Properties

Label 196.6.d.b.195.25
Level $196$
Weight $6$
Character 196.195
Analytic conductor $31.435$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(195,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.195");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.4352286833\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 195.25
Character \(\chi\) \(=\) 196.195
Dual form 196.6.d.b.195.27

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.73498 - 4.24852i) q^{2} -22.1401 q^{3} +(-4.09980 - 31.7363i) q^{4} +2.56629i q^{5} +(-82.6927 + 94.0624i) q^{6} +(-150.145 - 101.116i) q^{8} +247.182 q^{9} +(10.9029 + 9.58505i) q^{10} +80.3962i q^{11} +(90.7697 + 702.643i) q^{12} +980.594i q^{13} -56.8178i q^{15} +(-990.383 + 260.225i) q^{16} +601.293i q^{17} +(923.221 - 1050.16i) q^{18} -1157.66 q^{19} +(81.4445 - 10.5213i) q^{20} +(341.565 + 300.278i) q^{22} -3963.02i q^{23} +(3324.21 + 2238.72i) q^{24} +3118.41 q^{25} +(4166.07 + 3662.50i) q^{26} -92.5894 q^{27} -2352.14 q^{29} +(-241.391 - 212.214i) q^{30} +5927.57 q^{31} +(-2593.50 + 5179.60i) q^{32} -1779.98i q^{33} +(2554.60 + 2245.82i) q^{34} +(-1013.40 - 7844.64i) q^{36} +14095.5 q^{37} +(-4323.85 + 4918.34i) q^{38} -21710.4i q^{39} +(259.494 - 385.315i) q^{40} -14300.9i q^{41} +6888.99i q^{43} +(2551.48 - 329.608i) q^{44} +634.341i q^{45} +(-16837.0 - 14801.8i) q^{46} -18211.4 q^{47} +(21927.1 - 5761.39i) q^{48} +(11647.2 - 13248.6i) q^{50} -13312.7i q^{51} +(31120.4 - 4020.24i) q^{52} +19698.0 q^{53} +(-345.820 + 393.368i) q^{54} -206.320 q^{55} +25630.7 q^{57} +(-8785.20 + 9993.11i) q^{58} +25432.6 q^{59} +(-1803.19 + 232.941i) q^{60} -13406.0i q^{61} +(22139.4 - 25183.4i) q^{62} +(12318.9 + 30364.2i) q^{64} -2516.49 q^{65} +(-7562.26 - 6648.18i) q^{66} +5663.55i q^{67} +(19082.8 - 2465.18i) q^{68} +87741.5i q^{69} +24339.4i q^{71} +(-37113.1 - 24994.2i) q^{72} -42720.1i q^{73} +(52646.4 - 59884.9i) q^{74} -69041.9 q^{75} +(4746.18 + 36739.9i) q^{76} +(-92237.0 - 81088.0i) q^{78} +39976.1i q^{79} +(-667.812 - 2541.61i) q^{80} -58015.3 q^{81} +(-60757.5 - 53413.5i) q^{82} +42246.6 q^{83} -1543.09 q^{85} +(29268.0 + 25730.3i) q^{86} +52076.5 q^{87} +(8129.38 - 12071.1i) q^{88} +92505.4i q^{89} +(2695.01 + 2369.25i) q^{90} +(-125772. + 16247.6i) q^{92} -131237. q^{93} +(-68019.4 + 77371.5i) q^{94} -2970.90i q^{95} +(57420.2 - 114677. i) q^{96} +35315.4i q^{97} +19872.5i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 24 q^{4} - 72 q^{8} + 2272 q^{9} - 1328 q^{16} + 3560 q^{18} + 13768 q^{22} - 15224 q^{25} + 176 q^{29} + 11672 q^{30} - 2320 q^{32} - 27920 q^{36} - 23444 q^{37} - 18192 q^{44} + 2080 q^{46} - 51168 q^{50}+ \cdots + 330324 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.73498 4.24852i 0.660258 0.751039i
\(3\) −22.1401 −1.42029 −0.710143 0.704058i \(-0.751370\pi\)
−0.710143 + 0.704058i \(0.751370\pi\)
\(4\) −4.09980 31.7363i −0.128119 0.991759i
\(5\) 2.56629i 0.0459072i 0.999737 + 0.0229536i \(0.00730700\pi\)
−0.999737 + 0.0229536i \(0.992693\pi\)
\(6\) −82.6927 + 94.0624i −0.937755 + 1.06669i
\(7\) 0 0
\(8\) −150.145 101.116i −0.829441 0.558595i
\(9\) 247.182 1.01721
\(10\) 10.9029 + 9.58505i 0.0344781 + 0.0303106i
\(11\) 80.3962i 0.200334i 0.994971 + 0.100167i \(0.0319376\pi\)
−0.994971 + 0.100167i \(0.968062\pi\)
\(12\) 90.7697 + 702.643i 0.181965 + 1.40858i
\(13\) 980.594i 1.60928i 0.593765 + 0.804639i \(0.297641\pi\)
−0.593765 + 0.804639i \(0.702359\pi\)
\(14\) 0 0
\(15\) 56.8178i 0.0652013i
\(16\) −990.383 + 260.225i −0.967171 + 0.254126i
\(17\) 601.293i 0.504619i 0.967647 + 0.252310i \(0.0811902\pi\)
−0.967647 + 0.252310i \(0.918810\pi\)
\(18\) 923.221 1050.16i 0.671621 0.763964i
\(19\) −1157.66 −0.735695 −0.367847 0.929886i \(-0.619905\pi\)
−0.367847 + 0.929886i \(0.619905\pi\)
\(20\) 81.4445 10.5213i 0.0455289 0.00588157i
\(21\) 0 0
\(22\) 341.565 + 300.278i 0.150458 + 0.132272i
\(23\) 3963.02i 1.56209i −0.624473 0.781047i \(-0.714686\pi\)
0.624473 0.781047i \(-0.285314\pi\)
\(24\) 3324.21 + 2238.72i 1.17804 + 0.793364i
\(25\) 3118.41 0.997893
\(26\) 4166.07 + 3662.50i 1.20863 + 1.06254i
\(27\) −92.5894 −0.0244429
\(28\) 0 0
\(29\) −2352.14 −0.519360 −0.259680 0.965695i \(-0.583617\pi\)
−0.259680 + 0.965695i \(0.583617\pi\)
\(30\) −241.391 212.214i −0.0489687 0.0430497i
\(31\) 5927.57 1.10783 0.553914 0.832574i \(-0.313134\pi\)
0.553914 + 0.832574i \(0.313134\pi\)
\(32\) −2593.50 + 5179.60i −0.447724 + 0.894172i
\(33\) 1779.98i 0.284531i
\(34\) 2554.60 + 2245.82i 0.378989 + 0.333179i
\(35\) 0 0
\(36\) −1013.40 7844.64i −0.130324 1.00883i
\(37\) 14095.5 1.69268 0.846342 0.532640i \(-0.178800\pi\)
0.846342 + 0.532640i \(0.178800\pi\)
\(38\) −4323.85 + 4918.34i −0.485748 + 0.552535i
\(39\) 21710.4i 2.28563i
\(40\) 259.494 385.315i 0.0256435 0.0380773i
\(41\) 14300.9i 1.32863i −0.747455 0.664313i \(-0.768724\pi\)
0.747455 0.664313i \(-0.231276\pi\)
\(42\) 0 0
\(43\) 6888.99i 0.568178i 0.958798 + 0.284089i \(0.0916911\pi\)
−0.958798 + 0.284089i \(0.908309\pi\)
\(44\) 2551.48 329.608i 0.198683 0.0256665i
\(45\) 634.341i 0.0466972i
\(46\) −16837.0 14801.8i −1.17319 1.03138i
\(47\) −18211.4 −1.20254 −0.601270 0.799046i \(-0.705338\pi\)
−0.601270 + 0.799046i \(0.705338\pi\)
\(48\) 21927.1 5761.39i 1.37366 0.360931i
\(49\) 0 0
\(50\) 11647.2 13248.6i 0.658867 0.749456i
\(51\) 13312.7i 0.716703i
\(52\) 31120.4 4020.24i 1.59602 0.206178i
\(53\) 19698.0 0.963234 0.481617 0.876382i \(-0.340050\pi\)
0.481617 + 0.876382i \(0.340050\pi\)
\(54\) −345.820 + 393.368i −0.0161386 + 0.0183575i
\(55\) −206.320 −0.00919675
\(56\) 0 0
\(57\) 25630.7 1.04490
\(58\) −8785.20 + 9993.11i −0.342911 + 0.390059i
\(59\) 25432.6 0.951174 0.475587 0.879669i \(-0.342236\pi\)
0.475587 + 0.879669i \(0.342236\pi\)
\(60\) −1803.19 + 232.941i −0.0646640 + 0.00835350i
\(61\) 13406.0i 0.461290i −0.973038 0.230645i \(-0.925916\pi\)
0.973038 0.230645i \(-0.0740836\pi\)
\(62\) 22139.4 25183.4i 0.731452 0.832022i
\(63\) 0 0
\(64\) 12318.9 + 30364.2i 0.375944 + 0.926642i
\(65\) −2516.49 −0.0738774
\(66\) −7562.26 6648.18i −0.213694 0.187864i
\(67\) 5663.55i 0.154135i 0.997026 + 0.0770676i \(0.0245557\pi\)
−0.997026 + 0.0770676i \(0.975444\pi\)
\(68\) 19082.8 2465.18i 0.500461 0.0646511i
\(69\) 87741.5i 2.21862i
\(70\) 0 0
\(71\) 24339.4i 0.573012i 0.958078 + 0.286506i \(0.0924938\pi\)
−0.958078 + 0.286506i \(0.907506\pi\)
