q^{58} + 128 q^{64} - 68 q^{65} + 144 q^{72}+ \cdots + 92 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/196Z)×\left(\mathbb{Z}/196\mathbb{Z}\right)^\times.

nn 9999 101101
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.00000 1.00000
33 0 0 1.00000 00
−1.00000 π\pi
44 4.00000 1.00000
55 1.41421 0.282843 0.141421 0.989949i 0.454833π-0.454833\pi
0.141421 + 0.989949i 0.454833π0.454833\pi
66 0 0
77 0 0
88 8.00000 1.00000
99 9.00000 1.00000
1010 2.82843 0.282843
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 −24.0416 −1.84936 −0.924678 0.380750i 0.875666π-0.875666\pi
−0.924678 + 0.380750i 0.875666π0.875666\pi
1414 0 0
1515 0 0
1616 16.0000 1.00000
1717 32.5269 1.91335 0.956674 0.291162i 0.0940417π-0.0940417\pi
0.956674 + 0.291162i 0.0940417π0.0940417\pi
1818 18.0000 1.00000
1919 0 0 1.00000 00
−1.00000 π\pi
2020 5.65685 0.282843
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 −23.0000 −0.920000
2626 −48.0833 −1.84936
2727 0 0
2828 0 0
2929 −40.0000 −1.37931 −0.689655 0.724138i 0.742238π-0.742238\pi
−0.689655 + 0.724138i 0.742238π0.742238\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 32.0000 1.00000
3333 0 0
3434 65.0538 1.91335
3535 0 0
3636 36.0000 1.00000
3737 −24.0000 −0.648649 −0.324324 0.945946i 0.605137π-0.605137\pi
−0.324324 + 0.945946i 0.605137π0.605137\pi
3838 0 0
3939 0 0
4040 11.3137 0.282843
4141 −43.8406 −1.06928 −0.534642 0.845079i 0.679553π-0.679553\pi
−0.534642 + 0.845079i 0.679553π0.679553\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 12.7279 0.282843
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0 0
5050 −46.0000 −0.920000
5151 0 0
5252 −96.1665 −1.84936
5353 −90.0000 −1.69811 −0.849057 0.528302i 0.822829π-0.822829\pi
−0.849057 + 0.528302i 0.822829π0.822829\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 −80.0000 −1.37931
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 100.409 1.64605 0.823026 0.568004i 0.192284π-0.192284\pi
0.823026 + 0.568004i 0.192284π0.192284\pi
6262 0 0
6363 0 0
6464 64.0000 1.00000
6565 −34.0000 −0.523077
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 130.108 1.91335
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 72.0000 1.00000
7373 −145.664 −1.99540 −0.997699 0.0678048i 0.978401π-0.978401\pi
−0.997699 + 0.0678048i 0.978401π0.978401\pi
7474 −48.0000 −0.648649
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 22.6274 0.282843
8181 81.0000 1.00000
8282 −87.6812 −1.06928
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 46.0000 0.541176
8686 0 0
8787 0 0
8888 0 0
8989 −57.9828 −0.651492 −0.325746 0.945457i 0.605615π-0.605615\pi
−0.325746 + 0.945457i 0.605615π0.605615\pi
9090 25.4558 0.282843
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 193.747 1.99739 0.998697 0.0510283i 0.0162499π-0.0162499\pi
0.998697 + 0.0510283i 0.0162499π0.0162499\pi
9898 0 0
9999 0 0
100100 −92.0000 −0.920000
101101 111.723 1.10617 0.553084 0.833126i 0.313451π-0.313451\pi
0.553084 + 0.833126i 0.313451π0.313451\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 −192.333 −1.84936
105105 0 0
106106 −180.000 −1.69811
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 120.000 1.10092 0.550459 0.834862i 0.314453π-0.314453\pi
0.550459 + 0.834862i 0.314453π0.314453\pi
110110 0 0
111111 0 0
112112 0 0
113113 30.0000 0.265487 0.132743 0.991150i 0.457621π-0.457621\pi
0.132743 + 0.991150i 0.457621π0.457621\pi
114114 0 0
115115 0 0
116116 −160.000 −1.37931
117117 −216.375 −1.84936
118118 0 0
119119 0 0
120120 0 0
121121 121.000 1.00000
122122 200.818 1.64605
123123 0 0
124124 0 0
125125 −67.8823 −0.543058
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 128.000 1.00000
129129 0 0
130130 −68.0000 −0.523077
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 260.215 1.91335
137137 176.000 1.28467 0.642336 0.766423i 0.277965π-0.277965\pi
