Properties

Label 196.6.d.c.195.18
Level $196$
Weight $6$
Character 196.195
Analytic conductor $31.435$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(195,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.195");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.4352286833\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 195.18
Character \(\chi\) \(=\) 196.195
Dual form 196.6.d.c.195.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.84200 - 5.34855i) q^{2} +13.3457 q^{3} +(-25.2141 + 19.7041i) q^{4} +89.8785i q^{5} +(-24.5829 - 71.3804i) q^{6} +(151.833 + 98.5639i) q^{8} -64.8912 q^{9} +(480.720 - 165.556i) q^{10} +90.1372i q^{11} +(-336.500 + 262.966i) q^{12} -273.804i q^{13} +1199.50i q^{15} +(247.498 - 993.640i) q^{16} -692.565i q^{17} +(119.530 + 347.074i) q^{18} +1797.49 q^{19} +(-1770.97 - 2266.20i) q^{20} +(482.104 - 166.033i) q^{22} +4029.93i q^{23} +(2026.32 + 1315.41i) q^{24} -4953.14 q^{25} +(-1464.45 + 504.347i) q^{26} -4109.04 q^{27} -8236.85 q^{29} +(6415.56 - 2209.47i) q^{30} -8618.34 q^{31} +(-5770.43 + 506.528i) q^{32} +1202.95i q^{33} +(-3704.22 + 1275.71i) q^{34} +(1636.17 - 1278.62i) q^{36} +9457.54 q^{37} +(-3310.97 - 9613.96i) q^{38} -3654.11i q^{39} +(-8858.77 + 13646.5i) q^{40} +10538.0i q^{41} -6505.37i q^{43} +(-1776.07 - 2272.72i) q^{44} -5832.33i q^{45} +(21554.3 - 7423.13i) q^{46} -27987.0 q^{47} +(3303.05 - 13260.9i) q^{48} +(9123.69 + 26492.2i) q^{50} -9242.79i q^{51} +(5395.05 + 6903.70i) q^{52} -20667.5 q^{53} +(7568.85 + 21977.4i) q^{54} -8101.39 q^{55} +23988.8 q^{57} +(15172.3 + 44055.2i) q^{58} +12442.9 q^{59} +(-23634.9 - 30244.1i) q^{60} +10511.9i q^{61} +(15875.0 + 46095.6i) q^{62} +(13338.3 + 29930.4i) q^{64} +24609.1 q^{65} +(6434.03 - 2215.83i) q^{66} -6641.50i q^{67} +(13646.4 + 17462.4i) q^{68} +53782.4i q^{69} -57508.8i q^{71} +(-9852.61 - 6395.93i) q^{72} +20558.7i q^{73} +(-17420.8 - 50584.1i) q^{74} -66103.4 q^{75} +(-45322.0 + 35417.8i) q^{76} +(-19544.2 + 6730.88i) q^{78} +78140.5i q^{79} +(89306.9 + 22244.8i) q^{80} -39069.6 q^{81} +(56363.0 - 19411.0i) q^{82} -4248.11 q^{83} +62246.7 q^{85} +(-34794.3 + 11982.9i) q^{86} -109927. q^{87} +(-8884.27 + 13685.8i) q^{88} +44187.1i q^{89} +(-31194.5 + 10743.1i) q^{90} +(-79406.0 - 101611. i) q^{92} -115018. q^{93} +(51552.0 + 149690. i) q^{94} +161556. i q^{95} +(-77010.7 + 6759.99i) q^{96} -80366.9i q^{97} -5849.11i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} - 172 q^{4} - 356 q^{8} + 5832 q^{9} + 84 q^{16} + 1620 q^{18} - 17616 q^{22} - 25000 q^{25} - 16288 q^{29} - 32440 q^{30} - 6556 q^{32} + 44444 q^{36} + 42592 q^{37} + 17784 q^{44} - 25560 q^{46}+ \cdots + 3168 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84200 5.34855i −0.325623 0.945500i
\(3\) 13.3457 0.856130 0.428065 0.903748i \(-0.359195\pi\)
0.428065 + 0.903748i \(0.359195\pi\)
\(4\) −25.2141 + 19.7041i −0.787940 + 0.615753i
\(5\) 89.8785i 1.60780i 0.594768 + 0.803898i \(0.297244\pi\)
−0.594768 + 0.803898i \(0.702756\pi\)
\(6\) −24.5829 71.3804i −0.278775 0.809470i
\(7\) 0 0
\(8\) 151.833 + 98.5639i 0.838765 + 0.544494i
\(9\) −64.8912 −0.267042
\(10\) 480.720 165.556i 1.52017 0.523535i
\(11\) 90.1372i 0.224606i 0.993674 + 0.112303i \(0.0358228\pi\)
−0.993674 + 0.112303i \(0.964177\pi\)
\(12\) −336.500 + 262.966i −0.674578 + 0.527164i
\(13\) 273.804i 0.449346i −0.974434 0.224673i \(-0.927869\pi\)
0.974434 0.224673i \(-0.0721314\pi\)
\(14\) 0 0
\(15\) 1199.50i 1.37648i
\(16\) 247.498 993.640i 0.241698 0.970352i
\(17\) 692.565i 0.581217i −0.956842 0.290608i \(-0.906142\pi\)
0.956842 0.290608i \(-0.0938577\pi\)
\(18\) 119.530 + 347.074i 0.0869550 + 0.252488i
\(19\) 1797.49 1.14230 0.571152 0.820844i \(-0.306497\pi\)
0.571152 + 0.820844i \(0.306497\pi\)
\(20\) −1770.97 2266.20i −0.990004 1.26685i
\(21\) 0 0
\(22\) 482.104 166.033i 0.212365 0.0731370i
\(23\) 4029.93i 1.58847i 0.607614 + 0.794233i \(0.292127\pi\)
−0.607614 + 0.794233i \(0.707873\pi\)
\(24\) 2026.32 + 1315.41i 0.718092 + 0.466157i
\(25\) −4953.14 −1.58501
\(26\) −1464.45 + 504.347i −0.424857 + 0.146317i
\(27\) −4109.04 −1.08475
\(28\) 0 0
\(29\) −8236.85 −1.81872 −0.909360 0.416009i \(-0.863428\pi\)
−0.909360 + 0.416009i \(0.863428\pi\)
\(30\) 6415.56 2209.47i 1.30146 0.448214i
\(31\) −8618.34 −1.61072 −0.805358 0.592788i \(-0.798027\pi\)
−0.805358 + 0.592788i \(0.798027\pi\)
\(32\) −5770.43 + 506.528i −0.996169 + 0.0874437i
\(33\) 1202.95i 0.192292i
\(34\) −3704.22 + 1275.71i −0.549540 + 0.189257i
\(35\) 0 0
\(36\) 1636.17 1278.62i 0.210413 0.164432i
\(37\) 9457.54 1.13573 0.567863 0.823123i \(-0.307770\pi\)
0.567863 + 0.823123i \(0.307770\pi\)
\(38\) −3310.97 9613.96i −0.371960 1.08005i
\(39\) 3654.11i 0.384698i
\(40\) −8858.77 + 13646.5i −0.875434 + 1.34856i
\(41\) 10538.0i 0.979035i 0.871994 + 0.489517i \(0.162827\pi\)
−0.871994 + 0.489517i \(0.837173\pi\)
\(42\) 0 0
\(43\) 6505.37i 0.536538i −0.963344 0.268269i \(-0.913548\pi\)
0.963344 0.268269i \(-0.0864516\pi\)
\(44\) −1776.07 2272.72i −0.138302 0.176976i
\(45\) 5832.33i 0.429349i
\(46\) 21554.3 7423.13i 1.50189 0.517241i
\(47\) −27987.0 −1.84804 −0.924019 0.382346i \(-0.875116\pi\)
−0.924019 + 0.382346i \(0.875116\pi\)
\(48\) 3303.05 13260.9i 0.206924 0.830747i
\(49\) 0 0
\(50\) 9123.69 + 26492.2i 0.516114 + 1.49862i
\(51\) 9242.79i 0.497597i
\(52\) 5395.05 + 6903.70i 0.276686 + 0.354057i
\(53\) −20667.5 −1.01064 −0.505322 0.862931i \(-0.668626\pi\)
−0.505322 + 0.862931i \(0.668626\pi\)
\(54\) 7568.85 + 21977.4i 0.353220 + 1.02563i
\(55\) −8101.39 −0.361121
\(56\) 0 0
\(57\) 23988.8 0.977961
\(58\) 15172.3 + 44055.2i 0.592217 + 1.71960i
\(59\) 12442.9 0.465363 0.232682 0.972553i \(-0.425250\pi\)
0.232682 + 0.972553i \(0.425250\pi\)
\(60\) −23634.9 30244.1i −0.847572 1.08458i
\(61\) 10511.9i 0.361706i 0.983510 + 0.180853i \(0.0578859\pi\)
−0.983510 + 0.180853i \(0.942114\pi\)
\(62\) 15875.0 + 46095.6i 0.524486 + 1.52293i
\(63\) 0 0
\(64\) 13338.3 + 29930.4i 0.407053 + 0.913404i
\(65\) 24609.1 0.722456
\(66\) 6434.03 2215.83i 0.181812 0.0626147i
\(67\) 6641.50i 0.180750i −0.995908 0.0903752i \(-0.971193\pi\)
0.995908 0.0903752i \(-0.0288066\pi\)
\(68\) 13646.4 + 17462.4i 0.357886 + 0.457964i
\(69\) 53782.4i 1.35993i
\(70\) 0 0