\(72\) −37113.1 24994.2i −0.843715 0.568208i
\(73\) 42720.1i 0.938263i −0.883128 0.469132i \(-0.844567\pi\)
0.883128 0.469132i \(-0.155433\pi\)
\(74\) 52646.4 59884.9i 1.11761 1.27127i
\(75\) −69041.9 −1.41729
\(76\) 4746.18 + 36739.9i 0.0942562 + 0.729632i
\(77\) 0 0
\(78\) −92237.0 81088.0i −1.71660 1.50911i
\(79\) 39976.1i 0.720663i 0.932824 + 0.360331i \(0.117336\pi\)
−0.932824 + 0.360331i \(0.882664\pi\)
\(80\) −667.812 2541.61i −0.0116662 0.0444001i
\(81\) −58015.3 −0.982494
\(82\) −60757.5 53413.5i −0.997849 0.877236i
\(83\) 42246.6 0.673126 0.336563 0.941661i \(-0.390735\pi\)
0.336563 + 0.941661i \(0.390735\pi\)
\(84\) 0 0
\(85\) −1543.09 −0.0231657
\(86\) 29268.0 + 25730.3i 0.426724 + 0.375144i
\(87\) 52076.5 0.737639
\(88\) 8129.38 12071.1i 0.111905 0.166165i
\(89\) 92505.4i 1.23792i 0.785423 + 0.618959i \(0.212445\pi\)
−0.785423 + 0.618959i \(0.787555\pi\)
\(90\) 2695.01 + 2369.25i 0.0350714 + 0.0308322i
\(91\) 0 0
\(92\) −125772. + 16247.6i −1.54922 + 0.200133i
\(93\) −131237. −1.57343
\(94\) −68019.4 + 77371.5i −0.793986 + 0.903153i
\(95\) 2970.90i 0.0337737i
\(96\) 57420.2 114677.i 0.635896 1.26998i
\(97\) 35315.4i 0.381096i 0.981678 + 0.190548i \(0.0610265\pi\)
−0.981678 + 0.190548i \(0.938973\pi\)
\(98\) 0 0
\(99\) 19872.5i 0.203781i
\(100\) −12784.9 98966.9i −0.127849 0.989669i
\(101\) 69159.9i 0.674607i 0.941396 + 0.337303i \(0.109515\pi\)
−0.941396 + 0.337303i \(0.890485\pi\)
\(102\) −56559.1 49722.6i −0.538272 0.473209i
\(103\) 95325.3 0.885350 0.442675 0.896682i \(-0.354029\pi\)
0.442675 + 0.896682i \(0.354029\pi\)
\(104\) 99154.2 147231.i 0.898934 1.33480i
\(105\) 0 0
\(106\) 73571.6 83687.2i 0.635983 0.723426i
\(107\) 86797.8i 0.732908i 0.930436 + 0.366454i \(0.119428\pi\)
−0.930436 + 0.366454i \(0.880572\pi\)
\(108\) 379.598 + 2938.44i 0.00313159 + 0.0242414i
\(109\) 101542. 0.818615 0.409308 0.912396i \(-0.365770\pi\)
0.409308 + 0.912396i \(0.365770\pi\)
\(110\) −770.602 + 876.554i −0.00607223 + 0.00690712i
\(111\) −312075. −2.40409
\(112\) 0 0
\(113\) 180243. 1.32789 0.663945 0.747782i \(-0.268881\pi\)
0.663945 + 0.747782i \(0.268881\pi\)
\(114\) 95730.2 108892.i 0.689901 0.784758i
\(115\) 10170.3 0.0717113
\(116\) 9643.30 + 74648.2i 0.0665396 + 0.515080i
\(117\) 242385.i 1.63697i
\(118\) 94990.2 108051.i 0.628020 0.714369i
\(119\) 0 0
\(120\) −5745.21 + 8530.90i −0.0364211 + 0.0540806i
\(121\) 154587. 0.959866
\(122\) −56955.6 50071.1i −0.346447 0.304571i
\(123\) 316622.i 1.88703i
\(124\) −24301.8 188119.i −0.141933 1.09870i
\(125\) 16022.4i 0.0917176i
\(126\) 0 0
\(127\) 300092.i 1.65099i 0.564409 + 0.825495i \(0.309104\pi\)
−0.564409 + 0.825495i \(0.690896\pi\)
\(128\) 175014. + 61072.7i 0.944164 + 0.329475i
\(129\) 152523.i 0.806975i
\(130\) −9399.05 + 10691.3i −0.0487782 + 0.0554848i
\(131\) −40149.1 −0.204408 −0.102204 0.994763i \(-0.532589\pi\)
−0.102204 + 0.994763i \(0.532589\pi\)
\(132\) −56489.8 + 7297.54i −0.282186 + 0.0364537i
\(133\) 0 0
\(134\) 24061.7 + 21153.3i 0.115762 + 0.101769i
\(135\) 237.611i 0.00112210i
\(136\) 60800.6 90281.0i 0.281878 0.418552i
\(137\) −64514.0 −0.293665 −0.146833 0.989161i \(-0.546908\pi\)
−0.146833 + 0.989161i \(0.546908\pi\)
\(138\) 372771. + 327713.i 1.66627 + 1.46486i
\(139\) −94558.1 −0.415109 −0.207554 0.978223i \(-0.566550\pi\)
−0.207554 + 0.978223i \(0.566550\pi\)
\(140\) 0 0
\(141\) 403202. 1.70795
\(142\) 103406. + 90907.2i 0.430354 + 0.378336i
\(143\) −78836.0 −0.322392
\(144\) −244805. + 64322.8i −0.983816 + 0.258499i
\(145\) 6036.27i 0.0238423i
\(146\) −181497. 159559.i −0.704672 0.619496i
\(147\) 0 0
\(148\) −57788.6 447338.i −0.216864 1.67873i
\(149\) 438429. 1.61783 0.808916 0.587924i \(-0.200055\pi\)
0.808916 + 0.587924i \(0.200055\pi\)
\(150\) −257870. + 293326.i −0.935778 + 1.06444i
\(151\) 167155.i 0.596592i −0.954473 0.298296i \(-0.903582\pi\)
0.954473 0.298296i \(-0.0964183\pi\)
\(152\) 173817. + 117059.i 0.610215 + 0.410955i
\(153\) 148629.i 0.513304i
\(154\) 0 0
\(155\) 15211.9i 0.0508573i
\(156\) −689008. + 89008.3i −2.26680 + 0.292832i
\(157\) 74018.0i 0.239656i −0.992795 0.119828i \(-0.961766\pi\)
0.992795 0.119828i \(-0.0382343\pi\)
\(158\) 169839. + 149310.i 0.541246 + 0.475824i
\(159\) −436114. −1.36807
\(160\) −13292.3 6655.67i −0.0410489 0.0205538i
\(161\) 0 0
\(162\) −216686. + 246479.i −0.648700 + 0.737891i
\(163\) 186639.i 0.550217i −0.961413 0.275108i \(-0.911286\pi\)
0.961413 0.275108i \(-0.0887137\pi\)
\(164\) −453856. + 58630.6i −1.31768 + 0.170222i
\(165\) 4567.93 0.0130620
\(166\) 157790. 179485.i 0.444437 0.505544i
\(167\) −396668. −1.10062 −0.550309 0.834961i \(-0.685490\pi\)
−0.550309 + 0.834961i \(0.685490\pi\)
\(168\) 0 0
\(169\) −590272. −1.58977
\(170\) −5763.42 + 6555.85i −0.0152953 + 0.0173983i
\(171\) −286153. −0.748356
\(172\) 218631. 28243.4i 0.563495 0.0727942i
\(173\) 450638.i 1.14475i −0.819991 0.572377i \(-0.806021\pi\)
0.819991 0.572377i \(-0.193979\pi\)
\(174\) 194505. 221248.i 0.487032 0.553995i
\(175\) 0 0
\(176\) −20921.1 79623.0i −0.0509099 0.193757i
\(177\) −563078. −1.35094
\(178\) 393011. + 345506.i 0.929725 + 0.817345i
\(179\) 546080.i 1.27387i 0.770919 + 0.636933i \(0.219797\pi\)
−0.770919 + 0.636933i \(0.780203\pi\)
\(180\) 20131.6 2600.67i 0.0463124 0.00598279i
\(181\) 198083.i 0.449418i 0.974426 + 0.224709i \(0.0721431\pi\)
−0.974426 + 0.224709i \(0.927857\pi\)
\(182\) 0 0
\(183\) 296809.i 0.655164i
\(184\) −400727. + 595027.i −0.872577 + 1.29566i
\(185\) 36173.1i 0.0777064i
\(186\) −490167. + 557561.i −1.03887 + 1.18171i
\(187\) −48341.7 −0.101092
\(188\) 74663.1 + 577963.i 0.154068 + 1.19263i
\(189\) 0 0
\(190\) −12621.9 11096.2i −0.0253653 0.0222993i
\(191\) 111585.i 0.221321i −0.993858 0.110661i \(-0.964703\pi\)
0.993858 0.110661i \(-0.0352967\pi\)
\(192\) −272742. 672265.i −0.533948 1.31610i
\(193\) 779369. 1.50609 0.753043 0.657971i \(-0.228585\pi\)
0.753043 + 0.657971i \(0.228585\pi\)
\(194\) 150038. + 131902.i 0.286218 + 0.251622i
\(195\) 55715.2 0.104927
\(196\) 0 0
\(197\) −350276. −0.643049 −0.321525 0.946901i \(-0.604195\pi\)
−0.321525 + 0.946901i \(0.604195\pi\)
\(198\) 84428.6 + 74223.4i 0.153048 + 0.134548i
\(199\) −14954.4 −0.0267692 −0.0133846 0.999910i \(-0.504261\pi\)
−0.0133846 + 0.999910i \(0.504261\pi\)
\(200\) −468214. 315323.i −0.827693 0.557417i
\(201\) 125391.i 0.218916i
