Properties

Label 196.6.d.b.195.31
Level $196$
Weight $6$
Character 196.195
Analytic conductor $31.435$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(195,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.195");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.4352286833\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 195.31
Character \(\chi\) \(=\) 196.195
Dual form 196.6.d.b.195.29

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.22163 + 2.17591i) q^{2} -1.80249 q^{3} +(22.5308 + 22.7236i) q^{4} +47.5545i q^{5} +(-9.41192 - 3.92205i) q^{6} +(68.2033 + 167.679i) q^{8} -239.751 q^{9} +(-103.474 + 248.312i) q^{10} +440.652i q^{11} +(-40.6116 - 40.9590i) q^{12} -283.636i q^{13} -85.7165i q^{15} +(-8.72235 + 1023.96i) q^{16} -1492.26i q^{17} +(-1251.89 - 521.676i) q^{18} -2122.13 q^{19} +(-1080.61 + 1071.44i) q^{20} +(-958.818 + 2300.92i) q^{22} +2282.61i q^{23} +(-122.936 - 302.240i) q^{24} +863.567 q^{25} +(617.166 - 1481.04i) q^{26} +870.153 q^{27} +1844.20 q^{29} +(186.511 - 447.580i) q^{30} -7827.61 q^{31} +(-2273.59 + 5327.78i) q^{32} -794.270i q^{33} +(3247.03 - 7792.05i) q^{34} +(-5401.79 - 5448.00i) q^{36} -4035.42 q^{37} +(-11081.0 - 4617.57i) q^{38} +511.251i q^{39} +(-7973.90 + 3243.37i) q^{40} +1848.03i q^{41} +3423.76i q^{43} +(-10013.2 + 9928.26i) q^{44} -11401.2i q^{45} +(-4966.75 + 11918.9i) q^{46} +15907.9 q^{47} +(15.7219 - 1845.68i) q^{48} +(4509.23 + 1879.04i) q^{50} +2689.79i q^{51} +(6445.23 - 6390.56i) q^{52} -32107.3 q^{53} +(4543.62 + 1893.37i) q^{54} -20955.0 q^{55} +3825.12 q^{57} +(9629.72 + 4012.81i) q^{58} -8022.27 q^{59} +(1947.78 - 1931.26i) q^{60} +46698.1i q^{61} +(-40872.9 - 17032.2i) q^{62} +(-23464.6 + 22872.5i) q^{64} +13488.2 q^{65} +(1728.26 - 4147.38i) q^{66} +53887.8i q^{67} +(33909.6 - 33622.0i) q^{68} -4114.38i q^{69} -16295.5i q^{71} +(-16351.8 - 40201.3i) q^{72} -20384.0i q^{73} +(-21071.5 - 8780.71i) q^{74} -1556.57 q^{75} +(-47813.4 - 48222.4i) q^{76} +(-1112.43 + 2669.56i) q^{78} -44562.4i q^{79} +(-48694.1 - 414.787i) q^{80} +56691.1 q^{81} +(-4021.15 + 9649.73i) q^{82} +44256.0 q^{83} +70963.9 q^{85} +(-7449.80 + 17877.6i) q^{86} -3324.14 q^{87} +(-73888.1 + 30053.9i) q^{88} +39941.0i q^{89} +(24808.1 - 59533.1i) q^{90} +(-51869.1 + 51429.1i) q^{92} +14109.2 q^{93} +(83065.3 + 34614.2i) q^{94} -100917. i q^{95} +(4098.13 - 9603.25i) q^{96} +131224. i q^{97} -105647. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 24 q^{4} - 72 q^{8} + 2272 q^{9} - 1328 q^{16} + 3560 q^{18} + 13768 q^{22} - 15224 q^{25} + 176 q^{29} + 11672 q^{30} - 2320 q^{32} - 27920 q^{36} - 23444 q^{37} - 18192 q^{44} + 2080 q^{46} - 51168 q^{50}+ \cdots + 330324 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.22163 + 2.17591i 0.923063 + 0.384650i
\(3\) −1.80249 −0.115630 −0.0578148 0.998327i \(-0.518413\pi\)
−0.0578148 + 0.998327i \(0.518413\pi\)
\(4\) 22.5308 + 22.7236i 0.704089 + 0.710112i
\(5\) 47.5545i 0.850681i 0.905033 + 0.425341i \(0.139846\pi\)
−0.905033 + 0.425341i \(0.860154\pi\)
\(6\) −9.41192 3.92205i −0.106733 0.0444769i
\(7\) 0 0
\(8\) 68.2033 + 167.679i 0.376773 + 0.926305i
\(9\) −239.751 −0.986630
\(10\) −103.474 + 248.312i −0.327215 + 0.785232i
\(11\) 440.652i 1.09803i 0.835813 + 0.549015i \(0.184997\pi\)
−0.835813 + 0.549015i \(0.815003\pi\)
\(12\) −40.6116 40.9590i −0.0814135 0.0821100i
\(13\) 283.636i 0.465482i −0.972539 0.232741i \(-0.925230\pi\)
0.972539 0.232741i \(-0.0747695\pi\)
\(14\) 0 0
\(15\) 85.7165i 0.0983640i
\(16\) −8.72235 + 1023.96i −0.00851792 + 0.999964i
\(17\) 1492.26i 1.25234i −0.779685 0.626171i \(-0.784621\pi\)
0.779685 0.626171i \(-0.215379\pi\)
\(18\) −1251.89 521.676i −0.910721 0.379507i
\(19\) −2122.13 −1.34862 −0.674308 0.738450i \(-0.735558\pi\)
−0.674308 + 0.738450i \(0.735558\pi\)
\(20\) −1080.61 + 1071.44i −0.604079 + 0.598955i
\(21\) 0 0
\(22\) −958.818 + 2300.92i −0.422357 + 1.01355i
\(23\) 2282.61i 0.899730i 0.893097 + 0.449865i \(0.148528\pi\)
−0.893097 + 0.449865i \(0.851472\pi\)
\(24\) −122.936 302.240i −0.0435662 0.107108i
\(25\) 863.567 0.276341
\(26\) 617.166 1481.04i 0.179048 0.429669i
\(27\) 870.153 0.229713
\(28\) 0 0
\(29\) 1844.20 0.407204 0.203602 0.979054i \(-0.434735\pi\)
0.203602 + 0.979054i \(0.434735\pi\)
\(30\) 186.511 447.580i 0.0378357 0.0907961i
\(31\) −7827.61 −1.46293 −0.731467 0.681877i \(-0.761164\pi\)
−0.731467 + 0.681877i \(0.761164\pi\)
\(32\) −2273.59 + 5327.78i −0.392499 + 0.919753i
\(33\) 794.270i 0.126965i
\(34\) 3247.03 7792.05i 0.481714 1.15599i
\(35\) 0 0
\(36\) −5401.79 5448.00i −0.694675 0.700618i
\(37\) −4035.42 −0.484601 −0.242301 0.970201i \(-0.577902\pi\)
−0.242301 + 0.970201i \(0.577902\pi\)
\(38\) −11081.0 4617.57i −1.24486 0.518745i
\(39\) 511.251i 0.0538236i
\(40\) −7973.90 + 3243.37i −0.787991 + 0.320514i
\(41\) 1848.03i 0.171692i 0.996308 + 0.0858459i \(0.0273593\pi\)
−0.996308 + 0.0858459i \(0.972641\pi\)
\(42\) 0 0
\(43\) 3423.76i 0.282379i 0.989983 + 0.141190i \(0.0450927\pi\)
−0.989983 + 0.141190i \(0.954907\pi\)
\(44\) −10013.2 + 9928.26i −0.779724 + 0.773110i
\(45\) 11401.2i 0.839307i
\(46\) −4966.75 + 11918.9i −0.346081 + 0.830507i
\(47\) 15907.9 1.05043 0.525217 0.850968i \(-0.323984\pi\)
0.525217 + 0.850968i \(0.323984\pi\)
\(48\) 15.7219 1845.68i 0.000984924 0.115625i
\(49\) 0 0
\(50\) 4509.23 + 1879.04i 0.255080 + 0.106295i
\(51\) 2689.79i 0.144808i
\(52\) 6445.23 6390.56i 0.330545 0.327741i
\(53\) −32107.3 −1.57005 −0.785027 0.619462i \(-0.787351\pi\)
−0.785027 + 0.619462i \(0.787351\pi\)
\(54\) 4543.62 + 1893.37i 0.212040 + 0.0883592i
\(55\) −20955.0 −0.934073
\(56\) 0 0
\(57\) 3825.12 0.155940
\(58\) 9629.72 + 4012.81i 0.375875 + 0.156631i
\(59\) −8022.27 −0.300032 −0.150016 0.988684i \(-0.547933\pi\)
−0.150016 + 0.988684i \(0.547933\pi\)
\(60\) 1947.78 1931.26i 0.0698494 0.0692570i
\(61\) 46698.1i 1.60685i 0.595407 + 0.803424i \(0.296991\pi\)
−0.595407 + 0.803424i \(0.703009\pi\)
\(62\) −40872.9 17032.2i −1.35038 0.562718i
\(63\) 0 0
\(64\) −23464.6 + 22872.5i −0.716084 + 0.698015i
\(65\) 13488.2 0.395977
\(66\) 1728.26 4147.38i 0.0488370 0.117196i
\(67\) 53887.8i 1.46657i 0.679921 + 0.733286i \(0.262014\pi\)
−0.679921 + 0.733286i \(0.737986\pi\)
\(68\) 33909.6 33622.0i 0.889304 0.881761i
\(69\) 4114.38i 0.104035i
\(70\) 0 0
\(71\) 16295.5i 0.383639i −0.981430 0.191820i \(-0.938561\pi\)