\(71\) 57508.8i 1.35391i −0.736026 0.676953i \(-0.763300\pi\)
0.736026 0.676953i \(-0.236700\pi\)
\(72\) −9852.61 6395.93i −0.223986 0.145403i
\(73\) 20558.7i 0.451531i 0.974182 + 0.225766i \(0.0724884\pi\)
−0.974182 + 0.225766i \(0.927512\pi\)
\(74\) −17420.8 50584.1i −0.369818 1.07383i
\(75\) −66103.4 −1.35697
\(76\) −45322.0 + 35417.8i −0.900067 + 0.703377i
\(77\) 0 0
\(78\) −19544.2 + 6730.88i −0.363732 + 0.125267i
\(79\) 78140.5i 1.40867i 0.709869 + 0.704333i \(0.248754\pi\)
−0.709869 + 0.704333i \(0.751246\pi\)
\(80\) 89306.9 + 22244.8i 1.56013 + 0.388600i
\(81\) −39069.6 −0.661646
\(82\) 56363.0 19411.0i 0.925677 0.318796i
\(83\) −4248.11 −0.0676862 −0.0338431 0.999427i \(-0.510775\pi\)
−0.0338431 + 0.999427i \(0.510775\pi\)
\(84\) 0 0
\(85\) 62246.7 0.934478
\(86\) −34794.3 + 11982.9i −0.507297 + 0.174709i
\(87\) −109927. −1.55706
\(88\) −8884.27 + 13685.8i −0.122297 + 0.188392i
\(89\) 44187.1i 0.591317i 0.955294 + 0.295659i \(0.0955391\pi\)
−0.955294 + 0.295659i \(0.904461\pi\)
\(90\) −31194.5 + 10743.1i −0.405949 + 0.139806i
\(91\) 0 0
\(92\) −79406.0 101611.i −0.978102 1.25161i
\(93\) −115018. −1.37898
\(94\) 51552.0 + 149690.i 0.601764 + 1.74732i
\(95\) 161556.i 1.83659i
\(96\) −77010.7 + 6759.99i −0.852850 + 0.0748631i
\(97\) 80366.9i 0.867257i −0.901092 0.433628i \(-0.857233\pi\)
0.901092 0.433628i \(-0.142767\pi\)
\(98\) 0 0
\(99\) 5849.11i 0.0599794i
\(100\) 124889. 97597.1i 1.24889 0.975971i
\(101\) 144438.i 1.40889i −0.709758 0.704445i \(-0.751196\pi\)
0.709758 0.704445i \(-0.248804\pi\)
\(102\) −49435.6 + 17025.2i −0.470478 + 0.162029i
\(103\) −63973.0 −0.594160 −0.297080 0.954853i \(-0.596013\pi\)
−0.297080 + 0.954853i \(0.596013\pi\)
\(104\) 26987.1 41572.3i 0.244666 0.376896i
\(105\) 0 0
\(106\) 38069.6 + 110541.i 0.329089 + 0.955564i
\(107\) 136518.i 1.15273i 0.817191 + 0.576367i \(0.195530\pi\)
−0.817191 + 0.576367i \(0.804470\pi\)
\(108\) 103606. 80964.8i 0.854719 0.667939i
\(109\) 105980. 0.854389 0.427195 0.904160i \(-0.359502\pi\)
0.427195 + 0.904160i \(0.359502\pi\)
\(110\) 14922.8 + 43330.7i 0.117589 + 0.341440i
\(111\) 126218. 0.972329
\(112\) 0 0
\(113\) 113230. 0.834192 0.417096 0.908862i \(-0.363048\pi\)
0.417096 + 0.908862i \(0.363048\pi\)
\(114\) −44187.4 128305.i −0.318446 0.924662i
\(115\) −362204. −2.55393
\(116\) 207684. 162300.i 1.43304 1.11988i
\(117\) 17767.5i 0.119994i
\(118\) −22919.8 66551.6i −0.151533 0.440001i
\(119\) 0 0
\(120\) −118227. + 182123.i −0.749485 + 1.15454i
\(121\) 152926. 0.949552
\(122\) 56223.4 19362.9i 0.341993 0.117780i
\(123\) 140637.i 0.838181i
\(124\) 217303. 169816.i 1.26915 0.991803i
\(125\) 164311.i 0.940570i
\(126\) 0 0
\(127\) 51441.6i 0.283012i −0.989937 0.141506i \(-0.954806\pi\)
0.989937 0.141506i \(-0.0451945\pi\)
\(128\) 135515. 126473.i 0.731078 0.682294i
\(129\) 86818.9i 0.459346i
\(130\) −45329.9 131623.i −0.235248 0.683082i
\(131\) 30369.8 0.154619 0.0773097 0.997007i \(-0.475367\pi\)
0.0773097 + 0.997007i \(0.475367\pi\)
\(132\) −23703.0 30331.2i −0.118404 0.151515i
\(133\) 0 0
\(134\) −35522.4 + 12233.7i −0.170899 + 0.0588565i
\(135\) 369314.i 1.74406i
\(136\) 68261.9 105154.i 0.316469 0.487504i
\(137\) −69557.4 −0.316623 −0.158311 0.987389i \(-0.550605\pi\)
−0.158311 + 0.987389i \(0.550605\pi\)
\(138\) 287658. 99067.2i 1.28582 0.442825i
\(139\) −69683.1 −0.305908 −0.152954 0.988233i \(-0.548879\pi\)
−0.152954 + 0.988233i \(0.548879\pi\)
\(140\) 0 0
\(141\) −373507. −1.58216
\(142\) −307589. + 105931.i −1.28012 + 0.440863i
\(143\) 24679.9 0.100926
\(144\) −16060.5 + 64478.5i −0.0645434 + 0.259125i
\(145\) 740315.i 2.92413i
\(146\) 109959. 37869.1i 0.426923 0.147029i
\(147\) 0 0
\(148\) −238463. + 186352.i −0.894884 + 0.699326i
\(149\) −302553. −1.11644 −0.558221 0.829692i \(-0.688516\pi\)
−0.558221 + 0.829692i \(0.688516\pi\)
\(150\) 121762. + 353557.i 0.441861 + 1.28302i
\(151\) 111408.i 0.397626i 0.980037 + 0.198813i \(0.0637086\pi\)
−0.980037 + 0.198813i \(0.936291\pi\)
\(152\) 272917. + 177167.i 0.958125 + 0.621978i
\(153\) 44941.4i 0.155209i
\(154\) 0 0
\(155\) 774603.i 2.58970i
\(156\) 72000.9 + 92135.0i 0.236879 + 0.303119i
\(157\) 111682.i 0.361605i −0.983519 0.180802i \(-0.942131\pi\)
0.983519 0.180802i \(-0.0578695\pi\)
\(158\) 417938. 143935.i 1.33189 0.458694i
\(159\) −275823. −0.865243
\(160\) −45526.0 518638.i −0.140592 1.60164i
\(161\) 0 0
\(162\) 71966.2 + 208966.i 0.215447 + 0.625587i
\(163\) 202294.i 0.596367i −0.954509 0.298183i \(-0.903619\pi\)
0.954509 0.298183i \(-0.0963807\pi\)
\(164\) −207641. 265706.i −0.602843 0.771420i
\(165\) −108119. −0.309167
\(166\) 7825.02 + 22721.2i 0.0220402 + 0.0639973i
\(167\) −16381.5 −0.0454531 −0.0227266 0.999742i \(-0.507235\pi\)
−0.0227266 + 0.999742i \(0.507235\pi\)
\(168\) 0 0
\(169\) 296325. 0.798088
\(170\) −114658. 332930.i −0.304287 0.883548i
\(171\) −116641. −0.305043
\(172\) 128182. + 164027.i 0.330375 + 0.422760i
\(173\) 137145.i 0.348390i 0.984711 + 0.174195i \(0.0557323\pi\)
−0.984711 + 0.174195i \(0.944268\pi\)
\(174\) 202485. + 587950.i 0.507015 + 1.47220i
\(175\) 0 0
\(176\) 89563.9 + 22308.8i 0.217947 + 0.0542868i
\(177\) 166060. 0.398411
\(178\) 236337. 81392.7i 0.559090 0.192546i
\(179\) 603009.i 1.40667i 0.710860 + 0.703334i \(0.248306\pi\)
−0.710860 + 0.703334i \(0.751694\pi\)
\(180\) 114921. + 147057.i 0.264373 + 0.338301i
\(181\) 165698.i 0.375942i 0.982175 + 0.187971i \(0.0601911\pi\)
−0.982175 + 0.187971i \(0.939809\pi\)
\(182\) 0 0
\(183\) 140289.i 0.309668i
\(184\) −397205. + 611875.i −0.864909 + 1.33235i
\(185\) 850029.i 1.82602i
\(186\) 211863. + 615180.i 0.449028 + 1.30383i
\(187\) 62425.8 0.130545
\(188\) 705665. 551457.i 1.45614 1.13793i
\(189\) 0 0
\(190\) 864088. 297585.i 1.73650 0.598036i
\(191\) 837537.i 1.66119i 0.556873 + 0.830597i \(0.312001\pi\)
−0.556873 + 0.830597i \(0.687999\pi\)
\(192\) 178010. + 399444.i 0.348491 + 0.781993i
\(193\) 119344. 0.230626 0.115313 0.993329i \(-0.463213\pi\)
0.115313 + 0.993329i \(0.463213\pi\)
\(194\) −429846. + 148036.i −0.819991 + 0.282399i
\(195\) 328426. 0.618516
\(196\) 0 0
\(197\) −230198. −0.422606 −0.211303 0.977421i \(-0.567771\pi\)
−0.211303 + 0.977421i \(0.567771\pi\)
\(198\) −31284.3 + 10774.1i −0.0567105 + 0.0195306i