\(202\) 293827. + 258311.i 0.506656 + 0.445415i
\(203\) 0 0
\(204\) −422494. + 54579.2i −0.710797 + 0.0918230i
\(205\) 36700.2 0.0609935
\(206\) 356039. 404991.i 0.584560 0.664933i
\(207\) 979588.i 1.58898i
\(208\) −255175. 971164.i −0.408959 1.55645i
\(209\) 93071.6i 0.147384i
\(210\) 0 0
\(211\) 17195.2i 0.0265890i −0.999912 0.0132945i \(-0.995768\pi\)
0.999912 0.0132945i \(-0.00423190\pi\)
\(212\) −80757.7 625140.i −0.123408 0.955296i
\(213\) 538875.i 0.813840i
\(214\) 368762. + 324188.i 0.550442 + 0.483908i
\(215\) −17679.1 −0.0260835
\(216\) 13901.8 + 9362.32i 0.0202739 + 0.0136537i
\(217\) 0 0
\(218\) 379258. 431403.i 0.540497 0.614812i
\(219\) 945824.i 1.33260i
\(220\) 845.870 + 6547.83i 0.00117828 + 0.00912096i
\(221\) −589624. −0.812073
\(222\) −1.16559e6 + 1.32586e6i −1.58732 + 1.80557i
\(223\) 368195. 0.495811 0.247905 0.968784i \(-0.420258\pi\)
0.247905 + 0.968784i \(0.420258\pi\)
\(224\) 0 0
\(225\) 770816. 1.01507
\(226\) 673204. 765765.i 0.876750 0.997297i
\(227\) 594493. 0.765742 0.382871 0.923802i \(-0.374935\pi\)
0.382871 + 0.923802i \(0.374935\pi\)
\(228\) −105081. 813423.i −0.133871 1.03628i
\(229\) 423922.i 0.534192i 0.963670 + 0.267096i \(0.0860641\pi\)
−0.963670 + 0.267096i \(0.913936\pi\)
\(230\) 37985.8 43208.5i 0.0473480 0.0538580i
\(231\) 0 0
\(232\) 353162. + 237840.i 0.430778 + 0.290112i
\(233\) 117716. 0.142052 0.0710259 0.997474i \(-0.477373\pi\)
0.0710259 + 0.997474i \(0.477373\pi\)
\(234\) 1.02978e6 + 905305.i 1.22943 + 1.08082i
\(235\) 46735.8i 0.0552052i
\(236\) −104268. 807135.i −0.121863 0.943335i
\(237\) 885072.i 1.02355i
\(238\) 0 0
\(239\) 782169.i 0.885739i −0.896586 0.442870i \(-0.853960\pi\)
0.896586 0.442870i \(-0.146040\pi\)
\(240\) 14785.4 + 56271.4i 0.0165693 + 0.0630608i
\(241\) 1.23348e6i 1.36801i 0.729478 + 0.684004i \(0.239763\pi\)
−0.729478 + 0.684004i \(0.760237\pi\)
\(242\) 577382. 656767.i 0.633760 0.720897i
\(243\) 1.30696e6 1.41986
\(244\) −425456. + 54961.8i −0.457489 + 0.0590999i
\(245\) 0 0
\(246\) 1.34517e6 + 1.18258e6i 1.41723 + 1.24592i
\(247\) 1.13520e6i 1.18394i
\(248\) −889994. 599375.i −0.918878 0.618827i
\(249\) −935342. −0.956031
\(250\) 68071.5 + 59843.4i 0.0688835 + 0.0605573i
\(251\) 1.78168e6 1.78503 0.892515 0.451018i \(-0.148939\pi\)
0.892515 + 0.451018i \(0.148939\pi\)
\(252\) 0 0
\(253\) 318612. 0.312940
\(254\) 1.27494e6 + 1.12084e6i 1.23996 + 1.09008i
\(255\) 34164.1 0.0329018
\(256\) 913142. 515444.i 0.870840 0.491566i
\(257\) 180436.i 0.170408i 0.996364 + 0.0852040i \(0.0271542\pi\)
−0.996364 + 0.0852040i \(0.972846\pi\)
\(258\) −647995. 569669.i −0.606069 0.532811i
\(259\) 0 0
\(260\) 10317.1 + 79864.0i 0.00946507 + 0.0732686i
\(261\) −581407. −0.528298
\(262\) −149956. + 170574.i −0.134962 + 0.153518i
\(263\) 94099.1i 0.0838873i −0.999120 0.0419436i \(-0.986645\pi\)
0.999120 0.0419436i \(-0.0133550\pi\)
\(264\) −179985. + 267254.i −0.158937 + 0.236001i
\(265\) 50550.7i 0.0442194i
\(266\) 0 0
\(267\) 2.04807e6i 1.75820i
\(268\) 179740. 23219.4i 0.152865 0.0197476i
\(269\) 100381.i 0.0845803i 0.999105 + 0.0422901i \(0.0134654\pi\)
−0.999105 + 0.0422901i \(0.986535\pi\)
\(270\) −1009.50 887.475i −0.000842743 0.000740878i
\(271\) −985074. −0.814790 −0.407395 0.913252i \(-0.633563\pi\)
−0.407395 + 0.913252i \(0.633563\pi\)
\(272\) −156471. 595511.i −0.128237 0.488053i
\(273\) 0 0
\(274\) −240959. + 274089.i −0.193895 + 0.220554i
\(275\) 250709.i 0.199911i
\(276\) 2.78459e6 359722.i 2.20033 0.284246i
\(277\) −698702. −0.547132 −0.273566 0.961853i \(-0.588203\pi\)
−0.273566 + 0.961853i \(0.588203\pi\)
\(278\) −353173. + 401732.i −0.274079 + 0.311763i
\(279\) 1.46519e6 1.12689
\(280\) 0 0
\(281\) −1.28297e6 −0.969285 −0.484642 0.874712i \(-0.661050\pi\)
−0.484642 + 0.874712i \(0.661050\pi\)
\(282\) 1.50595e6 1.71301e6i 1.12769 1.28274i
\(283\) 1.91015e6 1.41776 0.708879 0.705330i \(-0.249201\pi\)
0.708879 + 0.705330i \(0.249201\pi\)
\(284\) 772441. 99786.5i 0.568290 0.0734135i
\(285\) 65775.8i 0.0479682i
\(286\) −294451. + 334936.i −0.212862 + 0.242129i
\(287\) 0 0
\(288\) −641066. + 1.28030e6i −0.455430 + 0.909560i
\(289\) 1.05830e6 0.745359
\(290\) −25645.2 22545.4i −0.0179065 0.0157421i
\(291\) 781885.i 0.541265i
\(292\) −1.35578e6 + 175144.i −0.930531 + 0.120209i
\(293\) 149810.i 0.101946i −0.998700 0.0509732i \(-0.983768\pi\)
0.998700 0.0509732i \(-0.0162323\pi\)
\(294\) 0 0
\(295\) 65267.3i 0.0436657i
\(296\) −2.11636e6 1.42529e6i −1.40398 0.945524i
\(297\) 7443.84i 0.00489673i
\(298\) 1.63752e6 1.86267e6i 1.06819 1.21506i
\(299\) 3.88612e6 2.51384
\(300\) 283058. + 2.19113e6i 0.181581 + 1.40561i
\(301\) 0 0
\(302\) −710162. 624322.i −0.448064 0.393905i
\(303\) 1.53120e6i 0.958134i
\(304\) 1.14653e6 301252.i 0.711543 0.186959i
\(305\) 34403.7 0.0211765
\(306\) 631452. + 555126.i 0.385511 + 0.338913i
\(307\) −26748.9 −0.0161979 −0.00809897 0.999967i \(-0.502578\pi\)
−0.00809897 + 0.999967i \(0.502578\pi\)
\(308\) 0 0
\(309\) −2.11051e6 −1.25745
\(310\) 64627.9 + 56816.1i 0.0381958 + 0.0335789i
\(311\) −1.62563e6 −0.953059 −0.476529 0.879159i \(-0.658105\pi\)
−0.476529 + 0.879159i \(0.658105\pi\)
\(312\) −2.19528e6 + 3.25971e6i −1.27674 + 1.89580i
\(313\) 1.81341e6i 1.04625i −0.852257 0.523124i \(-0.824767\pi\)
0.852257 0.523124i \(-0.175233\pi\)
\(314\) −314467. 276456.i −0.179991 0.158235i
\(315\) 0 0
\(316\) 1.26869e6 163894.i 0.714724 0.0923304i
\(317\) −2.35582e6 −1.31672 −0.658360 0.752703i \(-0.728750\pi\)
−0.658360 + 0.752703i \(0.728750\pi\)
\(318\) −1.62888e6 + 1.85284e6i −0.903277 + 1.02747i
\(319\) 189103.i 0.104045i
\(320\) −77923.4 + 31614.0i −0.0425396 + 0.0172585i
\(321\) 1.92171e6i 1.04094i
\(322\) 0 0
\(323\) 696094.i 0.371246i
\(324\) 237851. + 1.84119e6i 0.125876 + 0.974397i
\(325\) 3.05790e6i 1.60589i
\(326\) −792939. 697094.i −0.413234 0.363285i
\(327\) −2.24815e6 −1.16267
\(328\) −1.44605e6 + 2.14720e6i −0.742163 + 1.10202i
\(329\) 0 0
\(330\) 17061.2 19406.9i 0.00862430 0.00981008i
\(331\) 3.46449e6i 1.73808i 0.494742 + 0.869040i \(0.335262\pi\)
−0.494742 + 0.869040i \(0.664738\pi\)
\(332\) −173202. 1.34075e6i −0.0862400 0.667579i
\(333\) 3.48415e6 1.72181
\(334\) −1.48155e6 + 1.68525e6i −0.726692 + 0.826607i
\(335\) −14534.3 −0.00707591
\(336\) 0 0
\(337\) −942106. −0.451882 −0.225941 0.974141i \(-0.572546\pi\)
−0.225941 + 0.974141i \(0.572546\pi\)