0.981430 0.191820i \(-0.0614389\pi\)
\(72\) −16351.8 40201.3i −0.371736 0.913921i
\(73\) 20384.0i 0.447695i −0.974624 0.223848i \(-0.928138\pi\)
0.974624 0.223848i \(-0.0718618\pi\)
\(74\) −21071.5 8780.71i −0.447317 0.186402i
\(75\) −1556.57 −0.0319533
\(76\) −47813.4 48222.4i −0.949546 0.957669i
\(77\) 0 0
\(78\) −1112.43 + 2669.56i −0.0207032 + 0.0496825i
\(79\) 44562.4i 0.803343i −0.915784 0.401672i \(-0.868429\pi\)
0.915784 0.401672i \(-0.131571\pi\)
\(80\) −48694.1 414.787i −0.850650 0.00724604i
\(81\) 56691.1 0.960068
\(82\) −4021.15 + 9649.73i −0.0660413 + 0.158482i
\(83\) 44256.0 0.705143 0.352571 0.935785i \(-0.385307\pi\)
0.352571 + 0.935785i \(0.385307\pi\)
\(84\) 0 0
\(85\) 70963.9 1.06534
\(86\) −7449.80 + 17877.6i −0.108617 + 0.260654i
\(87\) −3324.14 −0.0470849
\(88\) −73888.1 + 30053.9i −1.01711 + 0.413708i
\(89\) 39941.0i 0.534495i 0.963628 + 0.267248i \(0.0861141\pi\)
−0.963628 + 0.267248i \(0.913886\pi\)
\(90\) 24808.1 59533.1i 0.322840 0.774733i
\(91\) 0 0
\(92\) −51869.1 + 51429.1i −0.638909 + 0.633490i
\(93\) 14109.2 0.169159
\(94\) 83065.3 + 34614.2i 0.969616 + 0.404049i
\(95\) 100917.i 1.14724i
\(96\) 4098.13 9603.25i 0.0453845 0.106351i
\(97\) 131224.i 1.41607i 0.706178 + 0.708034i \(0.250418\pi\)
−0.706178 + 0.708034i \(0.749582\pi\)
\(98\) 0 0
\(99\) 105647.i 1.08335i
\(100\) 19456.9 + 19623.3i 0.194569 + 0.196233i
\(101\) 98559.5i 0.961380i −0.876890 0.480690i \(-0.840386\pi\)
0.876890 0.480690i \(-0.159614\pi\)
\(102\) −5852.73 + 14045.1i −0.0557004 + 0.133667i
\(103\) 193496. 1.79712 0.898562 0.438846i \(-0.144613\pi\)
0.898562 + 0.438846i \(0.144613\pi\)
\(104\) 47559.9 19344.9i 0.431179 0.175381i
\(105\) 0 0
\(106\) −167653. 69862.6i −1.44926 0.603921i
\(107\) 81994.0i 0.692345i 0.938171 + 0.346173i \(0.112519\pi\)
−0.938171 + 0.346173i \(0.887481\pi\)
\(108\) 19605.3 + 19773.0i 0.161739 + 0.163122i
\(109\) −7310.62 −0.0589370 −0.0294685 0.999566i \(-0.509381\pi\)
−0.0294685 + 0.999566i \(0.509381\pi\)
\(110\) −109419. 45596.1i −0.862208 0.359291i
\(111\) 7273.80 0.0560343
\(112\) 0 0
\(113\) 242851. 1.78913 0.894567 0.446933i \(-0.147484\pi\)
0.894567 + 0.446933i \(0.147484\pi\)
\(114\) 19973.4 + 8323.11i 0.143942 + 0.0599823i
\(115\) −108548. −0.765383
\(116\) 41551.3 + 41906.8i 0.286708 + 0.289161i
\(117\) 68002.1i 0.459259i
\(118\) −41889.4 17455.7i −0.276948 0.115407i
\(119\) 0 0
\(120\) 14372.9 5846.14i 0.0911151 0.0370609i
\(121\) −33123.0 −0.205668
\(122\) −101611. + 243840.i −0.618074 + 1.48322i
\(123\) 3331.05i 0.0198527i
\(124\) −176363. 177871.i −1.03004 1.03885i
\(125\) 189674.i 1.08576i
\(126\) 0 0
\(127\) 139283.i 0.766280i 0.923690 + 0.383140i \(0.125157\pi\)
−0.923690 + 0.383140i \(0.874843\pi\)
\(128\) −172292. + 68375.1i −0.929481 + 0.368870i
\(129\) 6171.29i 0.0326514i
\(130\) 70430.3 + 29349.1i 0.365512 + 0.152313i
\(131\) −374276. −1.90552 −0.952761 0.303722i \(-0.901771\pi\)
−0.952761 + 0.303722i \(0.901771\pi\)
\(132\) 18048.6 17895.6i 0.0901592 0.0893944i
\(133\) 0 0
\(134\) −117255. + 281382.i −0.564117 + 1.35374i
\(135\) 41379.7i 0.195413i
\(136\) 250222. 101777.i 1.16005 0.471850i
\(137\) 274838. 1.25105 0.625526 0.780204i \(-0.284885\pi\)
0.625526 + 0.780204i \(0.284885\pi\)
\(138\) 8952.51 21483.8i 0.0400172 0.0960312i
\(139\) 323870. 1.42178 0.710892 0.703301i \(-0.248291\pi\)
0.710892 + 0.703301i \(0.248291\pi\)
\(140\) 0 0
\(141\) −28673.8 −0.121461
\(142\) 35457.6 85089.3i 0.147567 0.354123i
\(143\) 124985. 0.511113
\(144\) 2091.19 245496.i 0.00840403 0.986594i
\(145\) 87699.9i 0.346401i
\(146\) 44353.8 106438.i 0.172206 0.413251i
\(147\) 0 0
\(148\) −90921.5 91699.3i −0.341202 0.344121i
\(149\) 218474. 0.806185 0.403092 0.915159i \(-0.367935\pi\)
0.403092 + 0.915159i \(0.367935\pi\)
\(150\) −8127.83 3386.95i −0.0294949 0.0122908i
\(151\) 161314.i 0.575743i −0.957669 0.287872i \(-0.907052\pi\)
0.957669 0.287872i \(-0.0929476\pi\)
\(152\) −144736. 355837.i −0.508123 1.24923i
\(153\) 357772.i 1.23560i
\(154\) 0 0
\(155\) 372238.i 1.24449i
\(156\) −11617.4 + 11518.9i −0.0382208 + 0.0378966i
\(157\) 319097.i 1.03318i 0.856234 + 0.516588i \(0.172798\pi\)
−0.856234 + 0.516588i \(0.827202\pi\)
\(158\) 96963.8 232689.i 0.309006 0.741536i
\(159\) 57873.1 0.181545
\(160\) −253360. 108120.i −0.782416 0.333891i
\(161\) 0 0
\(162\) 296020. + 123355.i 0.886203 + 0.369290i
\(163\) 359129.i 1.05872i −0.848397 0.529360i \(-0.822432\pi\)
0.848397 0.529360i \(-0.177568\pi\)
\(164\) −41993.9 + 41637.7i −0.121920 + 0.120886i
\(165\) 37771.1 0.108007
\(166\) 231089. + 96297.1i 0.650891 + 0.271233i
\(167\) 99313.1 0.275560 0.137780 0.990463i \(-0.456003\pi\)
0.137780 + 0.990463i \(0.456003\pi\)
\(168\) 0 0
\(169\) 290844. 0.783326
\(170\) 370547. + 154411.i 0.983380 + 0.409785i
\(171\) 508783. 1.33059
\(172\) −77800.2 + 77140.3i −0.200521 + 0.198820i
\(173\) 200300.i 0.508823i 0.967096 + 0.254411i \(0.0818817\pi\)
−0.967096 + 0.254411i \(0.918118\pi\)
\(174\) −17357.4 7233.03i −0.0434623 0.0181112i
\(175\) 0 0
\(176\) −451211. 3843.52i −1.09799 0.00935293i
\(177\) 14460.1 0.0346926
\(178\) −86907.9 + 208557.i −0.205593 + 0.493372i
\(179\) 49179.8i 0.114724i 0.998353 + 0.0573620i \(0.0182689\pi\)
−0.998353 + 0.0573620i \(0.981731\pi\)
\(180\) 259077. 256880.i 0.596002 0.590947i
\(181\) 211447.i 0.479739i 0.970805 + 0.239869i \(0.0771046\pi\)
−0.970805 + 0.239869i \(0.922895\pi\)
\(182\) 0 0
\(183\) 84172.8i 0.185799i
\(184\) −382746. + 155681.i −0.833425 + 0.338994i
\(185\) 191903.i 0.412241i
\(186\) 73672.9 + 30700.3i 0.156144 + 0.0650668i
\(187\) 657569. 1.37511
\(188\) 358419. + 361485.i 0.739599 + 0.745926i
\(189\) 0 0
\(190\) 219586. 526951.i 0.441287 1.05898i
\(191\) 4755.35i 0.00943189i 0.999989 + 0.00471595i \(0.00150114\pi\)
−0.999989 + 0.00471595i \(0.998499\pi\)
\(192\) 42294.7 41227.5i 0.0828005 0.0807112i
\(193\) 30938.7 0.0597873 0.0298937 0.999553i \(-0.490483\pi\)
0.0298937 + 0.999553i \(0.490483\pi\)
\(194\) −285532. + 685203.i −0.544690 + 1.30712i
\(195\) −24312.3 −0.0457867
\(196\) 0 0
\(197\) 55534.5 0.101952 0.0509762 0.998700i \(-0.483767\pi\)
0.0509762 + 0.998700i \(0.483767\pi\)
\(198\) 229878. 551648.i 0.416710 0.999998i
\(199\) −688941. −1.23324 −0.616622 0.787259i \(-0.711499\pi\)
−0.616622 + 0.787259i \(0.711499\pi\)
\(200\) 58898.1 + 144802.i 0.104118 + 0.255977i
\(201\) 97132.0i 0.169579i
\(202\) 214457. 514641.i 0.369795 0.887414i