\(199\) −168443. −0.301522 −0.150761 0.988570i \(-0.548172\pi\)
−0.150761 + 0.988570i \(0.548172\pi\)
\(200\) −752049. 488201.i −1.32945 0.863026i
\(201\) 88635.8i 0.154746i
\(202\) −772533. + 266054.i −1.33211 + 0.458767i
\(203\) 0 0
\(204\) 182121. + 233048.i 0.306397 + 0.392076i
\(205\) −947139. −1.57409
\(206\) 117838. + 342163.i 0.193472 + 0.561778i
\(207\) 261507.i 0.424187i
\(208\) −272062. 67765.9i −0.436024 0.108606i
\(209\) 162020.i 0.256569i
\(210\) 0 0
\(211\) 285910.i 0.442103i 0.975262 + 0.221051i \(0.0709488\pi\)
−0.975262 + 0.221051i \(0.929051\pi\)
\(212\) 521112. 407234.i 0.796327 0.622307i
\(213\) 767498.i 1.15912i
\(214\) 730172. 251466.i 1.08991 0.375357i
\(215\) 584693. 0.862644
\(216\) −623886. 405002.i −0.909852 0.590641i
\(217\) 0 0
\(218\) −195214. 566837.i −0.278209 0.807825i
\(219\) 274371.i 0.386569i
\(220\) 204269. 159631.i 0.284542 0.222361i
\(221\) −189627. −0.261167
\(222\) −232493. 675083.i −0.316612 0.919337i
\(223\) 204184. 0.274954 0.137477 0.990505i \(-0.456101\pi\)
0.137477 + 0.990505i \(0.456101\pi\)
\(224\) 0 0
\(225\) 321416. 0.423263
\(226\) −208570. 605618.i −0.271632 0.788729i
\(227\) 417704. 0.538027 0.269014 0.963136i \(-0.413302\pi\)
0.269014 + 0.963136i \(0.413302\pi\)
\(228\) −604855. + 472677.i −0.770574 + 0.602182i
\(229\) 913450.i 1.15105i 0.817783 + 0.575527i \(0.195203\pi\)
−0.817783 + 0.575527i \(0.804797\pi\)
\(230\) 667180. + 1.93727e6i 0.831617 + 2.41474i
\(231\) 0 0
\(232\) −1.25062e6 811856.i −1.52548 0.990282i
\(233\) 1.40328e6 1.69337 0.846687 0.532091i \(-0.178594\pi\)
0.846687 + 0.532091i \(0.178594\pi\)
\(234\) 95030.2 32727.7i 0.113455 0.0390729i
\(235\) 2.51543e6i 2.97127i
\(236\) −313736. + 245176.i −0.366678 + 0.286549i
\(237\) 1.04284e6i 1.20600i
\(238\) 0 0
\(239\) 1.43599e6i 1.62614i 0.582166 + 0.813070i \(0.302205\pi\)
−0.582166 + 0.813070i \(0.697795\pi\)
\(240\) 1.19187e6 + 296873.i 1.33567 + 0.332692i
\(241\) 287115.i 0.318429i −0.987244 0.159214i \(-0.949104\pi\)
0.987244 0.159214i \(-0.0508961\pi\)
\(242\) −281690. 817935.i −0.309196 0.897801i
\(243\) 477084. 0.518297
\(244\) −207127. 265047.i −0.222722 0.285003i
\(245\) 0 0
\(246\) 752206. 259054.i 0.792500 0.272931i
\(247\) 492159.i 0.513290i
\(248\) −1.30855e6 849457.i −1.35101 0.877025i
\(249\) −56694.1 −0.0579482
\(250\) −878825. + 302661.i −0.889308 + 0.306271i
\(251\) −1.45529e6 −1.45803 −0.729015 0.684498i \(-0.760022\pi\)
−0.729015 + 0.684498i \(0.760022\pi\)
\(252\) 0 0
\(253\) −363246. −0.356780
\(254\) −275138. + 94755.4i −0.267588 + 0.0921552i
\(255\) 830728. 0.800034
\(256\) −926065. 491848.i −0.883165 0.469063i
\(257\) 1.06667e6i 1.00739i 0.863881 + 0.503695i \(0.168027\pi\)
−0.863881 + 0.503695i \(0.831973\pi\)
\(258\) −464356. + 159921.i −0.434312 + 0.149574i
\(259\) 0 0
\(260\) −620494. + 484899.i −0.569252 + 0.444854i
\(261\) 534499. 0.485675
\(262\) −55941.3 162435.i −0.0503476 0.146193i
\(263\) 1.15036e6i 1.02552i 0.858531 + 0.512762i \(0.171378\pi\)
−0.858531 + 0.512762i \(0.828622\pi\)
\(264\) −118567. + 182647.i −0.104702 + 0.161288i
\(265\) 1.85756e6i 1.62491i
\(266\) 0 0
\(267\) 589710.i 0.506244i
\(268\) 130865. + 167459.i 0.111298 + 0.142420i
\(269\) 877595.i 0.739458i 0.929140 + 0.369729i \(0.120549\pi\)
−0.929140 + 0.369729i \(0.879451\pi\)
\(270\) −1.97530e6 + 680277.i −1.64901 + 0.567906i
\(271\) −2.05833e6 −1.70252 −0.851260 0.524744i \(-0.824161\pi\)
−0.851260 + 0.524744i \(0.824161\pi\)
\(272\) −688160. 171409.i −0.563985 0.140479i
\(273\) 0 0
\(274\) 128125. + 372032.i 0.103100 + 0.299367i
\(275\) 446462.i 0.356003i
\(276\) −1.05973e6 1.35607e6i −0.837382 1.07154i
\(277\) 1.08549e6 0.850012 0.425006 0.905191i \(-0.360272\pi\)
0.425006 + 0.905191i \(0.360272\pi\)
\(278\) 128356. + 372704.i 0.0996105 + 0.289236i
\(279\) 559254. 0.430129
\(280\) 0 0
\(281\) 1.33676e6 1.00992 0.504960 0.863143i \(-0.331507\pi\)
0.504960 + 0.863143i \(0.331507\pi\)
\(282\) 688000. + 1.99772e6i 0.515188 + 1.49593i
\(283\) 1.77321e6 1.31612 0.658058 0.752967i \(-0.271378\pi\)
0.658058 + 0.752967i \(0.271378\pi\)
\(284\) 1.13316e6 + 1.45003e6i 0.833672 + 1.06680i
\(285\) 2.15608e6i 1.57236i
\(286\) −45460.4 132002.i −0.0328638 0.0954255i
\(287\) 0 0
\(288\) 374450. 32869.2i 0.266019 0.0233511i
\(289\) 940211. 0.662187
\(290\) −3.95962e6 + 1.36366e6i −2.76477 + 0.952164i
\(291\) 1.07256e6i 0.742484i
\(292\) −405090. 518368.i −0.278032 0.355779i
\(293\) 1.08511e6i 0.738424i −0.929345 0.369212i \(-0.879628\pi\)
0.929345 0.369212i \(-0.120372\pi\)
\(294\) 0 0
\(295\) 1.11835e6i 0.748209i
\(296\) 1.43596e6 + 932171.i 0.952607 + 0.618396i
\(297\) 370377.i 0.243642i
\(298\) 557303. + 1.61822e6i 0.363539 + 1.05560i
\(299\) 1.10341e6 0.713771
\(300\) 1.66673e6 1.30251e6i 1.06921 0.835558i
\(301\) 0 0
\(302\) 595872. 205214.i 0.375955 0.129476i
\(303\) 1.92763e6i 1.20619i
\(304\) 444875. 1.78606e6i 0.276092 1.10844i
\(305\) −944793. −0.581550
\(306\) 240371. 82782.1i 0.146750 0.0505397i
\(307\) −1.85493e6 −1.12327 −0.561633 0.827386i \(-0.689827\pi\)
−0.561633 + 0.827386i \(0.689827\pi\)
\(308\) 0 0
\(309\) −853767. −0.508678
\(310\) −4.14301e6 + 1.42682e6i −2.44856 + 0.843266i
\(311\) 1.86803e6 1.09517 0.547587 0.836749i \(-0.315546\pi\)
0.547587 + 0.836749i \(0.315546\pi\)
\(312\) 360163. 554814.i 0.209466 0.322672i
\(313\) 2.08823e6i 1.20481i −0.798191 0.602404i \(-0.794210\pi\)
0.798191 0.602404i \(-0.205790\pi\)
\(314\) −597338. + 205718.i −0.341897 + 0.117747i
\(315\) 0 0
\(316\) −1.53969e6 1.97024e6i −0.867390 1.10994i
\(317\) 1.10686e6 0.618647 0.309324 0.950957i \(-0.399897\pi\)
0.309324 + 0.950957i \(0.399897\pi\)
\(318\) 508067. + 1.47526e6i 0.281743 + 0.818087i
\(319\) 742446.i 0.408496i
\(320\) −2.69010e6 + 1.19883e6i −1.46857 + 0.654459i
\(321\) 1.82193e6i 0.986890i
\(322\) 0 0
\(323\) 1.24488e6i 0.663927i
\(324\) 985103. 769830.i 0.521337 0.407411i
\(325\) 1.35619e6i 0.712216i
\(326\) −1.08198e6 + 372625.i −0.563864 + 0.194191i
\(327\) 1.41438e6 0.731468
\(328\) −1.03867e6 + 1.60001e6i −0.533078 + 0.821180i
\(329\) 0 0
\(330\) 199155. + 578281.i 0.100672 + 0.292317i
\(331\) 559286.i 0.280585i 0.990110 + 0.140292i \(0.0448043\pi\)
−0.990110 + 0.140292i \(0.955196\pi\)
\(332\) 107112. 83705.1i 0.0533327 0.0416780i