\(338\) −2.20466e6 + 2.50778e6i −1.04966 + 1.19398i
\(339\) −3.99059e6 −1.88598
\(340\) 6326.36 + 48972.0i 0.00296795 + 0.0229747i
\(341\) 476554.i 0.221935i
\(342\) −1.06878e6 + 1.21573e6i −0.494108 + 0.562044i
\(343\) 0 0
\(344\) 696590. 1.03435e6i 0.317381 0.471270i
\(345\) −225170. −0.101851
\(346\) −1.91454e6 1.68312e6i −0.859755 0.755833i
\(347\) 523643.i 0.233460i −0.993164 0.116730i \(-0.962759\pi\)
0.993164 0.116730i \(-0.0372412\pi\)
\(348\) −213503. 1.65271e6i −0.0945053 0.731560i
\(349\) 1.24188e6i 0.545778i 0.962045 + 0.272889i \(0.0879792\pi\)
−0.962045 + 0.272889i \(0.912021\pi\)
\(350\) 0 0
\(351\) 90792.7i 0.0393354i
\(352\) −416420. 208507.i −0.179133 0.0896942i
\(353\) 2.22945e6i 0.952273i −0.879371 0.476136i \(-0.842037\pi\)
0.879371 0.476136i \(-0.157963\pi\)
\(354\) −2.10309e6 + 2.39225e6i −0.891968 + 1.01461i
\(355\) −62461.9 −0.0263054
\(356\) 2.93578e6 379253.i 1.22772 0.158600i
\(357\) 0 0
\(358\) 2.32003e6 + 2.03960e6i 0.956723 + 0.841080i
\(359\) 4.46801e6i 1.82969i −0.403803 0.914846i \(-0.632312\pi\)
0.403803 0.914846i \(-0.367688\pi\)
\(360\) 64142.3 95243.0i 0.0260848 0.0387326i
\(361\) −1.13592e6 −0.458753
\(362\) 841558. + 739836.i 0.337530 + 0.296732i
\(363\) −3.42257e6 −1.36328
\(364\) 0 0
\(365\) 109632. 0.0430730
\(366\) 1.26100e6 + 1.10858e6i 0.492053 + 0.432577i
\(367\) 1.18761e6 0.460266 0.230133 0.973159i \(-0.426084\pi\)
0.230133 + 0.973159i \(0.426084\pi\)
\(368\) 1.03128e6 + 3.92491e6i 0.396968 + 1.51081i
\(369\) 3.53492e6i 1.35149i
\(370\) 153682. + 135106.i 0.0583605 + 0.0513063i
\(371\) 0 0
\(372\) 538044. + 4.16496e6i 0.201586 + 1.56046i
\(373\) 3.48885e6 1.29840 0.649202 0.760616i \(-0.275103\pi\)
0.649202 + 0.760616i \(0.275103\pi\)
\(374\) −180555. + 205380.i −0.0667469 + 0.0759242i
\(375\) 354737.i 0.130265i
\(376\) 2.73435e6 + 1.84147e6i 0.997435 + 0.671732i
\(377\) 2.30650e6i 0.835794i
\(378\) 0 0
\(379\) 1.83482e6i 0.656137i 0.944654 + 0.328068i \(0.106398\pi\)
−0.944654 + 0.328068i \(0.893602\pi\)
\(380\) −94285.2 + 12180.1i −0.0334953 + 0.00432704i
\(381\) 6.64404e6i 2.34488i
\(382\) −474071. 416769.i −0.166221 0.146129i
\(383\) −1.69541e6 −0.590578 −0.295289 0.955408i \(-0.595416\pi\)
−0.295289 + 0.955408i \(0.595416\pi\)
\(384\) −3.87482e6 1.35215e6i −1.34098 0.467948i
\(385\) 0 0
\(386\) 2.91093e6 3.31116e6i 0.994406 1.13113i
\(387\) 1.70283e6i 0.577956i
\(388\) 1.12078e6 144786.i 0.377956 0.0488255i
\(389\) −3.59849e6 −1.20572 −0.602861 0.797847i \(-0.705972\pi\)
−0.602861 + 0.797847i \(0.705972\pi\)
\(390\) 208095. 236707.i 0.0692789 0.0788042i
\(391\) 2.38294e6 0.788262
\(392\) 0 0
\(393\) 888902. 0.290317
\(394\) −1.30827e6 + 1.48815e6i −0.424578 + 0.482955i
\(395\) −102590. −0.0330836
\(396\) 630679. 81473.1i 0.202102 0.0261082i
\(397\) 2.21756e6i 0.706152i −0.935595 0.353076i \(-0.885136\pi\)
0.935595 0.353076i \(-0.114864\pi\)
\(398\) −55854.3 + 63533.9i −0.0176746 + 0.0201047i
\(399\) 0 0
\(400\) −3.08843e6 + 811488.i −0.965133 + 0.253590i
\(401\) 819017. 0.254350 0.127175 0.991880i \(-0.459409\pi\)
0.127175 + 0.991880i \(0.459409\pi\)
\(402\) −532727. 468335.i −0.164414 0.144541i
\(403\) 5.81254e6i 1.78280i
\(404\) 2.19488e6 283541.i 0.669047 0.0864297i
\(405\) 148884.i 0.0451035i
\(406\) 0 0
\(407\) 1.13322e6i 0.339101i
\(408\) −1.34613e6 + 1.99883e6i −0.400347 + 0.594463i
\(409\) 3.52880e6i 1.04308i 0.853226 + 0.521541i \(0.174643\pi\)
−0.853226 + 0.521541i \(0.825357\pi\)
\(410\) 137074. 155921.i 0.0402714 0.0458085i
\(411\) 1.42834e6 0.417088
\(412\) −390814. 3.02527e6i −0.113430 0.878054i
\(413\) 0 0
\(414\) −4.16180e6 3.65874e6i −1.19338 1.04913i
\(415\) 108417.i 0.0309013i
\(416\) −5.07908e6 2.54317e6i −1.43897 0.720513i
\(417\) 2.09352e6 0.589573
\(418\) −395416. 347621.i −0.110691 0.0973117i
\(419\) 2.07589e6 0.577656 0.288828 0.957381i \(-0.406734\pi\)
0.288828 + 0.957381i \(0.406734\pi\)
\(420\) 0 0
\(421\) 4.12936e6 1.13547 0.567737 0.823210i \(-0.307819\pi\)
0.567737 + 0.823210i \(0.307819\pi\)
\(422\) −73054.3 64223.9i −0.0199694 0.0175556i
\(423\) −4.50154e6 −1.22323
\(424\) −2.95755e6 1.99179e6i −0.798946 0.538058i
\(425\) 1.87508e6i 0.503556i
\(426\) −2.28942e6 2.01269e6i −0.611226 0.537345i
\(427\) 0 0
\(428\) 2.75464e6 355853.i 0.726868 0.0938992i
\(429\) 1.74543e6 0.457889
\(430\) −66031.3 + 75110.1i −0.0172218 + 0.0195897i
\(431\) 464413.i 0.120423i 0.998186 + 0.0602117i \(0.0191776\pi\)
−0.998186 + 0.0602117i \(0.980822\pi\)
\(432\) 91699.0 24094.1i 0.0236404 0.00621156i
\(433\) 963586.i 0.246985i −0.992345 0.123493i \(-0.960590\pi\)
0.992345 0.123493i \(-0.0394095\pi\)
\(434\) 0 0
\(435\) 133643.i 0.0338629i
\(436\) −416302. 3.22257e6i −0.104880 0.811869i
\(437\) 4.58784e6i 1.14922i
\(438\) 4.01835e6 + 3.53264e6i 1.00084 + 0.879861i
\(439\) −2.72777e6 −0.675532 −0.337766 0.941230i \(-0.609671\pi\)
−0.337766 + 0.941230i \(0.609671\pi\)
\(440\) 30977.9 + 20862.3i 0.00762816 + 0.00513726i
\(441\) 0 0
\(442\) −2.20224e6 + 2.50503e6i −0.536177 + 0.609898i
\(443\) 1.79763e6i 0.435201i 0.976038 + 0.217601i \(0.0698230\pi\)
−0.976038 + 0.217601i \(0.930177\pi\)
\(444\) 1.27944e6 + 9.90410e6i 0.308009 + 2.38428i
\(445\) −237396. −0.0568293
\(446\) 1.37520e6 1.56428e6i 0.327363 0.372373i
\(447\) −9.70684e6 −2.29778
\(448\) 0 0
\(449\) −4.42590e6 −1.03606 −0.518031 0.855362i \(-0.673335\pi\)
−0.518031 + 0.855362i \(0.673335\pi\)
\(450\) 2.87898e6 3.27482e6i 0.670206 0.762354i
\(451\) 1.14973e6 0.266168
\(452\) −738959. 5.72024e6i −0.170127 1.31695i
\(453\) 3.70082e6i 0.847331i
\(454\) 2.22042e6 2.52572e6i 0.505587 0.575102i
\(455\) 0 0
\(456\) −3.84831e6 2.59168e6i −0.866679 0.583673i
\(457\) −7.00990e6 −1.57008 −0.785040 0.619446i \(-0.787357\pi\)
−0.785040 + 0.619446i \(0.787357\pi\)
\(458\) 1.80104e6 + 1.58334e6i 0.401199 + 0.352705i
\(459\) 55673.4i 0.0123343i
\(460\) −41696.0 322766.i −0.00918756 0.0711203i
\(461\) 8.59109e6i 1.88276i 0.337341 + 0.941382i \(0.390472\pi\)
−0.337341 + 0.941382i \(0.609528\pi\)
\(462\) 0 0
\(463\) 877840.i 0.190311i 0.995462 + 0.0951553i \(0.0303348\pi\)
−0.995462 + 0.0951553i \(0.969665\pi\)
\(464\) 2.32952e6 612085.i 0.502310 0.131983i
\(465\) 336791.i 0.0722318i
\(466\) 439668. 500119.i 0.0937908 0.106686i
\(467\) 7.15954e6 1.51912 0.759561 0.650436i \(-0.225414\pi\)
0.759561 + 0.650436i \(0.225414\pi\)
\(468\) 7.69241e6 993730.i 1.62348 0.209727i
\(469\) 0 0