\(203\) 0 0
\(204\) −61121.6 + 60603.2i −0.102830 + 0.101958i
\(205\) −87882.2 −0.146055
\(206\) 1.01036e6 + 421029.i 1.65886 + 0.691264i
\(207\) 547258.i 0.887700i
\(208\) 290433. + 2473.97i 0.465465 + 0.00396494i
\(209\) 935121.i 1.48082i
\(210\) 0 0
\(211\) 403122.i 0.623348i 0.950189 + 0.311674i \(0.100890\pi\)
−0.950189 + 0.311674i \(0.899110\pi\)
\(212\) −723405. 729593.i −1.10546 1.11491i
\(213\) 29372.5i 0.0443601i
\(214\) −178411. + 428142.i −0.266311 + 0.639078i
\(215\) −162815. −0.240215
\(216\) 59347.3 + 145907.i 0.0865499 + 0.212785i
\(217\) 0 0
\(218\) −38173.4 15907.3i −0.0544026 0.0226701i
\(219\) 36741.9i 0.0517669i
\(220\) −472134. 476172.i −0.657670 0.663296i
\(221\) −423260. −0.582944
\(222\) 37981.1 + 15827.1i 0.0517232 + 0.0215536i
\(223\) −905280. −1.21905 −0.609524 0.792767i \(-0.708640\pi\)
−0.609524 + 0.792767i \(0.708640\pi\)
\(224\) 0 0
\(225\) −207041. −0.272647
\(226\) 1.26808e6 + 528421.i 1.65148 + 0.688191i
\(227\) 136157. 0.175378 0.0876889 0.996148i \(-0.472052\pi\)
0.0876889 + 0.996148i \(0.472052\pi\)
\(228\) 86183.1 + 86920.4i 0.109796 + 0.110735i
\(229\) 106577.i 0.134300i −0.997743 0.0671498i \(-0.978609\pi\)
0.997743 0.0671498i \(-0.0213905\pi\)
\(230\) −566800. 236191.i −0.706497 0.294405i
\(231\) 0 0
\(232\) 125780. + 309234.i 0.153424 + 0.377196i
\(233\) −137442. −0.165855 −0.0829276 0.996556i \(-0.526427\pi\)
−0.0829276 + 0.996556i \(0.526427\pi\)
\(234\) −147966. + 355082.i −0.176654 + 0.423925i
\(235\) 756494.i 0.893585i
\(236\) −180749. 182295.i −0.211249 0.213056i
\(237\) 80323.2i 0.0928903i
\(238\) 0 0
\(239\) 438994.i 0.497122i 0.968616 + 0.248561i \(0.0799577\pi\)
−0.968616 + 0.248561i \(0.920042\pi\)
\(240\) 87770.5 + 747.649i 0.0983604 + 0.000837857i
\(241\) 1.03937e6i 1.15273i −0.817192 0.576365i \(-0.804471\pi\)
0.817192 0.576365i \(-0.195529\pi\)
\(242\) −172956. 72072.7i −0.189844 0.0791102i
\(243\) −313632. −0.340726
\(244\) −1.06115e6 + 1.05215e6i −1.14104 + 1.13136i
\(245\) 0 0
\(246\) 7248.07 17393.5i 0.00763633 0.0183253i
\(247\) 601913.i 0.627757i
\(248\) −533869. 1.31253e6i −0.551195 1.35512i
\(249\) −79770.9 −0.0815354
\(250\) −412714. + 990410.i −0.417637 + 1.00222i
\(251\) −856358. −0.857968 −0.428984 0.903312i \(-0.641128\pi\)
−0.428984 + 0.903312i \(0.641128\pi\)
\(252\) 0 0
\(253\) −1.00584e6 −0.987929
\(254\) −303066. + 727282.i −0.294749 + 0.707324i
\(255\) −127912. −0.123185
\(256\) −1.04842e6 17862.7i −0.999855 0.0170352i
\(257\) 1.13713e6i 1.07394i −0.843602 0.536968i \(-0.819569\pi\)
0.843602 0.536968i \(-0.180431\pi\)
\(258\) 13428.2 32224.2i 0.0125594 0.0301393i
\(259\) 0 0
\(260\) 303900. + 306500.i 0.278803 + 0.281188i
\(261\) −442148. −0.401760
\(262\) −1.95433e6 814391.i −1.75892 0.732959i
\(263\) 1.69566e6i 1.51165i 0.654776 + 0.755823i \(0.272763\pi\)
−0.654776 + 0.755823i \(0.727237\pi\)
\(264\) 133182. 54171.8i 0.117608 0.0478369i
\(265\) 1.52685e6i 1.33561i
\(266\) 0 0
\(267\) 71993.1i 0.0618035i
\(268\) −1.22452e6 + 1.21414e6i −1.04143 + 1.03260i
\(269\) 1.11664e6i 0.940872i 0.882434 + 0.470436i \(0.155903\pi\)
−0.882434 + 0.470436i \(0.844097\pi\)
\(270\) −90038.5 + 216070.i −0.0751655 + 0.180378i
\(271\) −1.22705e6 −1.01494 −0.507470 0.861669i \(-0.669419\pi\)
−0.507470 + 0.861669i \(0.669419\pi\)
\(272\) 1.52802e6 + 13016.0i 1.25230 + 0.0106674i
\(273\) 0 0
\(274\) 1.43510e6 + 598022.i 1.15480 + 0.481217i
\(275\) 380532.i 0.303431i
\(276\) 93493.4 92700.4i 0.0738768 0.0732502i
\(277\) −842504. −0.659740 −0.329870 0.944026i \(-0.607005\pi\)
−0.329870 + 0.944026i \(0.607005\pi\)
\(278\) 1.69113e6 + 704712.i 1.31240 + 0.546889i
\(279\) 1.87668e6 1.44337
\(280\) 0 0
\(281\) −2.05076e6 −1.54935 −0.774675 0.632359i \(-0.782087\pi\)
−0.774675 + 0.632359i \(0.782087\pi\)
\(282\) −149724. 62391.7i −0.112116 0.0467201i
\(283\) −1.28614e6 −0.954604 −0.477302 0.878739i \(-0.658385\pi\)
−0.477302 + 0.878739i \(0.658385\pi\)
\(284\) 370293. 367152.i 0.272427 0.270116i
\(285\) 181902.i 0.132655i
\(286\) 652624. + 271956.i 0.471789 + 0.196600i
\(287\) 0 0
\(288\) 545097. 1.27734e6i 0.387251 0.907455i
\(289\) −806994. −0.568363
\(290\) −190827. + 457937.i −0.133243 + 0.319750i
\(291\) 236530.i 0.163739i
\(292\) 463198. 459269.i 0.317914 0.315217i
\(293\) 1.56244e6i 1.06325i −0.846981 0.531623i \(-0.821582\pi\)
0.846981 0.531623i \(-0.178418\pi\)
\(294\) 0 0
\(295\) 381495.i 0.255232i
\(296\) −275229. 676656.i −0.182585 0.448889i
\(297\) 383434.i 0.252232i
\(298\) 1.14079e6 + 475380.i 0.744159 + 0.310099i
\(299\) 647431. 0.418808
\(300\) −35070.8 35370.8i −0.0224979 0.0226904i
\(301\) 0 0
\(302\) 351004. 842320.i 0.221460 0.531447i
\(303\) 177652.i 0.111164i
\(304\) 18510.0 2.17298e6i 0.0114874 1.34857i
\(305\) −2.22071e6 −1.36692
\(306\) −778479. + 1.86815e6i −0.475273 + 1.14054i
\(307\) −1.33011e6 −0.805456 −0.402728 0.915320i \(-0.631938\pi\)
−0.402728 + 0.915320i \(0.631938\pi\)
\(308\) 0 0
\(309\) −348774. −0.207801
\(310\) 809956. 1.94369e6i 0.478693 1.14874i
\(311\) 1.17071e6 0.686357 0.343178 0.939270i \(-0.388496\pi\)
0.343178 + 0.939270i \(0.388496\pi\)
\(312\) −85726.1 + 34869.0i −0.0498571 + 0.0202793i
\(313\) 2715.41i 0.00156666i 1.00000 0.000783329i \(0.000249341\pi\)
−1.00000 0.000783329i \(0.999751\pi\)
\(314\) −694327. + 1.66621e6i −0.397411 + 0.953686i
\(315\) 0 0
\(316\) 1.01262e6 1.00403e6i 0.570464 0.565625i
\(317\) 698795. 0.390572 0.195286 0.980746i \(-0.437436\pi\)
0.195286 + 0.980746i \(0.437436\pi\)
\(318\) 302192. + 125926.i 0.167577 + 0.0698312i
\(319\) 812649.i 0.447122i
\(320\) −1.08769e6 1.11585e6i −0.593788 0.609159i
\(321\) 147793.i 0.0800556i
\(322\) 0 0
\(323\) 3.16678e6i 1.68893i
\(324\) 1.27730e6 + 1.28822e6i 0.675973 + 0.681756i
\(325\) 244939.i 0.128632i
\(326\) 781432. 1.87524e6i 0.407237 0.977265i
\(327\) 13177.3 0.00681487
\(328\) −309876. + 126042.i −0.159039 + 0.0646889i
\(329\) 0 0
\(330\) 197227. + 82186.5i 0.0996968 + 0.0415447i
\(331\) 1.37663e6i 0.690632i 0.938486 + 0.345316i \(0.112228\pi\)
−0.938486 + 0.345316i \(0.887772\pi\)
\(332\) 997125. + 1.00566e6i 0.496483 + 0.500730i
\(333\) 967497. 0.478122
\(334\) 518576. + 216096.i 0.254359 + 0.105994i
\(335\) −2.56261e6 −1.24758
\(336\) 0 0
\(337\) −776941. −0.372660 −0.186330 0.982487i \(-0.559659\pi\)
−0.186330 + 0.982487i \(0.559659\pi\)
\(338\) 1.51868e6 + 632849.i 0.723059 + 0.301306i