\(333\) −613711. −0.303287
\(334\) 30174.8 + 87617.6i 0.0148006 + 0.0429759i
\(335\) 596928. 0.290610
\(336\) 0 0
\(337\) −2.12539e6 −1.01944 −0.509722 0.860339i \(-0.670252\pi\)
−0.509722 + 0.860339i \(0.670252\pi\)
\(338\) −545830. 1.58491e6i −0.259876 0.754592i
\(339\) 1.51114e6 0.714177
\(340\) −1.56949e6 + 1.22651e6i −0.736312 + 0.575407i
\(341\) 776832.i 0.361777i
\(342\) 214853. + 623862.i 0.0993291 + 0.288418i
\(343\) 0 0
\(344\) 641194. 987727.i 0.292142 0.450030i
\(345\) −4.83388e6 −2.18649
\(346\) 733529. 252622.i 0.329403 0.113444i
\(347\) 756361.i 0.337214i −0.985683 0.168607i \(-0.946073\pi\)
0.985683 0.168607i \(-0.0539268\pi\)
\(348\) 2.77170e6 2.16601e6i 1.22687 0.958764i
\(349\) 1.06274e6i 0.467052i 0.972351 + 0.233526i \(0.0750264\pi\)
−0.972351 + 0.233526i \(0.924974\pi\)
\(350\) 0 0
\(351\) 1.12507e6i 0.487429i
\(352\) −45657.0 520130.i −0.0196404 0.223746i
\(353\) 2.41039e6i 1.02956i 0.857323 + 0.514779i \(0.172126\pi\)
−0.857323 + 0.514779i \(0.827874\pi\)
\(354\) −305882. 888180.i −0.129732 0.376698i
\(355\) 5.16881e6 2.17680
\(356\) −870666. 1.11414e6i −0.364105 0.465922i
\(357\) 0 0
\(358\) 3.22523e6 1.11074e6i 1.33000 0.458043i
\(359\) 1.79755e6i 0.736114i 0.929803 + 0.368057i \(0.119977\pi\)
−0.929803 + 0.368057i \(0.880023\pi\)
\(360\) 574857. 885538.i 0.233778 0.360123i
\(361\) 754864. 0.304860
\(362\) 886245. 305216.i 0.355453 0.122415i
\(363\) 2.04091e6 0.812940
\(364\) 0 0
\(365\) −1.84778e6 −0.725970
\(366\) 750343. 258412.i 0.292791 0.100835i
\(367\) 502973. 0.194930 0.0974652 0.995239i \(-0.468927\pi\)
0.0974652 + 0.995239i \(0.468927\pi\)
\(368\) 4.00430e6 + 997400.i 1.54137 + 0.383928i
\(369\) 683823.i 0.261443i
\(370\) 4.54643e6 1.56575e6i 1.72650 0.594592i
\(371\) 0 0
\(372\) 2.90007e6 2.26633e6i 1.08655 0.849112i
\(373\) 206010. 0.0766685 0.0383342 0.999265i \(-0.487795\pi\)
0.0383342 + 0.999265i \(0.487795\pi\)
\(374\) −114988. 333888.i −0.0425084 0.123430i
\(375\) 2.19285e6i 0.805250i
\(376\) −4.24934e6 2.75850e6i −1.55007 1.00625i
\(377\) 2.25528e6i 0.817235i
\(378\) 0 0
\(379\) 1.82620e6i 0.653056i 0.945188 + 0.326528i \(0.105879\pi\)
−0.945188 + 0.326528i \(0.894121\pi\)
\(380\) −3.18330e6 4.07347e6i −1.13089 1.44712i
\(381\) 686526.i 0.242295i
\(382\) 4.47961e6 1.54274e6i 1.57066 0.540923i
\(383\) 383118. 0.133455 0.0667277 0.997771i \(-0.478744\pi\)
0.0667277 + 0.997771i \(0.478744\pi\)
\(384\) 1.80855e6 1.68787e6i 0.625897 0.584132i
\(385\) 0 0
\(386\) −219832. 638319.i −0.0750970 0.218057i
\(387\) 422141.i 0.143278i
\(388\) 1.58356e6 + 2.02638e6i 0.534016 + 0.683346i
\(389\) 4.92325e6 1.64960 0.824799 0.565427i \(-0.191288\pi\)
0.824799 + 0.565427i \(0.191288\pi\)
\(390\) −604961. 1.75660e6i −0.201403 0.584807i
\(391\) 2.79099e6 0.923243
\(392\) 0 0
\(393\) 405308. 0.132374
\(394\) 424025. + 1.23123e6i 0.137610 + 0.399574i
\(395\) −7.02315e6 −2.26485
\(396\) 115251. + 147480.i 0.0369324 + 0.0472601i
\(397\) 6.06605e6i 1.93165i −0.259186 0.965827i \(-0.583454\pi\)
0.259186 0.965827i \(-0.416546\pi\)
\(398\) 310272. + 900925.i 0.0981826 + 0.285089i
\(399\) 0 0
\(400\) −1.22589e6 + 4.92164e6i −0.383092 + 1.53801i
\(401\) −1.26119e6 −0.391670 −0.195835 0.980637i \(-0.562742\pi\)
−0.195835 + 0.980637i \(0.562742\pi\)
\(402\) −474073. + 163267.i −0.146312 + 0.0503888i
\(403\) 2.35973e6i 0.723769i
\(404\) 2.84601e6 + 3.64186e6i 0.867528 + 1.11012i
\(405\) 3.51151e6i 1.06379i
\(406\) 0 0
\(407\) 852475.i 0.255091i
\(408\) 911005. 1.40336e6i 0.270938 0.417367i
\(409\) 4.93737e6i 1.45945i −0.683743 0.729723i \(-0.739649\pi\)
0.683743 0.729723i \(-0.260351\pi\)
\(410\) 1.74463e6 + 5.06582e6i 0.512559 + 1.48830i
\(411\) −928295. −0.271070
\(412\) 1.61302e6 1.26053e6i 0.468162 0.365856i
\(413\) 0 0
\(414\) −1.39868e6 + 481696.i −0.401069 + 0.138125i
\(415\) 381814.i 0.108826i
\(416\) 138689. + 1.57996e6i 0.0392925 + 0.447625i
\(417\) −929972. −0.261897
\(418\) 866575. 298442.i 0.242586 0.0835447i
\(419\) 2.05004e6 0.570462 0.285231 0.958459i \(-0.407930\pi\)
0.285231 + 0.958459i \(0.407930\pi\)
\(420\) 0 0
\(421\) 4.46712e6 1.22835 0.614176 0.789169i \(-0.289489\pi\)
0.614176 + 0.789169i \(0.289489\pi\)
\(422\) 1.52920e6 526646.i 0.418008 0.143959i
\(423\) 1.81611e6 0.493504
\(424\) −3.13800e6 2.03707e6i −0.847693 0.550290i
\(425\) 3.43037e6i 0.921232i
\(426\) −4.10500e6 + 1.41373e6i −1.09595 + 0.377436i
\(427\) 0 0
\(428\) −2.68995e6 3.44216e6i −0.709799 0.908285i
\(429\) 329371. 0.0864057
\(430\) −1.07700e6 3.12726e6i −0.280896 0.815629i
\(431\) 5.25792e6i 1.36339i 0.731636 + 0.681696i \(0.238757\pi\)
−0.731636 + 0.681696i \(0.761243\pi\)
\(432\) −1.01698e6 + 4.08290e6i −0.262182 + 1.05259i
\(433\) 2.50514e6i 0.642113i −0.947060 0.321057i \(-0.895962\pi\)
0.947060 0.321057i \(-0.104038\pi\)
\(434\) 0 0
\(435\) 9.88006e6i 2.50344i
\(436\) −2.67218e6 + 2.08823e6i −0.673207 + 0.526092i
\(437\) 7.24375e6i 1.81451i
\(438\) 1.46749e6 505391.i 0.365501 0.125876i
\(439\) −2.23442e6 −0.553353 −0.276677 0.960963i \(-0.589233\pi\)
−0.276677 + 0.960963i \(0.589233\pi\)
\(440\) −1.23006e6 798505.i −0.302896 0.196628i
\(441\) 0 0
\(442\) 349293. + 1.01423e6i 0.0850421 + 0.246934i
\(443\) 5.06686e6i 1.22667i −0.789821 0.613337i \(-0.789827\pi\)
0.789821 0.613337i \(-0.210173\pi\)
\(444\) −3.18246e6 + 2.48701e6i −0.766136 + 0.598714i
\(445\) −3.97147e6 −0.950717
\(446\) −376107. 1.09209e6i −0.0895313 0.259969i
\(447\) −4.03780e6 −0.955819
\(448\) 0 0
\(449\) −5.80397e6 −1.35866 −0.679328 0.733835i \(-0.737728\pi\)
−0.679328 + 0.733835i \(0.737728\pi\)
\(450\) −592048. 1.71911e6i −0.137824 0.400195i
\(451\) −949865. −0.219898
\(452\) −2.85499e6 + 2.23110e6i −0.657293 + 0.513656i
\(453\) 1.48682e6i 0.340419i
\(454\) −769412. 2.23411e6i −0.175194 0.508705i
\(455\) 0 0
\(456\) 3.64228e6 + 2.36443e6i 0.820279 + 0.532493i
\(457\) 467087. 0.104618 0.0523092 0.998631i \(-0.483342\pi\)
0.0523092 + 0.998631i \(0.483342\pi\)
\(458\) 4.88564e6 1.68258e6i 1.08832 0.374810i
\(459\) 2.84577e6i 0.630476i
\(460\) 9.13263e6 7.13690e6i 2.01234 1.57259i
\(461\) 1.16943e6i 0.256285i −0.991756 0.128142i \(-0.959099\pi\)
0.991756 0.128142i \(-0.0409015\pi\)
\(462\) 0 0
\(463\) 1.26331e6i 0.273877i 0.990580 + 0.136939i \(0.0437263\pi\)