0.642336 + 0.766423i 0.277965π0.277965\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 144.000 1.00000
145145 −56.5685 −0.390128
146146 −291.328 −1.99540
147147 0 0
148148 −96.0000 −0.648649
149149 102.000 0.684564 0.342282 0.939597i 0.388800π-0.388800\pi
0.342282 + 0.939597i 0.388800π0.388800\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 292.742 1.91335
154154 0 0
155155 0 0
156156 0 0
157157 −66.4680 −0.423363 −0.211682 0.977339i 0.567894π-0.567894\pi
−0.211682 + 0.977339i 0.567894π0.567894\pi
158158 0 0
159159 0 0
160160 45.2548 0.282843
161161 0 0
162162 162.000 1.00000
163163 0 0 1.00000 00
−1.00000 π\pi
164164 −175.362 −1.06928
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 409.000 2.42012
170170 92.0000 0.541176
171171 0 0
172172 0 0
173173 159.806 0.923735 0.461867 0.886949i 0.347180π-0.347180\pi
0.461867 + 0.886949i 0.347180π0.347180\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 −115.966 −0.651492
179179 0 0 1.00000 00
−1.00000 π\pi
180180 50.9117 0.282843
181181 −281.428 −1.55485 −0.777427 0.628973i 0.783475π-0.783475\pi
−0.777427 + 0.628973i 0.783475π0.783475\pi
182182 0 0
183183 0 0
184184 0 0
185185 −33.9411 −0.183466
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 190.000 0.984456 0.492228 0.870466i 0.336183π-0.336183\pi
0.492228 + 0.870466i 0.336183π0.336183\pi
194194 387.495 1.99739
195195 0 0
196196 0 0
197197 −390.000 −1.97970 −0.989848 0.142132i 0.954604π-0.954604\pi
−0.989848 + 0.142132i 0.954604π0.954604\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 −184.000 −0.920000
201201 0 0
202202 223.446 1.10617
203203 0 0
204204 0 0
205205 −62.0000 −0.302439
206206 0 0
207207 0 0
208208 −384.666 −1.84936
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 −360.000 −1.69811
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 240.000 1.10092
219219 0 0
220220 0 0
221221 −782.000 −3.53846
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 −207.000 −0.920000
226226 60.0000 0.265487
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 397.394 1.73535 0.867673 0.497136i 0.165615π-0.165615\pi
0.867673 + 0.497136i 0.165615π0.165615\pi
230230 0 0
231231 0 0
232232 −320.000 −1.37931
233233 −416.000 −1.78541 −0.892704 0.450644i 0.851194π-0.851194\pi
−0.892704 + 0.450644i 0.851194π0.851194\pi
234234 −432.749 −1.84936
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 −125.865 −0.522261 −0.261131 0.965303i 0.584095π-0.584095\pi
−0.261131 + 0.965303i 0.584095π0.584095\pi
242242 242.000 1.00000
243243 0 0
244244 401.637 1.64605
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 −135.765 −0.543058
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 256.000 1.00000
257257 −315.370 −1.22712 −0.613560 0.789648i 0.710263π-0.710263\pi
−0.613560 + 0.789648i 0.710263π0.710263\pi
258258 0 0
259259 0 0
260260 −136.000 −0.523077
261261 −360.000 −1.37931
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 −127.279 −0.480299
266266 0 0
267267 0 0
268268 0 0
269269 270.115 1.00414 0.502072 0.864826i 0.332571π-0.332571\pi
0.502072 + 0.864826i 0.332571π0.332571\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 520.431 1.91335
273273 0 0
274274 352.000 1.28467
275275 0 0
276276 0 0
277277 −230.000 −0.830325 −0.415162 0.909747i 0.636275π-0.636275\pi
−0.415162 + 0.909747i 0.636275π0.636275\pi
278278 0 0
279279 0 0
280280 0 0
281281 −320.000 −1.13879 −0.569395 0.822064i 0.692822π-0.692822\pi
−0.569395 + 0.822064i 0.692822π0.692822\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 288.000 1.00000
289289 769.000 2.66090
290290 −113.137 −0.390128
291291 0 0
292292 −582.656 −1.99540
293293 −499.217 −1.70381 −0.851907 0.523693i 0.824554π-0.824554\pi
−0.851907 + 0.523693i 0.824554π0.824554\pi
294294 0 0
295295 0 0
296296 −192.000 −0.648649
297297 0 0
298298 204.000 0.684564
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 142.000 0.465574