\(470\) −198558. 174557.i −0.0414612 0.0364497i
\(471\) 1.63876e6i 0.340380i
\(472\) −3.81857e6 2.57165e6i −0.788942 0.531321i
\(473\) −553848. −0.113825
\(474\) −3.76024e6 3.30573e6i −0.768723 0.675805i
\(475\) −3.61007e6 −0.734144
\(476\) 0 0
\(477\) 4.86898e6 0.979811
\(478\) −3.32306e6 2.92139e6i −0.665225 0.584817i
\(479\) 4.90745e6 0.977276 0.488638 0.872487i \(-0.337494\pi\)
0.488638 + 0.872487i \(0.337494\pi\)
\(480\) 294293. + 147357.i 0.0583012 + 0.0291922i
\(481\) 1.38220e7i 2.72400i
\(482\) 5.24045e6 + 4.60702e6i 1.02743 + 0.903239i
\(483\) 0 0
\(484\) −633777. 4.90603e6i −0.122977 0.951956i
\(485\) −90629.5 −0.0174951
\(486\) 4.88148e6 5.55265e6i 0.937477 1.06637i
\(487\) 1.13898e6i 0.217617i −0.994063 0.108808i \(-0.965296\pi\)
0.994063 0.108808i \(-0.0347035\pi\)
\(488\) −1.35557e6 + 2.01284e6i −0.257674 + 0.382613i
\(489\) 4.13220e6i 0.781464i
\(490\) 0 0
\(491\) 2.85826e6i 0.535055i −0.963550 0.267528i \(-0.913793\pi\)
0.963550 0.267528i \(-0.0862066\pi\)
\(492\) 1.00484e7 1.29808e6i 1.87148 0.241763i
\(493\) 1.41433e6i 0.262079i
\(494\) −4.82290e6 4.23994e6i −0.889183 0.781704i
\(495\) −50998.6 −0.00935503
\(496\) −5.87057e6 + 1.54250e6i −1.07146 + 0.281527i
\(497\) 0 0
\(498\) −3.49349e6 + 3.97382e6i −0.631227 + 0.718016i
\(499\) 1.19215e6i 0.214329i −0.994241 0.107165i \(-0.965823\pi\)
0.994241 0.107165i \(-0.0341772\pi\)
\(500\) 508492. 65688.6i 0.0909618 0.0117507i
\(501\) 8.78226e6 1.56319
\(502\) 6.65454e6 7.56950e6i 1.17858 1.34063i
\(503\) 3.90095e6 0.687465 0.343732 0.939068i \(-0.388309\pi\)
0.343732 + 0.939068i \(0.388309\pi\)
\(504\) 0 0
\(505\) −177484. −0.0309693
\(506\) 1.19001e6 1.35363e6i 0.206621 0.235030i
\(507\) 1.30687e7 2.25793
\(508\) 9.52379e6 1.23031e6i 1.63738 0.211523i
\(509\) 6.72650e6i 1.15079i 0.817877 + 0.575393i \(0.195151\pi\)
−0.817877 + 0.575393i \(0.804849\pi\)
\(510\) 127603. 145147.i 0.0217237 0.0247106i
\(511\) 0 0
\(512\) 1.22070e6 5.80468e6i 0.205794 0.978595i
\(513\) 107187. 0.0179825
\(514\) 766585. + 673925.i 0.127983 + 0.112513i
\(515\) 244632.i 0.0406440i
\(516\) −4.84050e6 + 625311.i −0.800324 + 0.103388i
\(517\) 1.46413e6i 0.240909i
\(518\) 0 0
\(519\) 9.97714e6i 1.62588i
\(520\) 377838. + 254458.i 0.0612769 + 0.0412675i
\(521\) 3.03652e6i 0.490097i −0.969511 0.245049i \(-0.921196\pi\)
0.969511 0.245049i \(-0.0788040\pi\)
\(522\) −2.17154e6 + 2.47012e6i −0.348813 + 0.396772i
\(523\) −1.10904e7 −1.77294 −0.886471 0.462785i \(-0.846850\pi\)
−0.886471 + 0.462785i \(0.846850\pi\)
\(524\) 164603. + 1.27418e6i 0.0261884 + 0.202723i
\(525\) 0 0
\(526\) −399782. 351459.i −0.0630026 0.0553872i
\(527\) 3.56421e6i 0.559031i
\(528\) 463193. + 1.76286e6i 0.0723065 + 0.275190i
\(529\) −9.26921e6 −1.44014
\(530\) 214766. + 188806.i 0.0332105 + 0.0291962i
\(531\) 6.28647e6 0.967544
\(532\) 0 0
\(533\) 1.40233e7 2.13813
\(534\) −8.70128e6 7.64952e6i −1.32047 1.16086i
\(535\) −222748. −0.0336457
\(536\) 572678. 850353.i 0.0860991 0.127846i
\(537\) 1.20902e7i 1.80925i
\(538\) 426469. + 374920.i 0.0635231 + 0.0558448i
\(539\) 0 0
\(540\) −7540.90 + 974.158i −0.00111286 + 0.000143762i
\(541\) 880519. 0.129344 0.0646719 0.997907i \(-0.479400\pi\)
0.0646719 + 0.997907i \(0.479400\pi\)
\(542\) −3.67924e6 + 4.18510e6i −0.537972 + 0.611939i
\(543\) 4.38556e6i 0.638302i
\(544\) −3.11445e6 1.55945e6i −0.451216 0.225930i
\(545\) 260586.i 0.0375803i
\(546\) 0 0
\(547\) 6.56436e6i 0.938047i 0.883186 + 0.469023i \(0.155394\pi\)
−0.883186 + 0.469023i \(0.844606\pi\)
\(548\) 264494. + 2.04743e6i 0.0376240 + 0.291245i
\(549\) 3.31372e6i 0.469229i
\(550\) 1.06514e6 + 936392.i 0.150141 + 0.131993i
\(551\) 2.72298e6 0.382090
\(552\) 8.87211e6 1.31739e7i 1.23931 1.84021i
\(553\) 0 0
\(554\) −2.60964e6 + 2.96845e6i −0.361248 + 0.410918i
\(555\) 800875.i 0.110365i
\(556\) 387669. + 3.00092e6i 0.0531832 + 0.411688i
\(557\) −1.05590e6 −0.144206 −0.0721031 0.997397i \(-0.522971\pi\)
−0.0721031 + 0.997397i \(0.522971\pi\)
\(558\) 5.47245e6 6.22488e6i 0.744041 0.846341i
\(559\) −6.75530e6 −0.914356
\(560\) 0 0
\(561\) 1.07029e6 0.143580
\(562\) −4.79188e6 + 5.45073e6i −0.639978 + 0.727971i
\(563\) −6.57110e6 −0.873709 −0.436855 0.899532i \(-0.643908\pi\)
−0.436855 + 0.899532i \(0.643908\pi\)
\(564\) −1.65305e6 1.27961e7i −0.218820 1.69387i
\(565\) 462556.i 0.0609597i
\(566\) 7.13439e6 8.11532e6i 0.936086 1.06479i
\(567\) 0 0
\(568\) 2.46111e6 3.65443e6i 0.320081 0.475279i
\(569\) 4.52467e6 0.585877 0.292938 0.956131i \(-0.405367\pi\)
0.292938 + 0.956131i \(0.405367\pi\)
\(570\) 279450. + 245671.i 0.0360260 + 0.0316714i
\(571\) 590361.i 0.0757753i −0.999282 0.0378876i \(-0.987937\pi\)
0.999282 0.0378876i \(-0.0120629\pi\)
\(572\) 323212. + 2.50196e6i 0.0413045 + 0.319735i
\(573\) 2.47050e6i 0.314339i
\(574\) 0 0
\(575\) 1.23583e7i 1.55880i
\(576\) 3.04502e6 + 7.50549e6i 0.382414 + 0.942590i
\(577\) 451460.i 0.0564521i 0.999602 + 0.0282260i \(0.00898582\pi\)
−0.999602 + 0.0282260i \(0.991014\pi\)
\(578\) 3.95275e6 4.49622e6i 0.492130 0.559794i
\(579\) −1.72553e7 −2.13907
\(580\) −191569. + 24747.5i −0.0236459 + 0.00305465i
\(581\) 0 0
\(582\) −3.32185e6 2.92033e6i −0.406511 0.357375i
\(583\) 1.58364e6i 0.192968i
\(584\) −4.31970e6 + 6.41420e6i −0.524109 + 0.778234i
\(585\) −622031. −0.0751488
\(586\) −636470. 559538.i −0.0765657 0.0673109i
\(587\) 6.87565e6 0.823604 0.411802 0.911273i \(-0.364900\pi\)
0.411802 + 0.911273i \(0.364900\pi\)
\(588\) 0 0
\(589\) −6.86212e6 −0.815023
\(590\) 277289. + 243772.i 0.0327947 + 0.0288306i
\(591\) 7.75512e6 0.913313
\(592\) −1.39599e7 + 3.66799e6i −1.63712 + 0.430154i
\(593\) 1.53361e7i 1.79093i −0.445129 0.895466i \(-0.646842\pi\)
0.445129 0.895466i \(-0.353158\pi\)
\(594\) −31625.3 27802.6i −0.00367763 0.00323310i
\(595\) 0 0
\(596\) −1.79747e6 1.39141e7i −0.207274 1.60450i
\(597\) 331091. 0.0380199
\(598\) 1.45146e7 1.65102e7i 1.65978 1.88799i
\(599\) 4.12329e6i 0.469544i −0.972050 0.234772i \(-0.924566\pi\)
0.972050 0.234772i \(-0.0754344\pi\)
\(600\) 1.03663e7 + 6.98127e6i 1.17556 + 0.791692i
\(601\) 1.79015e6i 0.202164i −0.994878 0.101082i \(-0.967770\pi\)
0.994878 0.101082i \(-0.0322305\pi\)
\(602\) 0 0
\(603\) 1.39993e6i 0.156788i
\(604\) −5.30488e6 + 685302.i −0.591675 + 0.0764346i
\(605\) 396716.i 0.0440648i
\(606\) −6.50534e6 5.71902e6i −0.719596 0.632616i