−0.990580 + 0.136939i \(0.956274\pi\)
\(464\) −2.03861e6 + 8.18446e6i −0.439580 + 1.76480i
\(465\) 1.03377e7i 2.21712i
\(466\) −2.58483e6 7.50549e6i −0.551401 1.60109i
\(467\) −9.13929e6 −1.93919 −0.969595 0.244716i \(-0.921305\pi\)
−0.969595 + 0.244716i \(0.921305\pi\)
\(468\) −350091. 447990.i −0.0738868 0.0945482i
\(469\) 0 0
\(470\) −1.34539e7 + 4.63342e6i −2.80933 + 0.967513i
\(471\) 1.49048e6i 0.309581i
\(472\) 1.88924e6 + 1.22642e6i 0.390330 + 0.253387i
\(473\) 586375. 0.120510
\(474\) 5.57770e6 1.92092e6i 1.14027 0.392701i
\(475\) −8.90322e6 −1.81056
\(476\) 0 0
\(477\) 1.34114e6 0.269885
\(478\) 7.68049e6 2.64510e6i 1.53751 0.529508i
\(479\) −4.19007e6 −0.834415 −0.417208 0.908811i \(-0.636991\pi\)
−0.417208 + 0.908811i \(0.636991\pi\)
\(480\) −607578. 6.92160e6i −0.120365 1.37121i
\(481\) 2.58951e6i 0.510334i
\(482\) −1.53565e6 + 528865.i −0.301074 + 0.103688i
\(483\) 0 0
\(484\) −3.85589e6 + 3.01327e6i −0.748190 + 0.584689i
\(485\) 7.22325e6 1.39437
\(486\) −878788. 2.55171e6i −0.168769 0.490050i
\(487\) 5.03451e6i 0.961911i 0.876745 + 0.480956i \(0.159710\pi\)
−0.876745 + 0.480956i \(0.840290\pi\)
\(488\) −1.03609e6 + 1.59605e6i −0.196947 + 0.303387i
\(489\) 2.69976e6i 0.510567i
\(490\) 0 0
\(491\) 4.18235e6i 0.782919i −0.920195 0.391460i \(-0.871970\pi\)
0.920195 0.391460i \(-0.128030\pi\)
\(492\) −2.77113e6 3.54604e6i −0.516112 0.660436i
\(493\) 5.70455e6i 1.05707i
\(494\) −2.63234e6 + 906557.i −0.485316 + 0.167139i
\(495\) 525709. 0.0964345
\(496\) −2.13302e6 + 8.56352e6i −0.389306 + 1.56296i
\(497\) 0 0
\(498\) 104431. + 303232.i 0.0188693 + 0.0547900i
\(499\) 3.52981e6i 0.634600i 0.948325 + 0.317300i \(0.102776\pi\)
−0.948325 + 0.317300i \(0.897224\pi\)
\(500\) 3.23759e6 + 4.14294e6i 0.579158 + 0.741112i
\(501\) −218624. −0.0389138
\(502\) 2.68065e6 + 7.78372e6i 0.474768 + 1.37857i
\(503\) 7.88657e6 1.38985 0.694926 0.719082i \(-0.255437\pi\)
0.694926 + 0.719082i \(0.255437\pi\)
\(504\) 0 0
\(505\) 1.29818e7 2.26521
\(506\) 669100. + 1.94284e6i 0.116176 + 0.337335i
\(507\) 3.95467e6 0.683267
\(508\) 1.01361e6 + 1.29705e6i 0.174265 + 0.222996i
\(509\) 1.39453e6i 0.238579i 0.992860 + 0.119289i \(0.0380616\pi\)
−0.992860 + 0.119289i \(0.961938\pi\)
\(510\) −1.53020e6 4.44319e6i −0.260509 0.756432i
\(511\) 0 0
\(512\) −924865. + 5.85910e6i −0.155921 + 0.987770i
\(513\) −7.38594e6 −1.23912
\(514\) 5.70515e6 1.96481e6i 0.952487 0.328029i
\(515\) 5.74979e6i 0.955288i
\(516\) 1.71069e6 + 2.18906e6i 0.282844 + 0.361937i
\(517\) 2.52267e6i 0.415081i
\(518\) 0 0
\(519\) 1.83031e6i 0.298267i
\(520\) 3.73646e6 + 2.42556e6i 0.605971 + 0.393373i
\(521\) 9.24415e6i 1.49201i −0.665939 0.746007i \(-0.731969\pi\)
0.665939 0.746007i \(-0.268031\pi\)
\(522\) −984548. 2.85880e6i −0.158147 0.459206i
\(523\) −1.84905e6 −0.295593 −0.147797 0.989018i \(-0.547218\pi\)
−0.147797 + 0.989018i \(0.547218\pi\)
\(524\) −765747. + 598410.i −0.121831 + 0.0952073i
\(525\) 0 0
\(526\) 6.15279e6 2.11897e6i 0.969634 0.333934i
\(527\) 5.96876e6i 0.936176i
\(528\) 1.19530e6 + 297727.i 0.186591 + 0.0464766i
\(529\) −9.80398e6 −1.52322
\(530\) −9.93529e6 + 3.42164e6i −1.53635 + 0.529108i
\(531\) −807436. −0.124272
\(532\) 0 0
\(533\) 2.88534e6 0.439925
\(534\) 3.15409e6 1.08625e6i 0.478654 0.164845i
\(535\) −1.22700e7 −1.85336
\(536\) 654612. 1.00840e6i 0.0984174 0.151607i
\(537\) 8.04761e6i 1.20429i
\(538\) 4.69386e6 1.61653e6i 0.699157 0.240784i
\(539\) 0 0
\(540\) 7.27699e6 + 9.31191e6i 1.07391 + 1.37421i
\(541\) 7.61135e6 1.11807 0.559034 0.829145i \(-0.311172\pi\)
0.559034 + 0.829145i \(0.311172\pi\)
\(542\) 3.79145e6 + 1.10091e7i 0.554379 + 1.60973i
\(543\) 2.21136e6i 0.321855i
\(544\) 350803. + 3.99640e6i 0.0508237 + 0.578990i
\(545\) 9.52528e6i 1.37368i
\(546\) 0 0
\(547\) 1.04808e7i 1.49771i 0.662735 + 0.748854i \(0.269396\pi\)
−0.662735 + 0.748854i \(0.730604\pi\)
\(548\) 1.75383e6 1.37057e6i 0.249480 0.194961i
\(549\) 682129.i 0.0965908i
\(550\) −2.38793e6 + 822384.i −0.336600 + 0.115923i
\(551\) −1.48056e7 −2.07753
\(552\) −5.30100e6 + 8.16592e6i −0.740474 + 1.14066i
\(553\) 0 0
\(554\) −1.99947e6 5.80578e6i −0.276783 0.803686i
\(555\) 1.13443e7i 1.56331i
\(556\) 1.75699e6 1.37304e6i 0.241037 0.188363i
\(557\) 8.15600e6 1.11388 0.556941 0.830552i \(-0.311975\pi\)
0.556941 + 0.830552i \(0.311975\pi\)
\(558\) −1.03015e6 2.99120e6i −0.140060 0.406687i
\(559\) −1.78119e6 −0.241091
\(560\) 0 0
\(561\) 833119. 0.111763
\(562\) −2.46231e6 7.14973e6i −0.328853 0.954880i
\(563\) −1.10987e7 −1.47571 −0.737853 0.674962i \(-0.764160\pi\)
−0.737853 + 0.674962i \(0.764160\pi\)
\(564\) 9.41762e6 7.35961e6i 1.24665 0.974220i
\(565\) 1.01770e7i 1.34121i
\(566\) −3.26626e6 9.48411e6i −0.428558 1.24439i
\(567\) 0 0
\(568\) 5.66829e6 8.73172e6i 0.737193 1.13561i
\(569\) −4.43267e6 −0.573964 −0.286982 0.957936i \(-0.592652\pi\)
−0.286982 + 0.957936i \(0.592652\pi\)
\(570\) 1.15319e7 3.97150e6i 1.48667 0.511997i
\(571\) 5.16366e6i 0.662777i 0.943494 + 0.331388i \(0.107517\pi\)
−0.943494 + 0.331388i \(0.892483\pi\)
\(572\) −622280. + 486295.i −0.0795236 + 0.0621454i
\(573\) 1.11776e7i 1.42220i
\(574\) 0 0
\(575\) 1.99608e7i 2.51773i
\(576\) −865540. 1.94222e6i −0.108700 0.243917i
\(577\) 3.41650e6i 0.427211i −0.976920 0.213605i \(-0.931479\pi\)
0.976920 0.213605i \(-0.0685206\pi\)
\(578\) −1.73187e6 5.02877e6i −0.215623 0.626098i
\(579\) 1.59274e6 0.197446
\(580\) 1.45872e7 + 1.86664e7i 1.80054 + 2.30404i
\(581\) 0 0
\(582\) −5.73662e6 + 1.97565e6i −0.702019 + 0.241770i
\(583\) 1.86291e6i 0.226997i
\(584\) −2.02634e6 + 3.12148e6i −0.245856 + 0.378729i
\(585\) −1.59691e6 −0.192926
\(586\) −5.80378e6 + 1.99878e6i −0.698179 + 0.240448i
\(587\) 1.63173e7 1.95458 0.977292 0.211899i \(-0.0679649\pi\)
0.977292 + 0.211899i \(0.0679649\pi\)
\(588\) 0 0
\(589\) −1.54914e7 −1.83993
\(590\) 5.98156e6 2.06000e6i 0.707431 0.243634i
\(591\) −3.07216e6 −0.361805
\(592\) 2.34072e6 9.39739e6i 0.274502 1.10205i
\(593\) 1.02246e7i 1.19401i −0.802236 0.597007i \(-0.796357\pi\)
0.802236 0.597007i \(-0.203643\pi\)
\(594\) −1.98098e6 + 682234.i −0.230364 + 0.0793355i
\(595\) 0 0
\(596\) 7.62860e6 5.96153e6i 0.879689 0.687452i
\(597\) −2.24799e6 −0.258142
\(598\) −2.03248e6 5.90164e6i −0.232420 0.674870i