306306 585.484 1.91335
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 476.590 1.52265 0.761326 0.648369i 0.224549π-0.224549\pi
0.761326 + 0.648369i 0.224549π0.224549\pi
314314 −132.936 −0.423363
315315 0 0
316316 0 0
317317 −150.000 −0.473186 −0.236593 0.971609i 0.576031π-0.576031\pi
−0.236593 + 0.971609i 0.576031π0.576031\pi
318318 0 0
319319 0 0
320320 90.5097 0.282843
321321 0 0
322322 0 0
323323 0 0
324324 324.000 1.00000
325325 552.958 1.70141
326326 0 0
327327 0 0
328328 −350.725 −1.06928
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 −216.000 −0.648649
334334 0 0
335335 0 0
336336 0 0
337337 576.000 1.70920 0.854599 0.519288i 0.173803π-0.173803\pi
0.854599 + 0.519288i 0.173803π0.173803\pi
338338 818.000 2.42012
339339 0 0
340340 184.000 0.541176
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 319.612 0.923735
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 −677.408 −1.94100 −0.970499 0.241105i 0.922490π-0.922490\pi
−0.970499 + 0.241105i 0.922490π0.922490\pi
350350 0 0
351351 0 0
352352 0 0
353353 −66.4680 −0.188295 −0.0941474 0.995558i 0.530012π-0.530012\pi
−0.0941474 + 0.995558i 0.530012π0.530012\pi
354354 0 0
355355 0 0
356356 −231.931 −0.651492
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 101.823 0.282843
361361 361.000 1.00000
362362 −562.857 −1.55485
363363 0 0
364364 0 0
365365 −206.000 −0.564384
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 −394.566 −1.06928
370370 −67.8823 −0.183466
371371 0 0
372372 0 0
373373 550.000 1.47453 0.737265 0.675603i 0.236117π-0.236117\pi
0.737265 + 0.675603i 0.236117π0.236117\pi
374374 0 0
375375 0 0
376376 0 0
377377 961.665 2.55084
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 380.000 0.984456
387387 0 0
388388 774.989 1.99739
389389 680.000 1.74807 0.874036 0.485861i 0.161494π-0.161494\pi
0.874036 + 0.485861i 0.161494π0.161494\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 −780.000 −1.97970
395395 0 0
396396 0 0
397397 −137.179 −0.345538 −0.172769 0.984962i 0.555271π-0.555271\pi
−0.172769 + 0.984962i 0.555271π0.555271\pi
398398 0 0
399399 0 0
400400 −368.000 −0.920000
401401 −80.0000 −0.199501 −0.0997506 0.995012i 0.531805π-0.531805\pi
−0.0997506 + 0.995012i 0.531805π0.531805\pi
402402 0 0
403403 0 0
404404 446.891 1.10617
405405 114.551 0.282843
406406 0 0
407407 0 0
408408 0 0
409409 −383.252 −0.937046 −0.468523 0.883451i 0.655214π-0.655214\pi
−0.468523 + 0.883451i 0.655214π0.655214\pi
410410 −124.000 −0.302439
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 −769.332 −1.84936
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 58.0000 0.137767 0.0688836 0.997625i 0.478056π-0.478056\pi
0.0688836 + 0.997625i 0.478056π0.478056\pi
422422 0 0
423423 0 0
424424 −720.000 −1.69811
425425 −748.119 −1.76028
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 371.938 0.858980 0.429490 0.903072i 0.358693π-0.358693\pi
0.429490 + 0.903072i 0.358693π0.358693\pi
434434 0 0
435435 0 0
436436 480.000 1.10092
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 −1564.00 −3.53846
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 −82.0000 −0.184270
446446 0 0
447447 0 0
448448 0 0
449449 702.000 1.56347 0.781737 0.623608i 0.214334π-0.214334\pi
0.781737 + 0.623608i 0.214334π0.214334\pi
450450 −414.000 −0.920000
451451 0 0
452452 120.000 0.265487
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −850.000 −1.85996 −0.929978 0.367615i 0.880174π-0.880174\pi
−0.929978 + 0.367615i 0.880174π0.880174\pi
458458 794.788 1.73535
459459 0 0
460460 0 0
461461 906.511 1.96640 0.983201 0.182529i 0.0584282π-0.0584282\pi
0.983201 + 0.182529i 0.0584282π0.0584282\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 −640.000 −1.37931
465465 0 0
466466 −832.000 −1.78541
467467 0 0 1.00000 00
−1.00000 π\pi
468468 −865.499 −1.84936