\(339\) −437735. −0.206877
\(340\) 1.59888e6 + 1.61255e6i 0.750097 + 0.756514i
\(341\) 3.44925e6i 1.60634i
\(342\) 2.65668e6 + 1.10707e6i 1.22821 + 0.511810i
\(343\) 0 0
\(344\) −574094. + 233512.i −0.261569 + 0.106393i
\(345\) 195657. 0.0885010
\(346\) −435835. + 1.04589e6i −0.195719 + 0.469675i
\(347\) 4.34258e6i 1.93608i −0.250791 0.968041i \(-0.580691\pi\)
0.250791 0.968041i \(-0.419309\pi\)
\(348\) −74895.8 75536.5i −0.0331520 0.0334356i
\(349\) 123357.i 0.0542127i 0.999633 + 0.0271063i \(0.00862927\pi\)
−0.999633 + 0.0271063i \(0.991371\pi\)
\(350\) 0 0
\(351\) 246807.i 0.106927i
\(352\) −2.34769e6 1.00186e6i −1.00992 0.430975i
\(353\) 2.16756e6i 0.925837i 0.886401 + 0.462918i \(0.153198\pi\)
−0.886401 + 0.462918i \(0.846802\pi\)
\(354\) 75505.0 + 31463.8i 0.0320234 + 0.0133445i
\(355\) 774927. 0.326355
\(356\) −907602. + 899904.i −0.379551 + 0.376332i
\(357\) 0 0
\(358\) −107011. + 256799.i −0.0441286 + 0.105897i
\(359\) 4.66927e6i 1.91211i −0.293185 0.956056i \(-0.594715\pi\)
0.293185 0.956056i \(-0.405285\pi\)
\(360\) 1.91175e6 777602.i 0.777455 0.316229i
\(361\) 2.02735e6 0.818766
\(362\) −460089. + 1.10410e6i −0.184531 + 0.442829i
\(363\) 59703.8 0.0237813
\(364\) 0 0
\(365\) 969352. 0.380846
\(366\) 183152. 439519.i 0.0714677 0.171504i
\(367\) 3.92657e6 1.52177 0.760884 0.648888i \(-0.224766\pi\)
0.760884 + 0.648888i \(0.224766\pi\)
\(368\) −2.33731e6 19909.7i −0.899697 0.00766383i
\(369\) 443067.i 0.169396i
\(370\) 417563. 1.00204e6i 0.158569 0.380525i
\(371\) 0 0
\(372\) 317891. + 320611.i 0.119103 + 0.120122i
\(373\) 1.19566e6 0.444975 0.222488 0.974935i \(-0.428582\pi\)
0.222488 + 0.974935i \(0.428582\pi\)
\(374\) 3.43358e6 + 1.43081e6i 1.26931 + 0.528936i
\(375\) 341886.i 0.125546i
\(376\) 1.08497e6 + 2.66743e6i 0.395776 + 0.973023i
\(377\) 523081.i 0.189546i
\(378\) 0 0
\(379\) 2.70264e6i 0.966473i −0.875490 0.483237i \(-0.839461\pi\)
0.875490 0.483237i \(-0.160539\pi\)
\(380\) 2.29320e6 2.27374e6i 0.814671 0.807761i
\(381\) 251055.i 0.0886046i
\(382\) −10347.2 + 24830.7i −0.00362798 + 0.00870622i
\(383\) −2.02959e6 −0.706986 −0.353493 0.935437i \(-0.615006\pi\)
−0.353493 + 0.935437i \(0.615006\pi\)
\(384\) 310555. 123245.i 0.107476 0.0426523i
\(385\) 0 0
\(386\) 161551. + 67319.8i 0.0551874 + 0.0229972i
\(387\) 820851.i 0.278604i
\(388\) −2.98188e6 + 2.95659e6i −1.00557 + 0.997037i
\(389\) 3.88740e6 1.30252 0.651261 0.758854i \(-0.274241\pi\)
0.651261 + 0.758854i \(0.274241\pi\)
\(390\) −126950. 52901.3i −0.0422640 0.0176118i
\(391\) 3.40626e6 1.12677
\(392\) 0 0
\(393\) 674628. 0.220335
\(394\) 289981. + 120838.i 0.0941084 + 0.0392160i
\(395\) 2.11915e6 0.683389
\(396\) 2.40067e6 2.38031e6i 0.769298 0.762773i
\(397\) 4.31496e6i 1.37404i 0.726636 + 0.687022i \(0.241083\pi\)
−0.726636 + 0.687022i \(0.758917\pi\)
\(398\) −3.59739e6 1.49907e6i −1.13836 0.474367i
\(399\) 0 0
\(400\) −7532.34 + 884261.i −0.00235385 + 0.276331i
\(401\) −2.39818e6 −0.744769 −0.372385 0.928079i \(-0.621460\pi\)
−0.372385 + 0.928079i \(0.621460\pi\)
\(402\) 211350. 507188.i 0.0652286 0.156532i
\(403\) 2.22019e6i 0.680970i
\(404\) 2.23963e6 2.22063e6i 0.682688 0.676897i
\(405\) 2.69592e6i 0.816712i
\(406\) 0 0
\(407\) 1.77822e6i 0.532107i
\(408\) −451021. + 183452.i −0.134136 + 0.0545598i
\(409\) 3.21957e6i 0.951678i 0.879532 + 0.475839i \(0.157856\pi\)
−0.879532 + 0.475839i \(0.842144\pi\)
\(410\) −458889. 191224.i −0.134818 0.0561801i
\(411\) −495392. −0.144659
\(412\) 4.35962e6 + 4.39691e6i 1.26534 + 1.27616i
\(413\) 0 0
\(414\) 1.19078e6 2.85758e6i 0.341454 0.819403i
\(415\) 2.10457e6i 0.599852i
\(416\) 1.51115e6 + 644874.i 0.428129 + 0.182701i
\(417\) −583772. −0.164400
\(418\) 2.03474e6 4.88286e6i 0.569597 1.36689i
\(419\) 3.84140e6 1.06894 0.534472 0.845186i \(-0.320510\pi\)
0.534472 + 0.845186i \(0.320510\pi\)
\(420\) 0 0
\(421\) 2.57965e6 0.709342 0.354671 0.934991i \(-0.384593\pi\)
0.354671 + 0.934991i \(0.384593\pi\)
\(422\) −877158. + 2.10496e6i −0.239771 + 0.575389i
\(423\) −3.81394e6 −1.03639
\(424\) −2.18982e6 5.38373e6i −0.591554 1.45435i
\(425\) 1.28867e6i 0.346074i
\(426\) −63911.9 + 153372.i −0.0170631 + 0.0409471i
\(427\) 0 0
\(428\) −1.86320e6 + 1.84739e6i −0.491643 + 0.487472i
\(429\) −225284. −0.0590998
\(430\) −850162. 354272.i −0.221733 0.0923986i
\(431\) 837370.i 0.217132i −0.994089 0.108566i \(-0.965374\pi\)
0.994089 0.108566i \(-0.0346259\pi\)
\(432\) −7589.78 + 891004.i −0.00195668 + 0.229705i
\(433\) 2.31098e6i 0.592348i 0.955134 + 0.296174i \(0.0957108\pi\)
−0.955134 + 0.296174i \(0.904289\pi\)
\(434\) 0 0
\(435\) 158078.i 0.0400542i
\(436\) −164715. 166124.i −0.0414969 0.0418519i
\(437\) 4.84400e6i 1.21339i
\(438\) −79947.1 + 191853.i −0.0199121 + 0.0477841i
\(439\) 837534. 0.207416 0.103708 0.994608i \(-0.466929\pi\)
0.103708 + 0.994608i \(0.466929\pi\)
\(440\) −1.42920e6 3.51372e6i −0.351934 0.865237i
\(441\) 0 0
\(442\) −2.21011e6 920975.i −0.538093 0.224229i
\(443\) 3.24790e6i 0.786310i 0.919472 + 0.393155i \(0.128616\pi\)
−0.919472 + 0.393155i \(0.871384\pi\)
\(444\) 163885. + 165287.i 0.0394531 + 0.0397906i
\(445\) −1.89937e6 −0.454685
\(446\) −4.72704e6 1.96981e6i −1.12526 0.468907i
\(447\) −393797. −0.0932188
\(448\) 0 0
\(449\) −4.27089e6 −0.999776 −0.499888 0.866090i \(-0.666626\pi\)
−0.499888 + 0.866090i \(0.666626\pi\)
\(450\) −1.08109e6 450503.i −0.251670 0.104874i
\(451\) −814338. −0.188523
\(452\) 5.47163e6 + 5.51843e6i 1.25971 + 1.27049i
\(453\) 290766.i 0.0665730i
\(454\) 710961. + 296265.i 0.161885 + 0.0674591i
\(455\) 0 0
\(456\) 260886. + 641393.i 0.0587541 + 0.144448i
\(457\) 7.91259e6 1.77226 0.886131 0.463434i \(-0.153383\pi\)
0.886131 + 0.463434i \(0.153383\pi\)
\(458\) 231902. 556505.i 0.0516583 0.123967i
\(459\) 1.29850e6i 0.287680i
\(460\) −2.44569e6 2.46661e6i −0.538898 0.543508i
\(461\) 1.83353e6i 0.401824i 0.979609 + 0.200912i \(0.0643906\pi\)
−0.979609 + 0.200912i \(0.935609\pi\)
\(462\) 0 0
\(463\) 218753.i 0.0474245i −0.999719 0.0237122i \(-0.992451\pi\)
0.999719 0.0237122i \(-0.00754855\pi\)
\(464\) −16085.7 + 1.88839e6i −0.00346853 + 0.407190i
\(465\) 670955.i 0.143900i
\(466\) −717670. 299061.i −0.153095 0.0637962i
\(467\) −1.75614e6 −0.372621 −0.186310 0.982491i \(-0.559653\pi\)
−0.186310 + 0.982491i \(0.559653\pi\)
\(468\) −1.54525e6 + 1.53214e6i −0.326125 + 0.323359i
\(469\) 0 0