\(599\) 1.06888e7i 1.21720i −0.793477 0.608601i \(-0.791731\pi\)
0.793477 0.608601i \(-0.208269\pi\)
\(600\) −1.00367e7 6.51540e6i −1.13818 0.738862i
\(601\) 9.61817e6i 1.08619i 0.839671 + 0.543096i \(0.182748\pi\)
−0.839671 + 0.543096i \(0.817252\pi\)
\(602\) 0 0
\(603\) 430975.i 0.0482680i
\(604\) −2.19519e6 2.80905e6i −0.244839 0.313305i
\(605\) 1.37448e7i 1.52669i
\(606\) −1.03100e7 + 3.55069e6i −1.14046 + 0.392764i
\(607\) 8.55600e6 0.942538 0.471269 0.881989i \(-0.343796\pi\)
0.471269 + 0.881989i \(0.343796\pi\)
\(608\) −1.03723e7 + 910478.i −1.13793 + 0.0998873i
\(609\) 0 0
\(610\) 1.74031e6 + 5.05328e6i 0.189366 + 0.549855i
\(611\) 7.66293e6i 0.830409i
\(612\) −885529. 1.13316e6i −0.0955706 0.122296i
\(613\) −8.45419e6 −0.908700 −0.454350 0.890823i \(-0.650129\pi\)
−0.454350 + 0.890823i \(0.650129\pi\)
\(614\) 3.41679e6 + 9.92122e6i 0.365761 + 1.06205i
\(615\) −1.26403e7 −1.34762
\(616\) 0 0
\(617\) 354693. 0.0375094 0.0187547 0.999824i \(-0.494030\pi\)
0.0187547 + 0.999824i \(0.494030\pi\)
\(618\) 1.57264e6 + 4.56642e6i 0.165637 + 0.480955i
\(619\) 3.08678e6 0.323802 0.161901 0.986807i \(-0.448238\pi\)
0.161901 + 0.986807i \(0.448238\pi\)
\(620\) 1.52628e7 + 1.95309e7i 1.59462 + 2.04053i
\(621\) 1.65591e7i 1.72309i
\(622\) −3.44092e6 9.99127e6i −0.356614 1.03549i
\(623\) 0 0
\(624\) −3.63087e6 904387.i −0.373293 0.0929807i
\(625\) −710569. −0.0727623
\(626\) −1.11690e7 + 3.84653e6i −1.13915 + 0.392313i
\(627\) 2.16228e6i 0.219656i
\(628\) 2.20059e6 + 2.81596e6i 0.222659 + 0.284923i
\(629\) 6.54996e6i 0.660103i
\(630\) 0 0
\(631\) 3.18364e6i 0.318310i −0.987254 0.159155i \(-0.949123\pi\)
0.987254 0.159155i \(-0.0508769\pi\)
\(632\) −7.70182e6 + 1.18643e7i −0.767010 + 1.18154i
\(633\) 3.81568e6i 0.378497i
\(634\) −2.03883e6 5.92008e6i −0.201446 0.584931i
\(635\) 4.62349e6 0.455026
\(636\) 6.95463e6 5.43484e6i 0.681759 0.532776i
\(637\) 0 0
\(638\) −3.97101e6 + 1.36759e6i −0.386233 + 0.133016i
\(639\) 3.73182e6i 0.361550i
\(640\) 1.13672e7 + 1.21799e7i 1.09699 + 1.17542i
\(641\) −8.87135e6 −0.852795 −0.426397 0.904536i \(-0.640217\pi\)
−0.426397 + 0.904536i \(0.640217\pi\)
\(642\) 9.74468e6 3.35599e6i 0.933104 0.321354i
\(643\) −1.13171e7 −1.07946 −0.539732 0.841837i \(-0.681474\pi\)
−0.539732 + 0.841837i \(0.681474\pi\)
\(644\) 0 0
\(645\) 7.80316e6 0.738535
\(646\) −6.65829e6 + 2.29306e6i −0.627743 + 0.216190i
\(647\) 7.45552e6 0.700192 0.350096 0.936714i \(-0.386149\pi\)
0.350096 + 0.936714i \(0.386149\pi\)
\(648\) −5.93204e6 3.85085e6i −0.554966 0.360262i
\(649\) 1.12157e6i 0.104524i
\(650\) 7.25365e6 2.49810e6i 0.673400 0.231914i
\(651\) 0 0
\(652\) 3.98601e6 + 5.10065e6i 0.367214 + 0.469901i
\(653\) 2.74051e6 0.251506 0.125753 0.992062i \(-0.459865\pi\)
0.125753 + 0.992062i \(0.459865\pi\)
\(654\) −2.60528e6 7.56486e6i −0.238183 0.691603i
\(655\) 2.72959e6i 0.248596i
\(656\) 1.04710e7 + 2.60813e6i 0.950008 + 0.236630i
\(657\) 1.33408e6i 0.120578i
\(658\) 0 0
\(659\) 3.98395e6i 0.357356i 0.983908 + 0.178678i \(0.0571820\pi\)
−0.983908 + 0.178678i \(0.942818\pi\)
\(660\) 2.72612e6 2.13039e6i 0.243605 0.190370i
\(661\) 1.24849e7i 1.11142i −0.831375 0.555712i \(-0.812446\pi\)
0.831375 0.555712i \(-0.187554\pi\)
\(662\) 2.99137e6 1.03021e6i 0.265293 0.0913648i
\(663\) −2.53071e6 −0.223593
\(664\) −645002. 418710.i −0.0567728 0.0368547i
\(665\) 0 0
\(666\) 1.13046e6 + 3.28247e6i 0.0987571 + 0.286757i
\(667\) 3.31939e7i 2.88898i
\(668\) 413045. 322783.i 0.0358143 0.0279879i
\(669\) 2.72499e6 0.235396
\(670\) −1.09954e6 3.19270e6i −0.0946291 0.274771i
\(671\) −947512. −0.0812416
\(672\) 0 0
\(673\) −2.97264e6 −0.252991 −0.126495 0.991967i \(-0.540373\pi\)
−0.126495 + 0.991967i \(0.540373\pi\)
\(674\) 3.91497e6 + 1.13678e7i 0.331954 + 0.963885i
\(675\) 2.03526e7 1.71934
\(676\) −7.47155e6 + 5.83880e6i −0.628845 + 0.491425i
\(677\) 1.78476e7i 1.49661i 0.663354 + 0.748305i \(0.269132\pi\)
−0.663354 + 0.748305i \(0.730868\pi\)
\(678\) −2.78352e6 8.08242e6i −0.232552 0.675254i
\(679\) 0 0
\(680\) 9.45108e6 + 6.13527e6i 0.783807 + 0.508817i
\(681\) 5.57457e6 0.460621
\(682\) −4.15493e6 + 1.43093e6i −0.342060 + 0.117803i
\(683\) 859663.i 0.0705142i 0.999378 + 0.0352571i \(0.0112250\pi\)
−0.999378 + 0.0352571i \(0.988775\pi\)
\(684\) 2.94100e6 2.29831e6i 0.240356 0.187831i
\(685\) 6.25172e6i 0.509065i
\(686\) 0 0
\(687\) 1.21907e7i 0.985452i
\(688\) −6.46399e6 1.61007e6i −0.520631 0.129680i
\(689\) 5.65884e6i 0.454129i
\(690\) 8.90401e6 + 2.58543e7i 0.711972 + 2.06733i
\(691\) 607080. 0.0483672 0.0241836 0.999708i \(-0.492301\pi\)
0.0241836 + 0.999708i \(0.492301\pi\)
\(692\) −2.70232e6 3.45799e6i −0.214522 0.274510i
\(693\) 0 0
\(694\) −4.04544e6 + 1.39322e6i −0.318835 + 0.109804i
\(695\) 6.26301e6i 0.491837i
\(696\) −1.66905e7 1.08348e7i −1.30601 0.847810i
\(697\) 7.29824e6 0.569032
\(698\) 5.68415e6 1.95758e6i 0.441598 0.152083i
\(699\) 1.87277e7 1.44975
\(700\) 0 0
\(701\) −2.09454e7 −1.60988 −0.804942 0.593354i \(-0.797804\pi\)
−0.804942 + 0.593354i \(0.797804\pi\)
\(702\) 6.01749e6 2.07238e6i 0.460864 0.158718i
\(703\) 1.69998e7 1.29735
\(704\) −2.69784e6 + 1.20228e6i −0.205156 + 0.0914268i
\(705\) 3.35702e7i 2.54379i
\(706\) 1.28921e7 4.43994e6i 0.973446 0.335247i
\(707\) 0 0
\(708\) −4.18704e6 + 3.27206e6i −0.313924 + 0.245323i
\(709\) −6.73565e6 −0.503227 −0.251614 0.967828i \(-0.580961\pi\)
−0.251614 + 0.967828i \(0.580961\pi\)
\(710\) −9.52095e6 2.76456e7i −0.708817 2.05817i
\(711\) 5.07063e6i 0.376173i
\(712\) −4.35525e6 + 6.70905e6i −0.321968 + 0.495976i
\(713\) 3.47313e7i 2.55857i
\(714\) 0 0
\(715\) 2.21819e6i 0.162268i
\(716\) −1.18817e7 1.52043e7i −0.866159 1.10837i
\(717\) 1.91644e7i 1.39219i
\(718\) 9.61430e6 3.31109e6i 0.695996 0.239696i
\(719\) 1.33017e7 0.959585 0.479792 0.877382i \(-0.340712\pi\)
0.479792 + 0.877382i \(0.340712\pi\)
\(720\) −5.79523e6 1.44349e6i −0.416619 0.103773i
\(721\) 0 0
\(722\) −1.39046e6 4.03743e6i −0.0992694 0.288245i
\(723\) 3.83176e6i 0.272616i
\(724\) −3.26493e6 4.17792e6i −0.231487 0.296220i
\(725\) 4.07983e7 2.88268
\(726\) −3.75937e6 1.09159e7i −0.264712 0.768634i
\(727\) −1.37948e7 −0.968012 −0.484006 0.875065i \(-0.660819\pi\)
−0.484006 + 0.875065i \(0.660819\pi\)
\(728\) 0 0
\(729\) 1.58609e7 1.10538