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 −810.000 −1.69811
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 576.999 1.19958
482482 −251.730 −0.522261
483483 0 0
484484 484.000 1.00000
485485 274.000 0.564948
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 803.273 1.64605
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 −1301.08 −2.63910
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 −271.529 −0.543058
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 158.000 0.312871
506506 0 0
507507 0 0
508508 0 0
509509 337.997 0.664041 0.332021 0.943272i 0.392270π-0.392270\pi
0.332021 + 0.943272i 0.392270π0.392270\pi
510510 0 0
511511 0 0
512512 512.000 1.00000
513513 0 0
514514 −630.739 −1.22712
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 −272.000 −0.523077
521521 −1016.82 −1.95167 −0.975835 0.218511i 0.929880π-0.929880\pi
−0.975835 + 0.218511i 0.929880π0.929880\pi
522522 −720.000 −1.37931
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 529.000 1.00000
530530 −254.558 −0.480299
531531 0 0
532532 0 0
533533 1054.00 1.97749
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 540.230 1.00414
539539 0 0
540540 0 0
541541 −682.000 −1.26063 −0.630314 0.776340i 0.717074π-0.717074\pi
−0.630314 + 0.776340i 0.717074π0.717074\pi
542542 0 0
543543 0 0
544544 1040.86 1.91335
545545 169.706 0.311386
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 704.000 1.28467
549549 903.682 1.64605
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −460.000 −0.830325
555555 0 0
556556 0 0
557557 330.000 0.592460 0.296230 0.955117i 0.404271π-0.404271\pi
0.296230 + 0.955117i 0.404271π0.404271\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −640.000 −1.13879
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 42.4264 0.0750910
566566 0 0
567567 0 0
568568 0 0
569569 1040.00 1.82777 0.913884 0.405975i 0.133068π-0.133068\pi
0.913884 + 0.405975i 0.133068π0.133068\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 576.000 1.00000
577577 745.291 1.29166 0.645832 0.763479i 0.276510π-0.276510\pi
0.645832 + 0.763479i 0.276510π0.276510\pi
578578 1538.00 2.66090
579579 0 0
580580 −226.274 −0.390128
581581 0 0
582582 0 0
583583 0 0
584584 −1165.31 −1.99540
585585 −306.000 −0.523077
586586 −998.435 −1.70381
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 −384.000 −0.648649
593593 −137.179 −0.231330 −0.115665 0.993288i 0.536900π-0.536900\pi
−0.115665 + 0.993288i 0.536900π0.536900\pi
594594 0 0
595595 0 0
596596 408.000 0.684564
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −439.820 −0.731814 −0.365907 0.930651i 0.619241π-0.619241\pi
−0.365907 + 0.930651i 0.619241π0.619241\pi
602602 0 0
603603 0 0
604604 0 0
605605 171.120 0.282843
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 284.000 0.465574
611611 0 0
612612 1170.97 1.91335
613613 −1224.00 −1.99674 −0.998369 0.0570962i 0.981816π-0.981816\pi
−0.998369 + 0.0570962i 0.981816π0.981816\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1216.00 −1.97083 −0.985413 0.170178i 0.945566π-0.945566\pi
−0.985413 + 0.170178i 0.945566π0.945566\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 479.000 0.766400
626626 953.180 1.52265
627627 0 0
628628 −265.872 −0.423363
629629 −780.646 −1.24109
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 −300.000 −0.473186
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 181.019 0.282843
641641 400.000 0.624025 0.312012 0.950078i 0.398997π-0.398997\pi
0.312012 + 0.950078i 0.398997π0.398997\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 648.000 1.00000
649649 0 0
650650 1105.92 1.70141
651651 0 0
652652 0 0
653653 −1144.00 −1.75191 −0.875957 0.482389i 0.839769π-0.839769\pi
−0.875957 + 0.482389i 0.839769π0.839769\pi
654654 0 0
655655 0 0
656656 −701.450 −1.06928
657657 −1310.98 −1.99540