\(470\) −1.64606e6 + 3.95013e6i −0.343717 + 0.824834i
\(471\) 575169.i 0.119466i
\(472\) −547145. 1.34517e6i −0.113044 0.277921i
\(473\) −1.50869e6 −0.310061
\(474\) −174776. + 419418.i −0.0357303 + 0.0857436i
\(475\) −1.83260e6 −0.372679
\(476\) 0 0
\(477\) 7.69776e6 1.54906
\(478\) −955210. + 2.29226e6i −0.191218 + 0.458875i
\(479\) −1.45354e6 −0.289459 −0.144730 0.989471i \(-0.546231\pi\)
−0.144730 + 0.989471i \(0.546231\pi\)
\(480\) 456678. + 194884.i 0.0904705 + 0.0386077i
\(481\) 1.14459e6i 0.225573i
\(482\) 2.26158e6 5.42721e6i 0.443398 1.06404i
\(483\) 0 0
\(484\) −746290. 752674.i −0.144808 0.146047i
\(485\) −6.24030e6 −1.20462
\(486\) −1.63767e6 682435.i −0.314511 0.131060i
\(487\) 3.22703e6i 0.616568i −0.951294 0.308284i \(-0.900245\pi\)
0.951294 0.308284i \(-0.0997547\pi\)
\(488\) −7.83030e6 + 3.18496e6i −1.48843 + 0.605418i
\(489\) 647325.i 0.122419i
\(490\) 0 0
\(491\) 5.93538e6i 1.11108i 0.831490 + 0.555540i \(0.187488\pi\)
−0.831490 + 0.555540i \(0.812512\pi\)
\(492\) 75693.5 75051.4i 0.0140976 0.0139780i
\(493\) 2.75203e6i 0.509960i
\(494\) −1.30971e6 + 3.14297e6i −0.241467 + 0.579459i
\(495\) 5.02398e6 0.921584
\(496\) 68275.1 8.01518e6i 0.0124612 1.46288i
\(497\) 0 0
\(498\) −416534. 173574.i −0.0752623 0.0313626i
\(499\) 6.13417e6i 1.10282i −0.834235 0.551409i \(-0.814090\pi\)
0.834235 0.551409i \(-0.185910\pi\)
\(500\) −4.31008e6 + 4.27352e6i −0.771011 + 0.764471i
\(501\) −179011. −0.0318629
\(502\) −4.47158e6 1.86336e6i −0.791958 0.330017i
\(503\) −1.32110e6 −0.232818 −0.116409 0.993201i \(-0.537138\pi\)
−0.116409 + 0.993201i \(0.537138\pi\)
\(504\) 0 0
\(505\) 4.68695e6 0.817828
\(506\) −5.25210e6 2.18861e6i −0.911921 0.380007i
\(507\) −524242. −0.0905757
\(508\) −3.16500e6 + 3.13815e6i −0.544144 + 0.539529i
\(509\) 6.26550e6i 1.07192i 0.844244 + 0.535958i \(0.180050\pi\)
−0.844244 + 0.535958i \(0.819950\pi\)
\(510\) −667907. 278324.i −0.113708 0.0473833i
\(511\) 0 0
\(512\) −5.43561e6 2.37455e6i −0.916376 0.400319i
\(513\) −1.84658e6 −0.309795
\(514\) 2.47430e6 5.93769e6i 0.413090 0.991311i
\(515\) 9.20159e6i 1.52878i
\(516\) 140234. 139044.i 0.0231862 0.0229895i
\(517\) 7.00985e6i 1.15341i
\(518\) 0 0
\(519\) 361039.i 0.0588350i
\(520\) 919938. + 2.26169e6i 0.149194 + 0.366796i
\(521\) 1.14739e6i 0.185190i 0.995704 + 0.0925949i \(0.0295162\pi\)
−0.995704 + 0.0925949i \(0.970484\pi\)
\(522\) −2.30873e6 962074.i −0.370850 0.154537i
\(523\) 5.24592e6 0.838624 0.419312 0.907842i \(-0.362271\pi\)
0.419312 + 0.907842i \(0.362271\pi\)
\(524\) −8.43276e6 8.50489e6i −1.34166 1.35313i
\(525\) 0 0
\(526\) −3.68961e6 + 8.85412e6i −0.581454 + 1.39534i
\(527\) 1.16809e7i 1.83210i
\(528\) 813303. + 6927.90i 0.126960 + 0.00108148i
\(529\) 1.22604e6 0.190486
\(530\) 3.32228e6 7.97264e6i 0.513744 1.23286i
\(531\) 1.92335e6 0.296020
\(532\) 0 0
\(533\) 524168. 0.0799195
\(534\) 156650. 375921.i 0.0237727 0.0570485i
\(535\) −3.89919e6 −0.588965
\(536\) −9.03586e6 + 3.67532e6i −1.35849 + 0.552565i
\(537\) 88646.0i 0.0132655i
\(538\) −2.42970e6 + 5.83066e6i −0.361907 + 0.868484i
\(539\) 0 0
\(540\) −940295. + 932320.i −0.138765 + 0.137588i
\(541\) 3.53916e6 0.519885 0.259943 0.965624i \(-0.416296\pi\)
0.259943 + 0.965624i \(0.416296\pi\)
\(542\) −6.40722e6 2.66996e6i −0.936854 0.390397i
\(543\) 381130.i 0.0554720i
\(544\) 7.95045e6 + 3.39280e6i 1.15185 + 0.491543i
\(545\) 347653.i 0.0501366i
\(546\) 0 0
\(547\) 1.25811e7i 1.79783i −0.438121 0.898916i \(-0.644356\pi\)
0.438121 0.898916i \(-0.355644\pi\)
\(548\) 6.19233e6 + 6.24530e6i 0.880851 + 0.888386i
\(549\) 1.11959e7i 1.58536i
\(550\) −828004. + 1.98700e6i −0.116715 + 0.280086i
\(551\) −3.91363e6 −0.549163
\(552\) 689895. 280614.i 0.0963686 0.0391978i
\(553\) 0 0
\(554\) −4.39925e6 1.83321e6i −0.608981 0.253769i
\(555\) 345902.i 0.0476673i
\(556\) 7.29707e6 + 7.35949e6i 1.00106 + 1.00963i
\(557\) 1.67910e6 0.229318 0.114659 0.993405i \(-0.463422\pi\)
0.114659 + 0.993405i \(0.463422\pi\)
\(558\) 9.79931e6 + 4.08348e6i 1.33233 + 0.555194i
\(559\) 971103. 0.131443
\(560\) 0 0
\(561\) −1.18526e6 −0.159003
\(562\) −1.07083e7 4.46227e6i −1.43015 0.595958i
\(563\) −3.94833e6 −0.524980 −0.262490 0.964935i \(-0.584544\pi\)
−0.262490 + 0.964935i \(0.584544\pi\)
\(564\) −646046. 651572.i −0.0855196 0.0862511i
\(565\) 1.15486e7i 1.52198i
\(566\) −6.71576e6 2.79853e6i −0.881159 0.367188i
\(567\) 0 0
\(568\) 2.73242e6 1.11141e6i 0.355367 0.144545i
\(569\) 869064. 0.112531 0.0562654 0.998416i \(-0.482081\pi\)
0.0562654 + 0.998416i \(0.482081\pi\)
\(570\) −395801. + 949823.i −0.0510258 + 0.122449i
\(571\) 1.87664e6i 0.240874i −0.992721 0.120437i \(-0.961570\pi\)
0.992721 0.120437i \(-0.0384296\pi\)
\(572\) 2.81601e6 + 2.84010e6i 0.359869 + 0.362948i
\(573\) 8571.45i 0.00109061i
\(574\) 0 0
\(575\) 1.97119e6i 0.248633i
\(576\) 5.62567e6 5.48372e6i 0.706509 0.688682i
\(577\) 3.46225e6i 0.432932i −0.976290 0.216466i \(-0.930547\pi\)
0.976290 0.216466i \(-0.0694530\pi\)
\(578\) −4.21382e6 1.75595e6i −0.524635 0.218621i
\(579\) −55766.7 −0.00691319
\(580\) −1.99286e6 + 1.97595e6i −0.245984 + 0.243897i
\(581\) 0 0
\(582\) 514667. 1.23507e6i 0.0629824 0.151142i
\(583\) 1.41481e7i 1.72396i
\(584\) 3.41798e6 1.39026e6i 0.414703 0.168680i
\(585\) −3.23381e6 −0.390683
\(586\) 3.39972e6 8.15847e6i 0.408977 0.981442i
\(587\) −3.18312e6 −0.381292 −0.190646 0.981659i \(-0.561058\pi\)
−0.190646 + 0.981659i \(0.561058\pi\)
\(588\) 0 0
\(589\) 1.66112e7 1.97294
\(590\) 830099. 1.99203e6i 0.0981748 0.235595i
\(591\) −100100. −0.0117887
\(592\) 35198.4 4.13212e6i 0.00412780 0.484584i
\(593\) 1.97523e6i 0.230665i −0.993327 0.115332i \(-0.963207\pi\)
0.993327 0.115332i \(-0.0367933\pi\)
\(594\) −834318. + 2.00215e6i −0.0970210 + 0.232826i
\(595\) 0 0
\(596\) 4.92241e6 + 4.96452e6i 0.567626 + 0.572481i
\(597\) 1.24181e6 0.142600
\(598\) 3.38064e6 + 1.40875e6i 0.386586 + 0.161095i
\(599\) 6.42535e6i 0.731695i 0.930675 + 0.365847i \(0.119221\pi\)
−0.930675 + 0.365847i \(0.880779\pi\)
\(600\) −106163. 261004.i −0.0120391 0.0295985i
\(601\) 1.27820e7i 1.44349i −0.692159 0.721745i \(-0.743340\pi\)
0.692159 0.721745i \(-0.256660\pi\)
\(602\) 0 0
\(603\) 1.29196e7i 1.44696i
\(604\) 3.66562e6 3.63453e6i 0.408842 0.405374i
\(605\) 1.57515e6i 0.174958i
\(606\) −386555. + 927635.i −0.0427593 + 0.102611i
\(607\) 1.25033e7 1.37737 0.688687 0.725059i \(-0.258188\pi\)