\(730\) 3.40362e6 + 9.88296e6i 0.236392 + 0.686404i
\(731\) −4.50539e6 −0.311845
\(732\) −2.76427e6 3.53726e6i −0.190679 0.243999i
\(733\) 2.30159e7i 1.58222i 0.611673 + 0.791111i \(0.290497\pi\)
−0.611673 + 0.791111i \(0.709503\pi\)
\(734\) −926476. 2.69018e6i −0.0634738 0.184307i
\(735\) 0 0
\(736\) −2.04127e6 2.32544e7i −0.138901 1.58238i
\(737\) 598646. 0.0405977
\(738\) −3.65746e6 + 1.25960e6i −0.247195 + 0.0851320i
\(739\) 8.18624e6i 0.551408i 0.961243 + 0.275704i \(0.0889110\pi\)
−0.961243 + 0.275704i \(0.911089\pi\)
\(740\) −1.67490e7 2.14327e7i −1.12437 1.43879i
\(741\) 6.56822e6i 0.439443i
\(742\) 0 0
\(743\) 1.02915e6i 0.0683924i −0.999415 0.0341962i \(-0.989113\pi\)
0.999415 0.0341962i \(-0.0108871\pi\)
\(744\) −1.74635e7 1.13366e7i −1.15664 0.750847i
\(745\) 2.71930e7i 1.79501i
\(746\) −379471. 1.10186e6i −0.0249650 0.0724900i
\(747\) 275665. 0.0180751
\(748\) −1.57401e6 + 1.23004e6i −0.102862 + 0.0803834i
\(749\) 0 0
\(750\) −1.17286e7 + 4.03923e6i −0.761363 + 0.262208i
\(751\) 1.49274e7i 0.965792i −0.875678 0.482896i \(-0.839585\pi\)
0.875678 0.482896i \(-0.160415\pi\)
\(752\) −6.92672e6 + 2.78090e7i −0.446666 + 1.79325i
\(753\) −1.94220e7 −1.24826
\(754\) 1.20625e7 4.15423e6i 0.772695 0.266110i
\(755\) −1.00132e7 −0.639301
\(756\) 0 0
\(757\) −1.14616e7 −0.726949 −0.363474 0.931604i \(-0.618410\pi\)
−0.363474 + 0.931604i \(0.618410\pi\)
\(758\) 9.76753e6 3.36386e6i 0.617464 0.212650i
\(759\) −4.84779e6 −0.305450
\(760\) −1.59235e7 + 2.45294e7i −1.00001 + 1.54047i
\(761\) 9.49769e6i 0.594506i −0.954799 0.297253i \(-0.903929\pi\)
0.954799 0.297253i \(-0.0960705\pi\)
\(762\) −3.67192e6 + 1.26458e6i −0.229090 + 0.0788968i
\(763\) 0 0
\(764\) −1.65029e7 2.11177e7i −1.02289 1.30892i
\(765\) −4.03926e6 −0.249545
\(766\) −705705. 2.04913e6i −0.0434561 0.126182i
\(767\) 3.40691e6i 0.209109i
\(768\) −1.23590e7 6.56408e6i −0.756103 0.401579i
\(769\) 5.58813e6i 0.340762i 0.985378 + 0.170381i \(0.0544998\pi\)
−0.985378 + 0.170381i \(0.945500\pi\)
\(770\) 0 0
\(771\) 1.42355e7i 0.862457i
\(772\) −3.00915e6 + 2.35157e6i −0.181719 + 0.142008i
\(773\) 1.38777e7i 0.835348i 0.908597 + 0.417674i \(0.137155\pi\)
−0.908597 + 0.417674i \(0.862845\pi\)
\(774\) 2.25785e6 777585.i 0.135470 0.0466547i
\(775\) 4.26879e7 2.55300
\(776\) 7.92127e6 1.22023e7i 0.472216 0.727425i
\(777\) 0 0
\(778\) −9.06863e6 2.63323e7i −0.537146 1.55969i
\(779\) 1.89419e7i 1.11836i
\(780\) −8.28096e6 + 6.47134e6i −0.487353 + 0.380853i
\(781\) 5.18368e6 0.304096
\(782\) −5.14100e6 1.49277e7i −0.300629 0.872926i
\(783\) 3.38455e7 1.97286
\(784\) 0 0
\(785\) 1.00378e7 0.581387
\(786\) −746577. 2.16781e6i −0.0431041 0.125160i
\(787\) −8.83903e6 −0.508707 −0.254353 0.967111i \(-0.581863\pi\)
−0.254353 + 0.967111i \(0.581863\pi\)
\(788\) 5.80422e6 4.53584e6i 0.332988 0.260221i
\(789\) 1.53525e7i 0.877982i
\(790\) 1.29366e7 + 3.75637e7i 0.737486 + 2.14141i
\(791\) 0 0
\(792\) 576511. 888086.i 0.0326584 0.0503086i
\(793\) 2.87819e6 0.162531
\(794\) −3.24446e7 + 1.11737e7i −1.82638 + 0.628991i
\(795\) 2.47906e7i 1.39113i
\(796\) 4.24713e6 3.31901e6i 0.237581 0.185663i
\(797\) 3.23169e7i 1.80212i 0.433692 + 0.901061i \(0.357211\pi\)
−0.433692 + 0.901061i \(0.642789\pi\)
\(798\) 0 0
\(799\) 1.93828e7i 1.07411i
\(800\) 2.85818e7 2.50891e6i 1.57893 0.138599i
\(801\) 2.86735e6i 0.157907i
\(802\) 2.32312e6 + 6.74555e6i 0.127537 + 0.370324i
\(803\) −1.85310e6 −0.101417
\(804\) 1.74649e6 + 2.23487e6i 0.0952851 + 0.121930i
\(805\) 0 0
\(806\) 1.26212e7 4.34663e6i 0.684324 0.235676i
\(807\) 1.17122e7i 0.633072i
\(808\) 1.42363e7 2.19304e7i 0.767132 1.18173i
\(809\) 9.13479e6 0.490713 0.245356 0.969433i \(-0.421095\pi\)
0.245356 + 0.969433i \(0.421095\pi\)
\(810\) −1.87815e7 + 6.46821e6i −1.00582 + 0.346395i
\(811\) 5.46042e6 0.291524 0.145762 0.989320i \(-0.453437\pi\)
0.145762 + 0.989320i \(0.453437\pi\)
\(812\) 0 0
\(813\) −2.74700e7 −1.45758
\(814\) 4.55951e6 1.57026e6i 0.241189 0.0830636i
\(815\) 1.81819e7 0.958835
\(816\) −9.18401e6 2.28758e6i −0.482844 0.120268i
\(817\) 1.16933e7i 0.612890i
\(818\) −2.64078e7 + 9.09465e6i −1.37990 + 0.475229i
\(819\) 0 0
\(820\) 2.38812e7 1.86625e7i 1.24029 0.969248i
\(821\) −2.66517e7 −1.37996 −0.689982 0.723827i \(-0.742381\pi\)
−0.689982 + 0.723827i \(0.742381\pi\)
\(822\) 1.70992e6 + 4.96504e6i 0.0882666 + 0.256297i
\(823\) 3.60068e7i 1.85304i −0.376246 0.926520i \(-0.622785\pi\)
0.376246 0.926520i \(-0.377215\pi\)
\(824\) −9.71319e6 6.30542e6i −0.498361 0.323516i
\(825\) 5.95837e6i 0.304784i
\(826\) 0 0
\(827\) 2.10722e7i 1.07139i 0.844412 + 0.535694i \(0.179950\pi\)
−0.844412 + 0.535694i \(0.820050\pi\)
\(828\) 5.15276e6 + 6.59365e6i 0.261194 + 0.334234i
\(829\) 7.66472e6i 0.387355i 0.981065 + 0.193678i \(0.0620416\pi\)
−0.981065 + 0.193678i \(0.937958\pi\)
\(830\) −2.04215e6 + 703301.i −0.102895 + 0.0354361i
\(831\) 1.44866e7 0.727720
\(832\) 8.19506e6 3.65208e6i 0.410435 0.182908i
\(833\) 0 0
\(834\) 1.71301e6 + 4.97401e6i 0.0852795 + 0.247623i
\(835\) 1.47235e6i 0.0730793i
\(836\) −3.19246e6 4.08519e6i −0.157983 0.202161i
\(837\) 3.54131e7 1.74723
\(838\) −3.77617e6 1.09647e7i −0.185755 0.539371i
\(839\) −2.25202e6 −0.110450 −0.0552252 0.998474i \(-0.517588\pi\)
−0.0552252 + 0.998474i \(0.517588\pi\)
\(840\) 0 0
\(841\) 4.73345e7 2.30775
\(842\) −8.22844e6 2.38926e7i −0.399979 1.16141i
\(843\) 1.78400e7 0.864623
\(844\) −5.63359e6 7.20895e6i −0.272226 0.348350i
\(845\) 2.66332e7i 1.28316i
\(846\) −3.34527e6 9.71355e6i −0.160696 0.466608i
\(847\) 0 0
\(848\) −5.11517e6 + 2.05361e7i −0.244270 + 0.980681i
\(849\) 2.36648e7 1.12677
\(850\) 1.83475e7 6.31875e6i 0.871025 0.299974i
\(851\) 3.81132e7i 1.80406i
\(852\) 1.51228e7 + 1.93517e7i 0.713731 + 0.913316i
\(853\) 2.75023e7i 1.29418i −0.762412 0.647092i \(-0.775985\pi\)
0.762412 0.647092i \(-0.224015\pi\)
\(854\) 0 0
\(855\) 1.04835e7i 0.490447i
\(856\) −1.34557e7 + 2.07278e7i −0.627656 + 0.966873i
\(857\) 1.03253e7i 0.480233i 0.970744 + 0.240116i \(0.0771856\pi\)
−0.970744 + 0.240116i \(0.922814\pi\)
\(858\) −606702. 1.76166e6i −0.0281357 0.0816966i
\(859\) −2.10893e7 −0.975168 −0.487584 0.873076i \(-0.662122\pi\)
−0.487584 + 0.873076i \(0.662122\pi\)
\(860\) −1.47425e7 + 1.15208e7i −0.679711 + 0.531175i