\(607\) −1.32087e6 −0.145508 −0.0727540 0.997350i \(-0.523179\pi\)
−0.0727540 + 0.997350i \(0.523179\pi\)
\(608\) 3.00239e6 5.99622e6i 0.329388 0.657837i
\(609\) 0 0
\(610\) 128497. 146165.i 0.0139820 0.0159044i
\(611\) 1.78580e7i 1.93522i
\(612\) 4.71693e6 609348.i 0.509073 0.0657638i
\(613\) 6.48815e6 0.697380 0.348690 0.937238i \(-0.386627\pi\)
0.348690 + 0.937238i \(0.386627\pi\)
\(614\) −99906.7 + 113643.i −0.0106948 + 0.0121653i
\(615\) −812543. −0.0866281
\(616\) 0 0
\(617\) −7.26297e6 −0.768071 −0.384035 0.923318i \(-0.625466\pi\)
−0.384035 + 0.923318i \(0.625466\pi\)
\(618\) −7.88271e6 + 8.96653e6i −0.830242 + 0.944394i
\(619\) −9.61329e6 −1.00843 −0.504214 0.863578i \(-0.668218\pi\)
−0.504214 + 0.863578i \(0.668218\pi\)
\(620\) 482768. 62365.5i 0.0504382 0.00651576i
\(621\) 366934.i 0.0381820i
\(622\) −6.07169e6 + 6.90650e6i −0.629265 + 0.715784i
\(623\) 0 0
\(624\) 5.64958e6 + 2.15016e7i 0.580838 + 2.21060i
\(625\) 9.70393e6 0.993682
\(626\) −7.70429e6 6.77304e6i −0.785772 0.690793i
\(627\) 2.06061e6i 0.209328i
\(628\) −2.34906e6 + 303459.i −0.237681 + 0.0307044i
\(629\) 8.47552e6i 0.854161i
\(630\) 0 0
\(631\) 1.70616e7i 1.70587i 0.522017 + 0.852935i \(0.325180\pi\)
−0.522017 + 0.852935i \(0.674820\pi\)
\(632\) 4.04224e6 6.00220e6i 0.402559 0.597747i
\(633\) 380703.i 0.0377640i
\(634\) −8.79894e6 + 1.00087e7i −0.869375 + 0.988908i
\(635\) −770122. −0.0757923
\(636\) 1.78798e6 + 1.38406e7i 0.175275 + 1.35679i
\(637\) 0 0
\(638\) −803408. 706297.i −0.0781420 0.0686967i
\(639\) 6.01626e6i 0.582873i
\(640\) −156730. + 449136.i −0.0151253 + 0.0433439i
\(641\) 1.51865e7 1.45987 0.729933 0.683518i \(-0.239551\pi\)
0.729933 + 0.683518i \(0.239551\pi\)
\(642\) −8.16441e6 7.17755e6i −0.781785 0.687288i
\(643\) −1.16456e7 −1.11079 −0.555396 0.831586i \(-0.687433\pi\)
−0.555396 + 0.831586i \(0.687433\pi\)
\(644\) 0 0
\(645\) 391417. 0.0370459
\(646\) −2.95737e6 2.59990e6i −0.278820 0.245118i
\(647\) 5.90941e6 0.554988 0.277494 0.960727i \(-0.410496\pi\)
0.277494 + 0.960727i \(0.410496\pi\)
\(648\) 8.71069e6 + 5.86630e6i 0.814921 + 0.548816i
\(649\) 2.04468e6i 0.190552i
\(650\) 1.29915e7 + 1.14212e7i 1.20608 + 1.06030i
\(651\) 0 0
\(652\) −5.92323e6 + 765182.i −0.545682 + 0.0704930i
\(653\) −4.77946e6 −0.438628 −0.219314 0.975654i \(-0.570382\pi\)
−0.219314 + 0.975654i \(0.570382\pi\)
\(654\) −8.39679e6 + 9.55129e6i −0.767660 + 0.873208i
\(655\) 103034.i 0.00938378i
\(656\) 3.72144e6 + 1.41633e7i 0.337638 + 1.28501i
\(657\) 1.05596e7i 0.954411i
\(658\) 0 0
\(659\) 5.36654e6i 0.481372i −0.970603 0.240686i \(-0.922628\pi\)
0.970603 0.240686i \(-0.0773723\pi\)
\(660\) −18727.6 144969.i −0.00167349 0.0129544i
\(661\) 1.54071e7i 1.37157i −0.727804 0.685786i \(-0.759459\pi\)
0.727804 0.685786i \(-0.240541\pi\)
\(662\) 1.47190e7 + 1.29398e7i 1.30537 + 1.14758i
\(663\) 1.30543e7 1.15337
\(664\) −6.34311e6 4.27182e6i −0.558318 0.376005i
\(665\) 0 0
\(666\) 1.30132e7 1.48025e7i 1.13684 1.29315i
\(667\) 9.32158e6i 0.811288i
\(668\) 1.62626e6 + 1.25888e7i 0.141010 + 1.09155i
\(669\) −8.15186e6 −0.704193
\(670\) −54285.4 + 61749.3i −0.00467193 + 0.00531429i
\(671\) 1.07779e6 0.0924119
\(672\) 0 0
\(673\) −3.09611e6 −0.263499 −0.131750 0.991283i \(-0.542059\pi\)
−0.131750 + 0.991283i \(0.542059\pi\)
\(674\) −3.51875e6 + 4.00256e6i −0.298359 + 0.339381i
\(675\) −288732. −0.0243914
\(676\) 2.42000e6 + 1.87330e7i 0.203680 + 1.57667i
\(677\) 9.95794e6i 0.835022i 0.908672 + 0.417511i \(0.137098\pi\)
−0.908672 + 0.417511i \(0.862902\pi\)
\(678\) −1.49048e7 + 1.69541e7i −1.24523 + 1.41645i
\(679\) 0 0
\(680\) 231687. + 156032.i 0.0192145 + 0.0129402i
\(681\) −1.31621e7 −1.08757
\(682\) 2.02465e6 + 1.77992e6i 0.166682 + 0.146534i
\(683\) 1.13131e7i 0.927958i −0.885846 0.463979i \(-0.846421\pi\)
0.885846 0.463979i \(-0.153579\pi\)
\(684\) 1.17317e6 + 9.08143e6i 0.0958783 + 0.742188i
\(685\) 165562.i 0.0134813i
\(686\) 0 0
\(687\) 9.38566e6i 0.758705i
\(688\) −1.79268e6 6.82274e6i −0.144389 0.549525i
\(689\) 1.93157e7i 1.55011i
\(690\) −841007. + 956640.i −0.0672476 + 0.0764937i
\(691\) 3.06789e6 0.244424 0.122212 0.992504i \(-0.461001\pi\)
0.122212 + 0.992504i \(0.461001\pi\)
\(692\) −1.43016e7 + 1.84752e6i −1.13532 + 0.146664i
\(693\) 0 0
\(694\) −2.22471e6 1.95580e6i −0.175337 0.154144i
\(695\) 242664.i 0.0190565i
\(696\) −7.81902e6 5.26579e6i −0.611828 0.412041i
\(697\) 8.59901e6 0.670450
\(698\) 5.27615e6 + 4.63840e6i 0.409901 + 0.360354i
\(699\) −2.60624e6 −0.201754
\(700\) 0 0
\(701\) 33900.5 0.00260562 0.00130281 0.999999i \(-0.499585\pi\)
0.00130281 + 0.999999i \(0.499585\pi\)
\(702\) −385734. 339109.i −0.0295424 0.0259715i
\(703\) −1.63178e7 −1.24530
\(704\) −2.44117e6 + 990395.i −0.185638 + 0.0753142i
\(705\) 1.03473e6i 0.0784071i
\(706\) −9.47186e6 8.32697e6i −0.715194 0.628746i
\(707\) 0 0
\(708\) 2.30851e6 + 1.78700e7i 0.173080 + 1.33980i
\(709\) 8.08213e6 0.603824 0.301912 0.953336i \(-0.402375\pi\)
0.301912 + 0.953336i \(0.402375\pi\)
\(710\) −233294. + 265371.i −0.0173683 + 0.0197564i
\(711\) 9.88136e6i 0.733065i
\(712\) 9.35381e6 1.38892e7i 0.691494 1.02678i
\(713\) 2.34911e7i 1.73053i
\(714\) 0 0
\(715\) 202316.i 0.0148001i
\(716\) 1.73305e7 2.23882e6i 1.26337 0.163206i
\(717\) 1.73173e7i 1.25800i
\(718\) −1.89824e7 1.66879e7i −1.37417 1.20807i
\(719\) 1.40670e7 1.01480 0.507398 0.861712i \(-0.330607\pi\)
0.507398 + 0.861712i \(0.330607\pi\)
\(720\) −165071. 628240.i −0.0118670 0.0451642i
\(721\) 0 0
\(722\) −4.24264e6 + 4.82597e6i −0.302896 + 0.344542i
\(723\) 2.73093e7i 1.94296i
\(724\) 6.28641e6 812099.i 0.445714 0.0575788i
\(725\) −7.33495e6 −0.518265
\(726\) −1.27833e7 + 1.45409e7i −0.900119 + 1.02388i
\(727\) 1.08183e7 0.759145 0.379572 0.925162i \(-0.376071\pi\)
0.379572 + 0.925162i \(0.376071\pi\)
\(728\) 0 0
\(729\) −1.48385e7 −1.03412
\(730\) 409474. 465774.i 0.0284393 0.0323495i
\(731\) −4.14230e6 −0.286714
\(732\) 9.41962e6 1.21686e6i 0.649764 0.0839387i
\(733\) 8.58482e6i 0.590162i 0.955472 + 0.295081i \(0.0953466\pi\)
−0.955472 + 0.295081i \(0.904653\pi\)
\(734\) 4.43570e6 5.04558e6i 0.303894 0.345677i
\(735\) 0 0
\(736\) 2.05269e7 + 1.02781e7i 1.39678 + 0.699387i
\(737\) −455328. −0.0308785
\(738\) −1.50181e7 1.32028e7i −1.01502 0.892333i
\(739\) 1.35460e7i 0.912432i 0.889869 + 0.456216i \(0.150796\pi\)
−0.889869 + 0.456216i \(0.849204\pi\)
\(740\) 1.14800e6 148302.i 0.0770660 0.00995563i