0.688687 + 0.725059i \(0.258188\pi\)
\(608\) 4.82487e6 1.13062e7i 0.529330 1.24039i
\(609\) 0 0
\(610\) −1.15957e7 4.83206e6i −1.26175 0.525784i
\(611\) 4.51206e6i 0.488959i
\(612\) −8.12986e6 + 8.06090e6i −0.877414 + 0.869971i
\(613\) 7.68180e6 0.825680 0.412840 0.910804i \(-0.364537\pi\)
0.412840 + 0.910804i \(0.364537\pi\)
\(614\) −6.94534e6 2.89420e6i −0.743486 0.309818i
\(615\) 158407. 0.0168883
\(616\) 0 0
\(617\) −1.48453e7 −1.56991 −0.784956 0.619552i \(-0.787314\pi\)
−0.784956 + 0.619552i \(0.787314\pi\)
\(618\) −1.82117e6 758900.i −0.191813 0.0799306i
\(619\) 8.42082e6 0.883340 0.441670 0.897178i \(-0.354386\pi\)
0.441670 + 0.897178i \(0.354386\pi\)
\(620\) 8.45859e6 8.38684e6i 0.883728 0.876232i
\(621\) 1.98622e6i 0.206680i
\(622\) 6.11303e6 + 2.54737e6i 0.633550 + 0.264007i
\(623\) 0 0
\(624\) −523502. 4459.31i −0.0538216 0.000458465i
\(625\) −6.32123e6 −0.647294
\(626\) −5908.48 + 14178.8i −0.000602615 + 0.00144612i
\(627\) 1.68555e6i 0.171227i
\(628\) −7.25104e6 + 7.18953e6i −0.733670 + 0.727447i
\(629\) 6.02192e6i 0.606887i
\(630\) 0 0
\(631\) 1.38513e7i 1.38489i 0.721470 + 0.692446i \(0.243467\pi\)
−0.721470 + 0.692446i \(0.756533\pi\)
\(632\) 7.47219e6 3.03930e6i 0.744141 0.302678i
\(633\) 726623.i 0.0720775i
\(634\) 3.64885e6 + 1.52051e6i 0.360523 + 0.150234i
\(635\) −6.62351e6 −0.651860
\(636\) 1.30393e6 + 1.31508e6i 0.127824 + 0.128917i
\(637\) 0 0
\(638\) −1.76825e6 + 4.24335e6i −0.171986 + 0.412722i
\(639\) 3.90687e6i 0.378510i
\(640\) −3.25154e6 8.19327e6i −0.313790 0.790692i
\(641\) −1.19731e7 −1.15097 −0.575483 0.817813i \(-0.695186\pi\)
−0.575483 + 0.817813i \(0.695186\pi\)
\(642\) 321584. 771721.i 0.0307934 0.0738963i
\(643\) 8.56267e6 0.816736 0.408368 0.912817i \(-0.366098\pi\)
0.408368 + 0.912817i \(0.366098\pi\)
\(644\) 0 0
\(645\) 293473. 0.0277759
\(646\) −6.89063e6 + 1.65358e7i −0.649647 + 1.55899i
\(647\) −4.07023e6 −0.382260 −0.191130 0.981565i \(-0.561215\pi\)
−0.191130 + 0.981565i \(0.561215\pi\)
\(648\) 3.86652e6 + 9.50591e6i 0.361728 + 0.889316i
\(649\) 3.53503e6i 0.329444i
\(650\) 532965. 1.27898e6i 0.0494783 0.118735i
\(651\) 0 0
\(652\) 8.16069e6 8.09148e6i 0.751810 0.745433i
\(653\) 2.26308e6 0.207690 0.103845 0.994593i \(-0.466885\pi\)
0.103845 + 0.994593i \(0.466885\pi\)
\(654\) 68807.1 + 28672.6i 0.00629055 + 0.00262134i
\(655\) 1.77985e7i 1.62099i
\(656\) −1.89232e6 16119.2i −0.171686 0.00146246i
\(657\) 4.88709e6i 0.441710i
\(658\) 0 0
\(659\) 1.26265e7i 1.13258i 0.824205 + 0.566292i \(0.191623\pi\)
−0.824205 + 0.566292i \(0.808377\pi\)
\(660\) 851015. + 858295.i 0.0760462 + 0.0766967i
\(661\) 1.92975e7i 1.71790i 0.512060 + 0.858949i \(0.328882\pi\)
−0.512060 + 0.858949i \(0.671118\pi\)
\(662\) −2.99542e6 + 7.18825e6i −0.265652 + 0.637497i
\(663\) 762921. 0.0674056
\(664\) 3.01841e6 + 7.42081e6i 0.265679 + 0.653178i
\(665\) 0 0
\(666\) 5.05191e6 + 2.10518e6i 0.441337 + 0.183910i
\(667\) 4.20958e6i 0.366374i
\(668\) 2.23761e6 + 2.25675e6i 0.194018 + 0.195678i
\(669\) 1.63176e6 0.140958
\(670\) −1.33810e7 5.57600e6i −1.15160 0.479883i
\(671\) −2.05776e7 −1.76437
\(672\) 0 0
\(673\) −2.00592e6 −0.170717 −0.0853583 0.996350i \(-0.527203\pi\)
−0.0853583 + 0.996350i \(0.527203\pi\)
\(674\) −4.05690e6 1.69055e6i −0.343989 0.143344i
\(675\) 751435. 0.0634793
\(676\) 6.55295e6 + 6.60901e6i 0.551531 + 0.556249i
\(677\) 1.97697e7i 1.65779i −0.559406 0.828894i \(-0.688971\pi\)
0.559406 0.828894i \(-0.311029\pi\)
\(678\) −2.28569e6 952472.i −0.190960 0.0795752i
\(679\) 0 0
\(680\) 4.83997e6 + 1.18992e7i 0.401394 + 0.986835i
\(681\) −245421. −0.0202789
\(682\) 7.50525e6 1.80107e7i 0.617880 1.48276i
\(683\) 3.00078e6i 0.246140i −0.992398 0.123070i \(-0.960726\pi\)
0.992398 0.123070i \(-0.0392740\pi\)
\(684\) 1.14633e7 + 1.15614e7i 0.936850 + 0.944864i
\(685\) 1.30698e7i 1.06425i
\(686\) 0 0
\(687\) 192104.i 0.0155290i
\(688\) −3.50581e6 29863.3i −0.282369 0.00240528i
\(689\) 9.10680e6i 0.730832i
\(690\) 1.02165e6 + 425732.i 0.0816919 + 0.0340419i
\(691\) −1.05751e7 −0.842539 −0.421269 0.906936i \(-0.638415\pi\)
−0.421269 + 0.906936i \(0.638415\pi\)
\(692\) −4.55154e6 + 4.51293e6i −0.361321 + 0.358256i
\(693\) 0 0
\(694\) 9.44905e6 2.26753e7i 0.744714 1.78713i
\(695\) 1.54015e7i 1.20949i
\(696\) −226718. 557390.i −0.0177403 0.0436150i
\(697\) 2.75775e6 0.215017
\(698\) −268414. + 644125.i −0.0208529 + 0.0500417i
\(699\) 247737. 0.0191778
\(700\) 0 0
\(701\) −5.89982e6 −0.453465 −0.226733 0.973957i \(-0.572804\pi\)
−0.226733 + 0.973957i \(0.572804\pi\)
\(702\) 537029. 1.28873e6i 0.0411297 0.0987008i
\(703\) 8.56370e6 0.653542
\(704\) −1.00788e7 1.03397e7i −0.766440 0.786281i
\(705\) 1.36357e6i 0.103325i
\(706\) −4.71641e6 + 1.13182e7i −0.356123 + 0.854605i
\(707\) 0 0
\(708\) 325797. + 328584.i 0.0244267 + 0.0246356i
\(709\) 2.09040e7 1.56176 0.780881 0.624680i \(-0.214771\pi\)
0.780881 + 0.624680i \(0.214771\pi\)
\(710\) 4.04638e6 + 1.68617e6i 0.301246 + 0.125532i
\(711\) 1.06839e7i 0.792602i
\(712\) −6.69727e6 + 2.72411e6i −0.495106 + 0.201384i
\(713\) 1.78674e7i 1.31625i
\(714\) 0 0
\(715\) 5.94359e6i 0.434794i
\(716\) −1.11754e6 + 1.10806e6i −0.0814669 + 0.0807759i
\(717\) 791280.i 0.0574821i
\(718\) 1.01599e7 2.43812e7i 0.735494 1.76500i
\(719\) −9.04694e6 −0.652648 −0.326324 0.945258i \(-0.605810\pi\)
−0.326324 + 0.945258i \(0.605810\pi\)
\(720\) 1.16745e7 + 99445.7i 0.839277 + 0.00714915i
\(721\) 0 0
\(722\) 1.05861e7 + 4.41132e6i 0.755773 + 0.314938i
\(723\) 1.87345e6i 0.133290i
\(724\) −4.80483e6 + 4.76407e6i −0.340668 + 0.337779i
\(725\) 1.59259e6 0.112527
\(726\) 311751. + 129910.i 0.0219516 + 0.00914748i
\(727\) 2.52083e7 1.76892 0.884458 0.466621i \(-0.154529\pi\)
0.884458 + 0.466621i \(0.154529\pi\)
\(728\) 0 0
\(729\) −1.32106e7 −0.920670
\(730\) 5.06160e6 + 2.10922e6i 0.351545 + 0.146492i
\(731\) 5.10916e6 0.353636
\(732\) 1.91271e6 1.89648e6i 0.131938 0.130819i
\(733\) 1.07049e7i 0.735904i 0.929845 + 0.367952i \(0.119941\pi\)
−0.929845 + 0.367952i \(0.880059\pi\)
\(734\) 2.05031e7 + 8.54386e6i 1.40469 + 0.585348i
\(735\) 0 0
\(736\) −1.21612e7 5.18973e6i −0.827529 0.353143i
\(737\) −2.37457e7 −1.61034
\(738\) 964074. 2.31353e6i 0.0651583 0.156363i
\(739\) 4.29031e6i 0.288987i −0.989506 0.144493i \(-0.953845\pi\)
0.989506 0.144493i \(-0.0461552\pi\)
\(740\) 4.36071e6 4.32373e6i 0.292738 0.290255i
\(741\) 1.08494e6i 0.0725873i
\(742\) 0 0