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 408.708 0.618317 0.309159 0.951010i 0.399953π-0.399953\pi
0.309159 + 0.951010i 0.399953π0.399953\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −432.000 −0.648649
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1104.00 −1.64042 −0.820208 0.572065i 0.806142π-0.806142\pi
−0.820208 + 0.572065i 0.806142π0.806142\pi
674674 1152.00 1.70920
675675 0 0
676676 1636.00 2.42012
677677 −1028.13 −1.51866 −0.759330 0.650705i 0.774473π-0.774473\pi
−0.759330 + 0.650705i 0.774473π0.774473\pi
678678 0 0
679679 0 0
680680 368.000 0.541176
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 248.902 0.363360
686686 0 0
687687 0 0
688688 0 0
689689 2163.75 3.14042
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 639.225 0.923735
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −1426.00 −2.04591
698698 −1354.82 −1.94100
699699 0 0
700700 0 0
701701 520.000 0.741797 0.370899 0.928673i 0.379050π-0.379050\pi
0.370899 + 0.928673i 0.379050π0.379050\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −132.936 −0.188295
707707 0 0
708708 0 0
709709 1320.00 1.86178 0.930889 0.365303i 0.119035π-0.119035\pi
0.930889 + 0.365303i 0.119035π0.119035\pi
710710 0 0
711711 0 0
712712 −463.862 −0.651492
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 203.647 0.282843
721721 0 0
722722 722.000 1.00000
723723 0 0
724724 −1125.71 −1.55485
725725 920.000 1.26897
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 729.000 1.00000
730730 −412.000 −0.564384
731731 0 0
732732 0 0
733733 872.570 1.19041 0.595204 0.803574i 0.297071π-0.297071\pi
0.595204 + 0.803574i 0.297071π0.297071\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 −789.131 −1.06928
739739 0 0 1.00000 00
−1.00000 π\pi
740740 −135.765 −0.183466
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 144.250 0.193624
746746 1100.00 1.47453
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 1923.33 2.55084
755755 0 0
756756 0 0
757757 −936.000 −1.23646 −0.618230 0.785997i 0.712150π-0.712150\pi
−0.618230 + 0.785997i 0.712150π0.712150\pi
758758 0 0
759759 0 0
760760 0 0
761761 1129.96 1.48483 0.742416 0.669940i 0.233680π-0.233680\pi
0.742416 + 0.669940i 0.233680π0.233680\pi
762762 0 0
763763 0 0
764764 0 0
765765 414.000 0.541176
766766 0 0
767767 0 0
768768 0 0
769769 −1528.76 −1.98799 −0.993995 0.109422i 0.965100π-0.965100\pi
−0.993995 + 0.109422i 0.965100π0.965100\pi
770770 0 0
771771 0 0
772772 760.000 0.984456
773773 −1333.60 −1.72523 −0.862615 0.505860i 0.831175π-0.831175\pi
−0.862615 + 0.505860i 0.831175π0.831175\pi
774774 0 0
775775 0 0
776776 1549.98 1.99739
777777 0 0
778778 1360.00 1.74807
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −94.0000 −0.119745
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 −1560.00 −1.97970
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −2414.00 −3.04414
794794 −274.357 −0.345538
795795 0 0
796796 0 0
797797 −24.0416 −0.0301652 −0.0150826 0.999886i 0.504801π-0.504801\pi
−0.0150826 + 0.999886i 0.504801π0.504801\pi
798798 0 0
799799 0 0
800800 −736.000 −0.920000
801801 −521.845 −0.651492
802802 −160.000 −0.199501
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 893.783 1.10617
809809 −1518.00 −1.87639 −0.938195 0.346106i 0.887504π-0.887504\pi
−0.938195 + 0.346106i 0.887504π0.887504\pi
810810 229.103 0.282843
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −766.504 −0.937046
819819 0 0
820820 −248.000 −0.302439
821821 858.000 1.04507 0.522533 0.852619i 0.324987π-0.324987\pi
0.522533 + 0.852619i 0.324987π0.324987\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 −125.865 −0.151828 −0.0759138 0.997114i 0.524187π-0.524187\pi
−0.0759138 + 0.997114i 0.524187π0.524187\pi
830830 0 0
831831 0 0
832832 −1538.66 −1.84936
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 759.000 0.902497
842842 116.000 0.137767
843843 0 0