\(741\) 2.51333e7i 1.68153i
\(742\) 0 0
\(743\) 2.57238e7i 1.70948i −0.519057 0.854740i \(-0.673717\pi\)
0.519057 0.854740i \(-0.326283\pi\)
\(744\) 1.97045e7 + 1.32702e7i 1.30507 + 0.878911i
\(745\) 1.12514e6i 0.0742702i
\(746\) 1.30308e7 1.48224e7i 0.857281 0.975151i
\(747\) 1.04426e7 0.684710
\(748\) 198191. + 1.53418e6i 0.0129518 + 0.100259i
\(749\) 0 0
\(750\) −1.50711e6 1.32494e6i −0.0978342 0.0860086i
\(751\) 2.54858e7i 1.64892i 0.565924 + 0.824458i \(0.308520\pi\)
−0.565924 + 0.824458i \(0.691480\pi\)
\(752\) 1.80363e7 4.73906e6i 1.16306 0.305596i
\(753\) −3.94465e7 −2.53525
\(754\) −9.79918e6 8.61472e6i −0.627714 0.551840i
\(755\) 428969. 0.0273879
\(756\) 0 0
\(757\) 2.84880e6 0.180685 0.0903425 0.995911i \(-0.471204\pi\)
0.0903425 + 0.995911i \(0.471204\pi\)
\(758\) 7.79524e6 + 6.85300e6i 0.492784 + 0.433220i
\(759\) −7.05408e6 −0.444464
\(760\) −300406. + 446065.i −0.0188658 + 0.0280133i
\(761\) 2.36887e7i 1.48279i −0.671070 0.741394i \(-0.734165\pi\)
0.671070 0.741394i \(-0.265835\pi\)
\(762\) −2.82273e7 2.48154e7i −1.76109 1.54822i
\(763\) 0 0
\(764\) −3.54130e6 + 457476.i −0.219497 + 0.0283554i
\(765\) −381425. −0.0235643
\(766\) −6.33232e6 + 7.20296e6i −0.389934 + 0.443547i
\(767\) 2.49390e7i 1.53070i
\(768\) −2.02170e7 + 1.14120e7i −1.23684 + 0.698164i
\(769\) 2.67208e7i 1.62942i −0.579866 0.814712i \(-0.696895\pi\)
0.579866 0.814712i \(-0.303105\pi\)
\(770\) 0 0
\(771\) 3.99486e6i 0.242028i
\(772\) −3.19525e6 2.47343e7i −0.192958 1.49367i
\(773\) 2.97686e7i 1.79189i −0.444169 0.895943i \(-0.646501\pi\)
0.444169 0.895943i \(-0.353499\pi\)
\(774\) 7.23452e6 + 6.36006e6i 0.434067 + 0.381600i
\(775\) 1.84846e7 1.10549
\(776\) 3.57097e6 5.30242e6i 0.212878 0.316097i
\(777\) 0 0
\(778\) −1.34403e7 + 1.52883e7i −0.796087 + 0.905543i
\(779\) 1.65556e7i 0.977463i
\(780\) −228421. 1.76819e6i −0.0134431 0.104062i
\(781\) −1.95679e6 −0.114794
\(782\) 8.90023e6 1.01240e7i 0.520457 0.592016i
\(783\) 217783. 0.0126946
\(784\) 0 0
\(785\) 189952. 0.0110019
\(786\) 3.32003e6 3.77652e6i 0.191684 0.218039i
\(787\) −1.65056e7 −0.949939 −0.474969 0.880002i \(-0.657541\pi\)
−0.474969 + 0.880002i \(0.657541\pi\)
\(788\) 1.43606e6 + 1.11164e7i 0.0823866 + 0.637750i
\(789\) 2.08336e6i 0.119144i
\(790\) −383173. + 435856.i −0.0218437 + 0.0248471i
\(791\) 0 0
\(792\) 2.00944e6 2.98375e6i 0.113831 0.169024i
\(793\) 1.31458e7 0.742344
\(794\) −9.42133e6 8.28254e6i −0.530348 0.466243i
\(795\) 1.11920e6i 0.0628041i
\(796\) 61309.9 + 474596.i 0.00342963 + 0.0265486i
\(797\) 1.84844e6i 0.103076i −0.998671 0.0515381i \(-0.983588\pi\)
0.998671 0.0515381i \(-0.0164124\pi\)
\(798\) 0 0
\(799\) 1.09504e7i 0.606824i
\(800\) −8.08760e6 + 1.61521e7i −0.446781 + 0.892287i
\(801\) 2.28657e7i 1.25922i
\(802\) 3.05901e6 3.47961e6i 0.167937 0.191027i
\(803\) 3.43453e6 0.187966
\(804\) −3.97945e6 + 514079.i −0.217112 + 0.0280472i
\(805\) 0 0
\(806\) 2.46947e7 + 2.17097e7i 1.33895 + 1.17711i
\(807\) 2.22243e6i 0.120128i
\(808\) 6.99320e6 1.03840e7i 0.376832 0.559546i
\(809\) 7.15081e6 0.384135 0.192068 0.981382i \(-0.438481\pi\)
0.192068 + 0.981382i \(0.438481\pi\)
\(810\) −632536. 556080.i −0.0338745 0.0297800i
\(811\) 2.59878e7 1.38745 0.693724 0.720241i \(-0.255969\pi\)
0.693724 + 0.720241i \(0.255969\pi\)
\(812\) 0 0
\(813\) 2.18096e7 1.15723
\(814\) 4.81452e6 + 4.23257e6i 0.254678 + 0.223894i
\(815\) 478970. 0.0252589
\(816\) 3.46428e6 + 1.31846e7i 0.182133 + 0.693175i
\(817\) 7.97512e6i 0.418005i
\(818\) 1.49921e7 + 1.31800e7i 0.783395 + 0.688703i
\(819\) 0 0
\(820\) −150463. 1.16473e6i −0.00781440 0.0604908i
\(821\) −2.55002e7 −1.32034 −0.660169 0.751117i \(-0.729515\pi\)
−0.660169 + 0.751117i \(0.729515\pi\)
\(822\) 5.33484e6 6.06834e6i 0.275386 0.313250i
\(823\) 1.36450e7i 0.702223i 0.936334 + 0.351111i \(0.114196\pi\)
−0.936334 + 0.351111i \(0.885804\pi\)
\(824\) −1.43126e7 9.63896e6i −0.734346 0.494552i
\(825\) 5.55070e6i 0.283931i
\(826\) 0 0
\(827\) 2.08890e7i 1.06207i 0.847349 + 0.531037i \(0.178197\pi\)
−0.847349 + 0.531037i \(0.821803\pi\)
\(828\) −3.10885e7 + 4.01611e6i −1.57588 + 0.203578i
\(829\) 1.04204e7i 0.526622i 0.964711 + 0.263311i \(0.0848146\pi\)
−0.964711 + 0.263311i \(0.915185\pi\)
\(830\) 460612. + 404936.i 0.0232081 + 0.0204029i
\(831\) 1.54693e7 0.777084
\(832\) −2.97750e7 + 1.20799e7i −1.49122 + 0.604998i
\(833\) 0 0
\(834\) 7.81927e6 8.89437e6i 0.389270 0.442792i
\(835\) 1.01797e6i 0.0505263i
\(836\) −2.95375e6 + 381574.i −0.146170 + 0.0188827i
\(837\) −548830. −0.0270785
\(838\) 7.75342e6 8.81946e6i 0.381402 0.433842i
\(839\) 2.75943e7 1.35336 0.676682 0.736275i \(-0.263417\pi\)
0.676682 + 0.736275i \(0.263417\pi\)
\(840\) 0 0
\(841\) −1.49786e7 −0.730266
\(842\) 1.54231e7 1.75437e7i 0.749706 0.852786i
\(843\) 2.84051e7 1.37666
\(844\) −545713. + 70497.0i −0.0263699 + 0.00340655i
\(845\) 1.51481e6i 0.0729821i
\(846\) −1.68132e7 + 1.91248e7i −0.807650 + 0.918697i
\(847\) 0 0
\(848\) −1.95085e7 + 5.12590e6i −0.931612 + 0.244782i
\(849\) −4.22909e7 −2.01362
\(850\) 7.96631e6 + 7.00340e6i 0.378190 + 0.332477i
\(851\) 5.58607e7i 2.64413i
\(852\) −1.71019e7 + 2.20928e6i −0.807133 + 0.104268i
\(853\) 2.59748e7i 1.22230i −0.791514 0.611152i \(-0.790707\pi\)
0.791514 0.611152i \(-0.209293\pi\)
\(854\) 0 0
\(855\) 734352.i 0.0343549i
\(856\) 8.77669e6 1.30322e7i 0.409398 0.607904i
\(857\) 2.20659e7i 1.02629i −0.858302 0.513146i \(-0.828480\pi\)
0.858302 0.513146i \(-0.171520\pi\)
\(858\) 6.51917e6 7.41551e6i 0.302325 0.343892i
\(859\) −3.58149e7 −1.65608 −0.828038 0.560672i \(-0.810543\pi\)
−0.828038 + 0.560672i \(0.810543\pi\)
\(860\) 72480.9 + 561070.i 0.00334178 + 0.0258685i
\(861\) 0 0
\(862\) 1.97307e6 + 1.73457e6i 0.0904427 + 0.0795105i
\(863\) 1.15237e7i 0.526703i −0.964700 0.263352i \(-0.915172\pi\)
0.964700 0.263352i \(-0.0848280\pi\)
\(864\) 240130. 479576.i 0.0109437 0.0218561i
\(865\) 1.15647e6 0.0525524
\(866\) −4.09381e6 3.59898e6i −0.185495 0.163074i
\(867\) −2.34309e7 −1.05862
\(868\) 0 0
\(869\) −3.21392e6 −0.144373
\(870\) 567786. + 499156.i 0.0254324 + 0.0223583i
\(871\) −5.55365e6 −0.248046
\(872\) −1.52460e7 1.02676e7i −0.678993 0.457274i
\(873\) 8.72933e6i 0.387655i
\(874\) 1.94915e7 + 1.71355e7i 0.863112 + 0.758784i
\(875\) 0 0
\(876\) 3.00170e7 3.87769e6i 1.32162 0.170731i
\(877\) 1.78199e7 0.782358 0.391179 0.920315i \(-0.372067\pi\)