\(743\) 1.03989e7i 0.691062i −0.938407 0.345531i \(-0.887699\pi\)
0.938407 0.345531i \(-0.112301\pi\)
\(744\) 962292. + 2.36581e6i 0.0637345 + 0.156693i
\(745\) 1.03894e7i 0.685806i
\(746\) 6.24330e6 + 2.60165e6i 0.410740 + 0.171160i
\(747\) −1.06104e7 −0.695715
\(748\) 1.48156e7 + 1.49423e7i 0.968199 + 0.976481i
\(749\) 0 0
\(750\) 743912. 1.78520e6i 0.0482913 0.115887i
\(751\) 1.42620e7i 0.922740i −0.887208 0.461370i \(-0.847358\pi\)
0.887208 0.461370i \(-0.152642\pi\)
\(752\) −138754. + 1.62891e7i −0.00894751 + 1.05040i
\(753\) 1.54357e6 0.0992065
\(754\) 1.13818e6 2.73134e6i 0.0729090 0.174963i
\(755\) 7.67119e6 0.489774
\(756\) 0 0
\(757\) −2.38648e6 −0.151362 −0.0756811 0.997132i \(-0.524113\pi\)
−0.0756811 + 0.997132i \(0.524113\pi\)
\(758\) 5.88069e6 1.41122e7i 0.371754 0.892115i
\(759\) 1.81301e6 0.114234
\(760\) 1.69217e7 6.88287e6i 1.06270 0.432251i
\(761\) 2.99799e7i 1.87659i −0.345838 0.938294i \(-0.612405\pi\)
0.345838 0.938294i \(-0.387595\pi\)
\(762\) 546273. 1.31092e6i 0.0340818 0.0817876i
\(763\) 0 0
\(764\) −108059. + 107142.i −0.00669770 + 0.00664089i
\(765\) −1.70137e7 −1.05110
\(766\) −1.05978e7 4.41620e6i −0.652592 0.271942i
\(767\) 2.27541e6i 0.139660i
\(768\) 1.88977e6 + 32197.3i 0.115613 + 0.00196978i
\(769\) 2.85040e7i 1.73816i −0.494673 0.869079i \(-0.664712\pi\)
0.494673 0.869079i \(-0.335288\pi\)
\(770\) 0 0
\(771\) 2.04967e6i 0.124179i
\(772\) 697075. + 703038.i 0.0420956 + 0.0424557i
\(773\) 7.13489e6i 0.429476i −0.976672 0.214738i \(-0.931110\pi\)
0.976672 0.214738i \(-0.0688897\pi\)
\(774\) 1.78610e6 4.28618e6i 0.107165 0.257169i
\(775\) −6.75967e6 −0.404269
\(776\) −2.20035e7 + 8.94991e6i −1.31171 + 0.533537i
\(777\) 0 0
\(778\) 2.02985e7 + 8.45862e6i 1.20231 + 0.501015i
\(779\) 3.92177e6i 0.231546i
\(780\) −547776. 552462.i −0.0322379 0.0325137i
\(781\) 7.18066e6 0.421247
\(782\) 1.77862e7 + 7.41170e6i 1.04008 + 0.433412i
\(783\) 1.60473e6 0.0935403
\(784\) 0 0
\(785\) −1.51745e7 −0.878903
\(786\) 3.52266e6 + 1.46793e6i 0.203383 + 0.0847518i
\(787\) −1.11677e7 −0.642728 −0.321364 0.946956i \(-0.604141\pi\)
−0.321364 + 0.946956i \(0.604141\pi\)
\(788\) 1.25124e6 + 1.26194e6i 0.0717835 + 0.0723976i
\(789\) 3.05641e6i 0.174791i
\(790\) 1.10654e7 + 4.61107e6i 0.630811 + 0.262866i
\(791\) 0 0
\(792\) 1.77148e7 7.20545e6i 1.00351 0.408177i
\(793\) 1.32453e7 0.747959
\(794\) −9.38897e6 + 2.25311e7i −0.528526 + 1.26833i
\(795\) 2.75213e6i 0.154437i
\(796\) −1.55224e7 1.56552e7i −0.868313 0.875741i
\(797\) 3.53833e6i 0.197312i 0.995122 + 0.0986559i \(0.0314543\pi\)
−0.995122 + 0.0986559i \(0.968546\pi\)
\(798\) 0 0
\(799\) 2.37388e7i 1.31550i
\(800\) −1.96340e6 + 4.60089e6i −0.108464 + 0.254166i
\(801\) 9.57589e6i 0.527349i
\(802\) −1.25224e7 5.21823e6i −0.687469 0.286475i
\(803\) 8.98226e6 0.491583
\(804\) 2.20719e6 2.18847e6i 0.120420 0.119399i
\(805\) 0 0
\(806\) −4.83094e6 + 1.15930e7i −0.261935 + 0.628578i
\(807\) 2.01272e6i 0.108793i
\(808\) 1.65264e7 6.72208e6i 0.890532 0.362223i
\(809\) 8.47199e6 0.455108 0.227554 0.973765i \(-0.426927\pi\)
0.227554 + 0.973765i \(0.426927\pi\)
\(810\) −5.86607e6 + 1.40771e7i −0.314148 + 0.753876i
\(811\) −3.15075e7 −1.68214 −0.841071 0.540925i \(-0.818074\pi\)
−0.841071 + 0.540925i \(0.818074\pi\)
\(812\) 0 0
\(813\) 2.21175e6 0.117357
\(814\) 3.86924e6 9.28519e6i 0.204675 0.491168i
\(815\) 1.70782e7 0.900634
\(816\) −2.75424e6 23461.3i −0.144803 0.00123346i
\(817\) 7.26568e6i 0.380821i
\(818\) −7.00550e6 + 1.68114e7i −0.366063 + 0.878459i
\(819\) 0 0
\(820\) −1.98006e6 1.99700e6i −0.102836 0.103715i
\(821\) 1.14106e7 0.590815 0.295408 0.955371i \(-0.404545\pi\)
0.295408 + 0.955371i \(0.404545\pi\)
\(822\) −2.58675e6 1.07793e6i −0.133529 0.0556429i
\(823\) 5.67425e6i 0.292017i −0.989283 0.146009i \(-0.953357\pi\)
0.989283 0.146009i \(-0.0466427\pi\)
\(824\) 1.31970e7 + 3.24452e7i 0.677109 + 1.66469i
\(825\) 685905.i 0.0350856i
\(826\) 0 0
\(827\) 1.92994e7i 0.981248i 0.871371 + 0.490624i \(0.163231\pi\)
−0.871371 + 0.490624i \(0.836769\pi\)
\(828\) 1.24357e7 1.23302e7i 0.630367 0.625020i
\(829\) 2.17447e7i 1.09892i 0.835519 + 0.549461i \(0.185167\pi\)
−0.835519 + 0.549461i \(0.814833\pi\)
\(830\) −4.57936e6 + 1.09893e7i −0.230733 + 0.553701i
\(831\) 1.51860e6 0.0762855
\(832\) 6.48748e6 + 6.65542e6i 0.324913 + 0.333324i
\(833\) 0 0
\(834\) −3.04824e6 1.27023e6i −0.151752 0.0632366i
\(835\) 4.72279e6i 0.234413i
\(836\) 2.12493e7 2.10691e7i 1.05155 1.04263i
\(837\) −6.81122e6 −0.336055
\(838\) 2.00584e7 + 8.35855e6i 0.986702 + 0.411169i
\(839\) −1.73523e7 −0.851046 −0.425523 0.904948i \(-0.639910\pi\)
−0.425523 + 0.904948i \(0.639910\pi\)
\(840\) 0 0
\(841\) −1.71101e7 −0.834185
\(842\) 1.34700e7 + 5.61308e6i 0.654767 + 0.272848i
\(843\) 3.69648e6 0.179151
\(844\) −9.16038e6 + 9.08269e6i −0.442647 + 0.438893i
\(845\) 1.38309e7i 0.666361i
\(846\) −1.99150e7 8.29879e6i −0.956652 0.398647i
\(847\) 0 0
\(848\) 280051. 3.28767e7i 0.0133736 1.57000i
\(849\) 2.31826e6 0.110381
\(850\) 2.80403e6 6.72896e6i 0.133117 0.319448i
\(851\) 9.21130e6i 0.436010i
\(852\) −667449. + 661788.i −0.0315006 + 0.0312334i
\(853\) 3.34110e6i 0.157223i 0.996905 + 0.0786117i \(0.0250487\pi\)
−0.996905 + 0.0786117i \(0.974951\pi\)
\(854\) 0 0
\(855\) 2.41950e7i 1.13190i
\(856\) −1.37487e7 + 5.59226e6i −0.641323 + 0.260857i
\(857\) 5.74789e6i 0.267336i −0.991026 0.133668i \(-0.957324\pi\)
0.991026 0.133668i \(-0.0426755\pi\)
\(858\) −1.17635e6 490196.i −0.0545528 0.0227328i
\(859\) 2.70940e7 1.25282 0.626411 0.779493i \(-0.284523\pi\)
0.626411 + 0.779493i \(0.284523\pi\)
\(860\) −3.66837e6 3.69975e6i −0.169132 0.170579i
\(861\) 0 0
\(862\) 1.82204e6 4.37244e6i 0.0835199 0.200427i
\(863\) 1.13453e7i 0.518548i −0.965804 0.259274i \(-0.916517\pi\)
0.965804 0.259274i \(-0.0834833\pi\)
\(864\) −1.97837e6 + 4.63598e6i −0.0901621 + 0.211279i
\(865\) −9.52518e6 −0.432846
\(866\) −5.02849e6 + 1.20671e7i −0.227847 + 0.546774i
\(867\) 1.45460e6 0.0657196
\(868\) 0 0
\(869\) 1.96365e7 0.882094
\(870\) 343963. 825425.i 0.0154069 0.0369726i
\(871\) 1.52845e7 0.682663
\(872\) −498609. 1.22584e6i −0.0222059 0.0545937i
\(873\) 3.14611e7i 1.39713i
\(874\) 1.05401e7 2.52936e7i 0.466731 1.12004i
\(875\) 0 0
\(876\) −834909. + 827827.i −0.0367603 + 0.0364485i
\(877\) −1.14952e7 −0.504682 −0.252341 0.967638i \(-0.581200\pi\)
−0.252341 + 0.967638i \(0.581200\pi\)