844844 0 0
845845 578.413 0.684513
846846 0 0
847847 0 0
848848 −1440.00 −1.69811
849849 0 0
850850 −1496.24 −1.76028
851851 0 0
852852 0 0
853853 1460.88 1.71264 0.856320 0.516445i 0.172745π-0.172745\pi
0.856320 + 0.516445i 0.172745π0.172745\pi
854854 0 0
855855 0 0
856856 0 0
857857 −838.629 −0.978563 −0.489282 0.872126i 0.662741π-0.662741\pi
−0.489282 + 0.872126i 0.662741π0.662741\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 226.000 0.261272
866866 743.876 0.858980
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 960.000 1.10092
873873 1743.73 1.99739
874874 0 0
875875 0 0
876876 0 0
877877 −696.000 −0.793615 −0.396807 0.917902i 0.629882π-0.629882\pi
−0.396807 + 0.917902i 0.629882π0.629882\pi
878878 0 0
879879 0 0
880880 0 0
881881 609.526 0.691857 0.345929 0.938261i 0.387564π-0.387564\pi
0.345929 + 0.938261i 0.387564π0.387564\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 −3128.00 −3.53846
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 −164.000 −0.184270
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 1404.00 1.56347
899899 0 0
900900 −828.000 −0.920000
901901 −2927.42 −3.24908
902902 0 0
903903 0 0
904904 240.000 0.265487
905905 −398.000 −0.439779
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 1005.51 1.10617
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 −1700.00 −1.85996
915915 0 0
916916 1589.58 1.73535
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 1813.02 1.96640
923923 0 0
924924 0 0
925925 552.000 0.596757
926926 0 0
927927 0 0
928928 −1280.00 −1.37931
929929 −1483.51 −1.59689 −0.798445 0.602068i 0.794343π-0.794343\pi
−0.798445 + 0.602068i 0.794343π0.794343\pi
930930 0 0
931931 0 0
932932 −1664.00 −1.78541
933933 0 0
934934 0 0
935935 0 0
936936 −1731.00 −1.84936
937937 985.707 1.05198 0.525991 0.850490i 0.323695π-0.323695\pi
0.525991 + 0.850490i 0.323695π0.323695\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1868.18 −1.98531 −0.992655 0.120982i 0.961396π-0.961396\pi
−0.992655 + 0.120982i 0.961396π0.961396\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 3502.00 3.69020
950950 0 0
951951 0 0
952952 0 0
953953 −1230.00 −1.29066 −0.645331 0.763903i 0.723280π-0.723280\pi
−0.645331 + 0.763903i 0.723280π0.723280\pi
954954 −1620.00 −1.69811
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 961.000 1.00000
962962 1154.00 1.19958
963963 0 0
964964 −503.460 −0.522261
965965 268.701 0.278446
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 968.000 1.00000
969969 0 0
970970 548.000 0.564948
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 1606.55 1.64605
977977 −496.000 −0.507677 −0.253838 0.967247i 0.581693π-0.581693\pi
−0.253838 + 0.967247i 0.581693π0.581693\pi
978978 0 0
979979 0 0
980980 0 0
981981 1080.00 1.10092
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 −551.543 −0.559942
986986 −2602.15 −2.63910
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 1834.23 1.83975 0.919877 0.392207i 0.128288π-0.128288\pi
0.919877 + 0.392207i 0.128288π0.128288\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.3.c.c.99.2 yes 2
4.3 odd 2 CM 196.3.c.c.99.2 yes 2
7.2 even 3 196.3.g.a.67.1 4
7.3 odd 6 196.3.g.a.79.2 4
7.4 even 3 196.3.g.a.79.1 4
7.5 odd 6 196.3.g.a.67.2 4
7.6 odd 2 inner 196.3.c.c.99.1 2
28.3 even 6 196.3.g.a.79.2 4
28.11 odd 6 196.3.g.a.79.1 4
28.19 even 6 196.3.g.a.67.2 4
28.23 odd 6 196.3.g.a.67.1 4
28.27 even 2 inner 196.3.c.c.99.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.3.c.c.99.1 2 7.6 odd 2 inner
196.3.c.c.99.1 2 28.27 even 2 inner
196.3.c.c.99.2 yes 2 1.1 even 1 trivial
196.3.c.c.99.2 yes 2 4.3 odd 2 CM
196.3.g.a.67.1 4 7.2 even 3
196.3.g.a.67.1 4 28.23 odd 6
196.3.g.a.67.2 4 7.5 odd 6
196.3.g.a.67.2 4 28.19 even 6
196.3.g.a.79.1 4 7.4 even 3
196.3.g.a.79.1 4 28.11 odd 6
196.3.g.a.79.2 4 7.3 odd 6
196.3.g.a.79.2 4 28.3 even 6