0.391179 + 0.920315i \(0.372067\pi\)
\(878\) −1.01882e7 + 1.15890e7i −0.446025 + 0.507351i
\(879\) 3.31680e6i 0.144793i
\(880\) 204336. 53689.5i 0.00889483 0.00233713i
\(881\) 4.32683e7i 1.87815i 0.343716 + 0.939074i \(0.388314\pi\)
−0.343716 + 0.939074i \(0.611686\pi\)
\(882\) 0 0
\(883\) 2.84375e7i 1.22741i −0.789536 0.613704i \(-0.789679\pi\)
0.789536 0.613704i \(-0.210321\pi\)
\(884\) 2.41734e6 + 1.87125e7i 0.104042 + 0.805380i
\(885\) 1.44502e6i 0.0620178i
\(886\) 7.63725e6 + 6.71410e6i 0.326853 + 0.287345i
\(887\) 2.69026e6 0.114812 0.0574058 0.998351i \(-0.481717\pi\)
0.0574058 + 0.998351i \(0.481717\pi\)
\(888\) 4.68564e7 + 3.15559e7i 1.99405 + 1.34291i
\(889\) 0 0
\(890\) −886669. + 1.00858e6i −0.0375220 + 0.0426810i
\(891\) 4.66421e6i 0.196827i
\(892\) −1.50952e6 1.16851e7i −0.0635226 0.491725i
\(893\) 2.10827e7 0.884701
\(894\) −3.62549e7 + 4.12397e7i −1.51713 + 1.72572i
\(895\) −1.40140e6 −0.0584796
\(896\) 0 0
\(897\) −8.60388e7 −3.57037
\(898\) −1.65307e7 + 1.88035e7i −0.684069 + 0.778123i
\(899\) −1.39425e7 −0.575361
\(900\) −3.16019e6 2.44628e7i −0.130049 1.00670i
\(901\) 1.18443e7i 0.486067i
\(902\) 4.29424e6 4.88467e6i 0.175740 0.199903i
\(903\) 0 0
\(904\) −2.70625e7 1.82255e7i −1.10141 0.741752i
\(905\) −508338. −0.0206315
\(906\) 1.57230e7 + 1.38225e7i 0.636378 + 0.559457i
\(907\) 4.62717e7i 1.86766i −0.357720 0.933829i \(-0.616446\pi\)
0.357720 0.933829i \(-0.383554\pi\)
\(908\) −2.43730e6 1.88670e7i −0.0981058 0.759431i
\(909\) 1.70951e7i 0.686217i
\(910\) 0 0
\(911\) 2.10834e7i 0.841677i −0.907136 0.420838i \(-0.861736\pi\)
0.907136 0.420838i \(-0.138264\pi\)
\(912\) −2.53842e7 + 6.66974e6i −1.01059 + 0.265535i
\(913\) 3.39646e6i 0.134850i
\(914\) −2.61819e7 + 2.97817e7i −1.03666 + 1.17919i
\(915\) −761699. −0.0300767
\(916\) 1.34537e7 1.73799e6i 0.529790 0.0684399i
\(917\) 0 0
\(918\) −236529. 207939.i −0.00926357 0.00814385i
\(919\) 3.34197e7i 1.30531i 0.757655 + 0.652655i \(0.226345\pi\)
−0.757655 + 0.652655i \(0.773655\pi\)
\(920\) −1.52701e6 1.02838e6i −0.0594803 0.0400576i
\(921\) 592222. 0.0230057
\(922\) 3.64994e7 + 3.20876e7i 1.41403 + 1.24311i
\(923\) −2.38671e7 −0.922135
\(924\) 0 0
\(925\) 4.39556e7 1.68912
\(926\) 3.72952e6 + 3.27872e6i 0.142931 + 0.125654i
\(927\) 2.35627e7 0.900587
\(928\) 6.10027e6 1.21831e7i 0.232530 0.464397i
\(929\) 5.10574e7i 1.94097i −0.241154 0.970487i \(-0.577526\pi\)
0.241154 0.970487i \(-0.422474\pi\)
\(930\) −1.43086e6 1.25791e6i −0.0542489 0.0476916i
\(931\) 0 0
\(932\) −482612. 3.73588e6i −0.0181995 0.140881i
\(933\) 3.59914e7 1.35362
\(934\) 2.67408e7 3.04174e7i 1.00301 1.14092i
\(935\) 124059.i 0.00464086i
\(936\) 2.45091e7 3.63929e7i 0.914404 1.35777i
\(937\) 4.53625e6i 0.168790i −0.996432 0.0843952i \(-0.973104\pi\)
0.996432 0.0843952i \(-0.0268958\pi\)
\(938\) 0 0
\(939\) 4.01489e7i 1.48597i
\(940\) −1.48322e6 + 191607.i −0.0547502 + 0.00707281i
\(941\) 1.83286e6i 0.0674770i 0.999431 + 0.0337385i \(0.0107413\pi\)
−0.999431 + 0.0337385i \(0.989259\pi\)
\(942\) 6.96231e6 + 6.12075e6i 0.255639 + 0.224739i
\(943\) −5.66746e7 −2.07544
\(944\) −2.51880e7 + 6.61818e6i −0.919948 + 0.241718i
\(945\) 0 0
\(946\) −2.06861e6 + 2.35303e6i −0.0751539 + 0.0854871i
\(947\) 4.98890e7i 1.80771i −0.427834 0.903857i \(-0.640723\pi\)
0.427834 0.903857i \(-0.359277\pi\)
\(948\) −2.80889e7 + 3.62861e6i −1.01511 + 0.131135i
\(949\) 4.18910e7 1.50993
\(950\) −1.34835e7 + 1.53374e7i −0.484725 + 0.551371i
\(951\) 5.21579e7 1.87012
\(952\) 0 0
\(953\) 5.96814e6 0.212866 0.106433 0.994320i \(-0.466057\pi\)
0.106433 + 0.994320i \(0.466057\pi\)
\(954\) 1.81856e7 2.06860e7i 0.646928 0.735876i
\(955\) 286360. 0.0101602
\(956\) −2.48231e7 + 3.20673e6i −0.878440 + 0.113480i
\(957\) 4.18675e6i 0.147774i
\(958\) 1.83293e7 2.08494e7i 0.645254 0.733972i
\(959\) 0 0
\(960\) 1.72523e6 699935.i 0.0604183 0.0245120i
\(961\) 6.50692e6 0.227283
\(962\) 5.87228e7 + 5.16248e7i 2.04583 + 1.79854i
\(963\) 2.14549e7i 0.745521i
\(964\) 3.91460e7 5.05701e6i 1.35673 0.175267i
\(965\) 2.00009e6i 0.0691402i
\(966\) 0 0
\(967\) 3.04278e7i 1.04641i 0.852205 + 0.523207i \(0.175265\pi\)
−0.852205 + 0.523207i \(0.824735\pi\)
\(968\) −2.32105e7 1.56313e7i −0.796152 0.536176i
\(969\) 1.54116e7i 0.527275i
\(970\) −338500. + 385041.i −0.0115513 + 0.0131395i
\(971\) 2.52565e7 0.859658 0.429829 0.902910i \(-0.358574\pi\)
0.429829 + 0.902910i \(0.358574\pi\)
\(972\) −5.35827e6 4.14781e7i −0.181911 1.40816i
\(973\) 0 0
\(974\) −4.83897e6 4.25406e6i −0.163439 0.143683i
\(975\) 6.77020e7i 2.28082i
\(976\) 3.48857e6 + 1.32771e7i 0.117226 + 0.446147i
\(977\) −1.60729e7 −0.538713 −0.269357 0.963041i \(-0.586811\pi\)
−0.269357 + 0.963041i \(0.586811\pi\)
\(978\) 1.75557e7 + 1.54337e7i 0.586910 + 0.515968i
\(979\) −7.43708e6 −0.247997
\(980\) 0 0
\(981\) 2.50994e7 0.832703
\(982\) −1.21434e7 1.06756e7i −0.401847 0.353274i
\(983\) 3.77651e7 1.24654 0.623271 0.782006i \(-0.285803\pi\)
0.623271 + 0.782006i \(0.285803\pi\)
\(984\) 3.20157e7 4.75391e7i 1.05408 1.56518i
\(985\) 898909.i 0.0295206i
\(986\) −6.00879e6 5.28248e6i −0.196831 0.173040i
\(987\) 0 0
\(988\) −3.60269e7 + 4.65407e6i −1.17418 + 0.151684i
\(989\) 2.73012e7 0.887547
\(990\) −190479. + 216668.i −0.00617673 + 0.00702599i
\(991\) 2.24588e6i 0.0726444i −0.999340 0.0363222i \(-0.988436\pi\)
0.999340 0.0363222i \(-0.0115643\pi\)
\(992\) −1.53731e7 + 3.07024e7i −0.496002 + 0.990588i
\(993\) 7.67040e7i 2.46857i
\(994\) 0 0
\(995\) 38377.3i 0.00122890i
\(996\) 3.83471e6 + 2.96843e7i 0.122485 + 0.948152i
\(997\) 2.98413e7i 0.950780i 0.879775 + 0.475390i \(0.157693\pi\)
−0.879775 + 0.475390i \(0.842307\pi\)
\(998\) −5.06489e6 4.45268e6i −0.160970 0.141513i
\(999\) −1.30509e6 −0.0413740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.6.d.b.195.25 36
4.3 odd 2 inner 196.6.d.b.195.28 36
7.4 even 3 28.6.f.a.19.11 yes 36
7.5 odd 6 28.6.f.a.3.1 36
7.6 odd 2 inner 196.6.d.b.195.26 36
28.11 odd 6 28.6.f.a.19.1 yes 36
28.19 even 6 28.6.f.a.3.11 yes 36
28.27 even 2 inner 196.6.d.b.195.27 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.f.a.3.1 36 7.5 odd 6
28.6.f.a.3.11 yes 36 28.19 even 6
28.6.f.a.19.1 yes 36 28.11 odd 6
28.6.f.a.19.11 yes 36 7.4 even 3
196.6.d.b.195.25 36 1.1 even 1 trivial
196.6.d.b.195.26 36 7.6 odd 2 inner
196.6.d.b.195.27 36 28.27 even 2 inner
196.6.d.b.195.28 36 4.3 odd 2 inner