\(878\) 4.37330e6 + 1.82240e6i 0.191458 + 0.0797824i
\(879\) 2.81627e6i 0.122943i
\(880\) 182777. 2.14571e7i 0.00795636 0.934039i
\(881\) 3.70787e7i 1.60948i −0.593630 0.804738i \(-0.702306\pi\)
0.593630 0.804738i \(-0.297694\pi\)
\(882\) 0 0
\(883\) 9.49309e6i 0.409738i 0.978789 + 0.204869i \(0.0656768\pi\)
−0.978789 + 0.204869i \(0.934323\pi\)
\(884\) −9.53640e6 9.61798e6i −0.410444 0.413955i
\(885\) 687641.i 0.0295123i
\(886\) −7.06714e6 + 1.69594e7i −0.302454 + 0.725814i
\(887\) −7.01372e6 −0.299322 −0.149661 0.988737i \(-0.547818\pi\)
−0.149661 + 0.988737i \(0.547818\pi\)
\(888\) 496097. + 1.21967e6i 0.0211122 + 0.0519049i
\(889\) 0 0
\(890\) −9.91783e6 4.13287e6i −0.419703 0.174895i
\(891\) 2.49810e7i 1.05418i
\(892\) −2.03967e7 2.05712e7i −0.858318 0.865661i
\(893\) −3.37587e7 −1.41663
\(894\) −2.05626e6 856867.i −0.0860468 0.0358566i
\(895\) −2.33872e6 −0.0975936
\(896\) 0 0
\(897\) −1.16699e6 −0.0484267
\(898\) −2.23010e7 9.29307e6i −0.922856 0.384564i
\(899\) −1.44357e7 −0.595713
\(900\) −4.66481e6 4.70472e6i −0.191968 0.193610i
\(901\) 4.79126e7i 1.96625i
\(902\) −4.25217e6 1.77193e6i −0.174018 0.0725152i
\(903\) 0 0
\(904\) 1.65632e7 + 4.07210e7i 0.674098 + 1.65728i
\(905\) −1.00553e7 −0.408105
\(906\) −632680. + 1.51827e6i −0.0256073 + 0.0614510i
\(907\) 1.37533e7i 0.555124i 0.960708 + 0.277562i \(0.0895264\pi\)
−0.960708 + 0.277562i \(0.910474\pi\)
\(908\) 3.06773e6 + 3.09397e6i 0.123482 + 0.124538i
\(909\) 2.36298e7i 0.948527i
\(910\) 0 0
\(911\) 3.60526e6i 0.143926i −0.997407 0.0719632i \(-0.977074\pi\)
0.997407 0.0719632i \(-0.0229264\pi\)
\(912\) −33364.0 + 3.91678e6i −0.00132829 + 0.155934i
\(913\) 1.95015e7i 0.774267i
\(914\) 4.13166e7 + 1.72171e7i 1.63591 + 0.681701i
\(915\) 4.00280e6 0.158056
\(916\) 2.42181e6 2.40127e6i 0.0953677 0.0945588i
\(917\) 0 0
\(918\) 2.82541e6 6.78027e6i 0.110656 0.265546i
\(919\) 386352.i 0.0150902i 0.999972 + 0.00754510i \(0.00240170\pi\)
−0.999972 + 0.00754510i \(0.997598\pi\)
\(920\) −7.40336e6 1.82013e7i −0.288376 0.708979i
\(921\) 2.39751e6 0.0931346
\(922\) −3.98960e6 + 9.57403e6i −0.154562 + 0.370909i
\(923\) −4.62201e6 −0.178577
\(924\) 0 0
\(925\) −3.48486e6 −0.133915
\(926\) 475988. 1.14225e6i 0.0182418 0.0437757i
\(927\) −4.63908e7 −1.77310
\(928\) −4.19296e6 + 9.82547e6i −0.159827 + 0.374527i
\(929\) 6.18099e6i 0.234973i −0.993074 0.117487i \(-0.962516\pi\)
0.993074 0.117487i \(-0.0374837\pi\)
\(930\) −1.45994e6 + 3.50348e6i −0.0553511 + 0.132829i
\(931\) 0 0
\(932\) −3.09668e6 3.12317e6i −0.116777 0.117776i
\(933\) −2.11020e6 −0.0793632
\(934\) −9.16991e6 3.82120e6i −0.343952 0.143328i
\(935\) 3.12704e7i 1.16978i
\(936\) −1.14025e7 + 4.63796e6i −0.425414 + 0.173037i
\(937\) 1.37458e7i 0.511469i −0.966747 0.255735i \(-0.917683\pi\)
0.966747 0.255735i \(-0.0823173\pi\)
\(938\) 0 0
\(939\) 4894.49i 0.000181152i
\(940\) −1.71902e7 + 1.70444e7i −0.634545 + 0.629163i
\(941\) 3.77179e7i 1.38859i −0.719691 0.694294i \(-0.755717\pi\)
0.719691 0.694294i \(-0.244283\pi\)
\(942\) 1.25152e6 3.00332e6i 0.0459525 0.110274i
\(943\) −4.21833e6 −0.154476
\(944\) 69973.1 8.21451e6i 0.00255565 0.300021i
\(945\) 0 0
\(946\) −7.87781e6 3.28277e6i −0.286205 0.119265i
\(947\) 2.68030e7i 0.971199i −0.874181 0.485599i \(-0.838601\pi\)
0.874181 0.485599i \(-0.161399\pi\)
\(948\) −1.82523e6 + 1.80975e6i −0.0659625 + 0.0654030i
\(949\) −5.78165e6 −0.208394
\(950\) −9.56918e6 3.98758e6i −0.344006 0.143351i
\(951\) −1.25957e6 −0.0451617
\(952\) 0 0
\(953\) −2.21927e7 −0.791548 −0.395774 0.918348i \(-0.629524\pi\)
−0.395774 + 0.918348i \(0.629524\pi\)
\(954\) 4.01949e7 + 1.67496e7i 1.42988 + 0.595846i
\(955\) −226138. −0.00802353
\(956\) −9.97550e6 + 9.89089e6i −0.353013 + 0.350018i
\(957\) 1.46479e6i 0.0517006i
\(958\) −7.58984e6 3.16277e6i −0.267189 0.111341i
\(959\) 0 0
\(960\) 1.96055e6 + 2.01130e6i 0.0686595 + 0.0704368i
\(961\) 3.26423e7 1.14018
\(962\) −2.49053e6 + 5.97664e6i −0.0867668 + 0.208218i
\(963\) 1.96581e7i 0.683088i
\(964\) 2.36182e7 2.34179e7i 0.818568 0.811625i
\(965\) 1.47128e6i 0.0508599i
\(966\) 0 0
\(967\) 1.62944e7i 0.560366i −0.959947 0.280183i \(-0.909605\pi\)
0.959947 0.280183i \(-0.0903952\pi\)
\(968\) −2.25910e6 5.55404e6i −0.0774902 0.190511i
\(969\) 5.70808e6i 0.195290i
\(970\) −3.25845e7 1.35783e7i −1.11194 0.463358i
\(971\) 238504. 0.00811796 0.00405898 0.999992i \(-0.498708\pi\)
0.00405898 + 0.999992i \(0.498708\pi\)
\(972\) −7.06640e6 7.12684e6i −0.239901 0.241953i
\(973\) 0 0
\(974\) 7.02173e6 1.68504e7i 0.237163 0.569131i
\(975\) 441499.i 0.0148737i
\(976\) −4.78171e7 407317.i −1.60679 0.0136870i
\(977\) −1.12237e7 −0.376183 −0.188091 0.982152i \(-0.560230\pi\)
−0.188091 + 0.982152i \(0.560230\pi\)
\(978\) −1.40852e6 + 3.38009e6i −0.0470886 + 0.113001i
\(979\) −1.76001e7 −0.586891
\(980\) 0 0
\(981\) 1.75273e6 0.0581490
\(982\) −1.29149e7 + 3.09924e7i −0.427377 + 1.02560i
\(983\) 5.72153e6 0.188855 0.0944275 0.995532i \(-0.469898\pi\)
0.0944275 + 0.995532i \(0.469898\pi\)
\(984\) 558548. 227189.i 0.0183896 0.00747996i
\(985\) 2.64092e6i 0.0867290i
\(986\) 5.98816e6 1.43701e7i 0.196156 0.470725i
\(987\) 0 0
\(988\) −1.36776e7 + 1.35616e7i −0.445778 + 0.441997i
\(989\) −7.81512e6 −0.254065
\(990\) 2.62334e7 + 1.09317e7i 0.850680 + 0.354487i
\(991\) 4.79274e7i 1.55024i 0.631812 + 0.775122i \(0.282312\pi\)
−0.631812 + 0.775122i \(0.717688\pi\)
\(992\) 1.77968e7 4.17037e7i 0.574200 1.34554i
\(993\) 2.48136e6i 0.0798576i
\(994\) 0 0
\(995\) 3.27622e7i 1.04910i
\(996\) −1.79731e6 1.81268e6i −0.0574082 0.0578993i
\(997\) 3.82882e7i 1.21991i −0.792437 0.609954i \(-0.791188\pi\)
0.792437 0.609954i \(-0.208812\pi\)
\(998\) 1.33474e7 3.20303e7i 0.424199 1.01797i
\(999\) −3.51143e6 −0.111319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.6.d.b.195.31 36
4.3 odd 2 inner 196.6.d.b.195.30 36
7.4 even 3 28.6.f.a.19.4 yes 36
7.5 odd 6 28.6.f.a.3.9 yes 36
7.6 odd 2 inner 196.6.d.b.195.32 36
28.11 odd 6 28.6.f.a.19.9 yes 36
28.19 even 6 28.6.f.a.3.4 36
28.27 even 2 inner 196.6.d.b.195.29 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.f.a.3.4 36 28.19 even 6
28.6.f.a.3.9 yes 36 7.5 odd 6
28.6.f.a.19.4 yes 36 7.4 even 3
28.6.f.a.19.9 yes 36 28.11 odd 6
196.6.d.b.195.29 36 28.27 even 2 inner
196.6.d.b.195.30 36 4.3 odd 2 inner
196.6.d.b.195.31 36 1.1 even 1 trivial
196.6.d.b.195.32 36 7.6 odd 2 inner