\(861\) 0 0
\(862\) 2.81222e7 9.68508e6i 1.28909 0.443951i
\(863\) 1.49585e7i 0.683695i 0.939755 + 0.341847i \(0.111053\pi\)
−0.939755 + 0.341847i \(0.888947\pi\)
\(864\) 2.37109e7 2.08134e6i 1.08060 0.0948547i
\(865\) −1.23264e7 −0.560140
\(866\) −1.33989e7 + 4.61446e6i −0.607118 + 0.209087i
\(867\) 1.25478e7 0.566918
\(868\) 0 0
\(869\) −7.04336e6 −0.316396
\(870\) −5.28440e7 + 1.81991e7i −2.36700 + 0.815176i
\(871\) −1.81847e6 −0.0812195
\(872\) 1.60912e7 + 1.04458e7i 0.716632 + 0.465209i
\(873\) 5.21510e6i 0.231594i
\(874\) 3.87436e7 1.33430e7i 1.71562 0.590846i
\(875\) 0 0
\(876\) −5.40622e6 6.91800e6i −0.238031 0.304593i
\(877\) −4.29065e6 −0.188375 −0.0941876 0.995554i \(-0.530025\pi\)
−0.0941876 + 0.995554i \(0.530025\pi\)
\(878\) 4.11579e6 + 1.19509e7i 0.180184 + 0.523195i
\(879\) 1.44816e7i 0.632186i
\(880\) −2.00508e6 + 8.04987e6i −0.0872821 + 0.350415i
\(881\) 3.13278e7i 1.35985i 0.733282 + 0.679925i \(0.237987\pi\)
−0.733282 + 0.679925i \(0.762013\pi\)
\(882\) 0 0
\(883\) 2.34445e7i 1.01190i 0.862562 + 0.505952i \(0.168859\pi\)
−0.862562 + 0.505952i \(0.831141\pi\)
\(884\) 4.78126e6 3.73642e6i 0.205784 0.160815i
\(885\) 1.49252e7i 0.640564i
\(886\) −2.71004e7 + 9.33316e6i −1.15982 + 0.399433i
\(887\) −2.55628e6 −0.109094 −0.0545468 0.998511i \(-0.517371\pi\)
−0.0545468 + 0.998511i \(0.517371\pi\)
\(888\) 1.91640e7 + 1.24405e7i 0.815555 + 0.529427i
\(889\) 0 0
\(890\) 7.31545e6 + 2.12416e7i 0.309575 + 0.898903i
\(891\) 3.52162e6i 0.148610i
\(892\) −5.14831e6 + 4.02326e6i −0.216647 + 0.169304i
\(893\) −5.03062e7 −2.11102
\(894\) 7.43763e6 + 2.15964e7i 0.311236 + 0.903727i
\(895\) −5.41976e7 −2.26163
\(896\) 0 0
\(897\) 1.47258e7 0.611080
\(898\) 1.06909e7 + 3.10428e7i 0.442409 + 1.28461i
\(899\) 7.09879e7 2.92944
\(900\) −8.10419e6 + 6.33320e6i −0.333506 + 0.260625i
\(901\) 1.43136e7i 0.587404i
\(902\) 1.74965e6 + 5.08040e6i 0.0716036 + 0.207913i
\(903\) 0 0
\(904\) 1.71920e7 + 1.11604e7i 0.699691 + 0.454212i
\(905\) −1.48927e7 −0.604438
\(906\) 7.95236e6 2.73873e6i 0.321866 0.110848i
\(907\) 1.39379e7i 0.562574i −0.959624 0.281287i \(-0.909239\pi\)
0.959624 0.281287i \(-0.0907612\pi\)
\(908\) −1.05320e7 + 8.23048e6i −0.423933 + 0.331292i
\(909\) 9.37274e6i 0.376233i
\(910\) 0 0
\(911\) 4.03701e7i 1.61162i −0.592171 0.805812i \(-0.701729\pi\)
0.592171 0.805812i \(-0.298271\pi\)
\(912\) 5.93719e6 2.38362e7i 0.236371 0.948966i
\(913\) 382912.i 0.0152028i
\(914\) −860376. 2.49824e6i −0.0340661 0.0989166i
\(915\) −1.26090e7 −0.497882
\(916\) −1.79987e7 2.30318e7i −0.708765 0.906961i
\(917\) 0 0
\(918\) 1.52208e7 5.24192e6i 0.596115 0.205297i
\(919\) 2.52684e7i 0.986938i −0.869763 0.493469i \(-0.835729\pi\)
0.869763 0.493469i \(-0.164271\pi\)
\(920\) −5.49944e7 3.57002e7i −2.14214 1.39060i
\(921\) −2.47555e7 −0.961662
\(922\) −6.25478e6 + 2.15410e6i −0.242317 + 0.0834522i
\(923\) −1.57461e7 −0.608373
\(924\) 0 0
\(925\) −4.68445e7 −1.80013
\(926\) 6.75686e6 2.32701e6i 0.258951 0.0891807i
\(927\) 4.15128e6 0.158666
\(928\) 4.75302e7 4.17219e6i 1.81175 0.159036i
\(929\) 2.01196e7i 0.764856i −0.923985 0.382428i \(-0.875088\pi\)
0.923985 0.382428i \(-0.124912\pi\)
\(930\) −5.52915e7 + 1.90420e7i −2.09629 + 0.721945i
\(931\) 0 0
\(932\) −3.53823e7 + 2.76502e7i −1.33428 + 1.04270i
\(933\) 2.49303e7 0.937611
\(934\) 1.68346e7 + 4.88820e7i 0.631444 + 1.83350i
\(935\) 5.61074e6i 0.209890i
\(936\) −1.75123e6 + 2.69768e6i −0.0653361 + 0.100647i
\(937\) 2.14075e7i 0.796556i 0.917265 + 0.398278i \(0.130392\pi\)
−0.917265 + 0.398278i \(0.869608\pi\)
\(938\) 0 0
\(939\) 2.78690e7i 1.03147i
\(940\) 4.95642e7 + 6.34241e7i 1.82957 + 2.34118i
\(941\) 1.34883e7i 0.496574i −0.968687 0.248287i \(-0.920132\pi\)
0.968687 0.248287i \(-0.0798676\pi\)
\(942\) −7.97191e6 + 2.74547e6i −0.292708 + 0.100807i
\(943\) −4.24673e7 −1.55516
\(944\) 3.07960e6 1.23638e7i 0.112477 0.451566i
\(945\) 0 0
\(946\) −1.08010e6 3.13626e6i −0.0392408 0.113942i
\(947\) 3.51268e6i 0.127281i −0.997973 0.0636406i \(-0.979729\pi\)
0.997973 0.0636406i \(-0.0202711\pi\)
\(948\) −2.05482e7 2.62943e7i −0.742598 0.950256i
\(949\) 5.62904e6 0.202894
\(950\) 1.63997e7 + 4.76193e7i 0.589560 + 1.71188i
\(951\) 1.47718e7 0.529642
\(952\) 0 0
\(953\) 1.69346e7 0.604008 0.302004 0.953307i \(-0.402344\pi\)
0.302004 + 0.953307i \(0.402344\pi\)
\(954\) −2.47038e6 7.17316e6i −0.0878806 0.255176i
\(955\) −7.52766e7 −2.67086
\(956\) −2.82949e7 3.62073e7i −1.00130 1.28130i
\(957\) 9.90849e6i 0.349726i
\(958\) 7.71811e6 + 2.24108e7i 0.271705 + 0.788939i
\(959\) 0 0
\(960\) −3.59014e7 + 1.59993e7i −1.25728 + 0.560301i
\(961\) 4.56466e7 1.59441
\(962\) −1.38501e7 + 4.76988e6i −0.482521 + 0.166176i
\(963\) 8.85879e6i 0.307829i
\(964\) 5.65733e6 + 7.23932e6i 0.196073 + 0.250903i
\(965\) 1.07265e7i 0.370799i
\(966\) 0 0
\(967\) 4.46651e6i 0.153604i −0.997046 0.0768020i \(-0.975529\pi\)
0.997046 0.0768020i \(-0.0244709\pi\)
\(968\) 2.32192e7 + 1.50730e7i 0.796451 + 0.517025i
\(969\) 1.66138e7i 0.568407i
\(970\) −1.33052e7 3.86340e7i −0.454039 1.31838i
\(971\) 1.22197e7 0.415924 0.207962 0.978137i \(-0.433317\pi\)
0.207962 + 0.978137i \(0.433317\pi\)
\(972\) −1.20292e7 + 9.40049e6i −0.408387 + 0.319143i
\(973\) 0 0
\(974\) 2.69274e7 9.27358e6i 0.909487 0.313220i
\(975\) 1.80993e7i 0.609749i
\(976\) 1.04450e7 + 2.60167e6i 0.350982 + 0.0874236i
\(977\) −3.37515e7 −1.13124 −0.565622 0.824664i \(-0.691364\pi\)
−0.565622 + 0.824664i \(0.691364\pi\)
\(978\) −1.44398e7 + 4.97296e6i −0.482741 + 0.166252i
\(979\) −3.98290e6 −0.132814
\(980\) 0 0
\(981\) −6.87714e6 −0.228158
\(982\) −2.23695e7 + 7.70390e6i −0.740250 + 0.254936i
\(983\) −3.28416e7 −1.08403 −0.542015 0.840369i \(-0.682338\pi\)
−0.542015 + 0.840369i \(0.682338\pi\)
\(984\) −1.38618e7 + 2.13533e7i −0.456384 + 0.703037i
\(985\) 2.06898e7i 0.679464i
\(986\) 3.05111e7 1.05078e7i 0.999461 0.344207i
\(987\) 0 0
\(988\) 9.69754e6 + 1.24093e7i 0.316060 + 0.404442i
\(989\) 2.62162e7 0.852273
\(990\) −968357. 2.81178e6i −0.0314013 0.0911788i
\(991\) 3.67267e7i 1.18795i 0.804484 + 0.593974i \(0.202442\pi\)
−0.804484 + 0.593974i \(0.797558\pi\)
\(992\) 4.97315e7 4.36543e6i 1.60455 0.140847i
\(993\) 7.46409e6i 0.240217i
\(994\) 0 0
\(995\) 1.51394e7i 0.484786i
\(996\) 1.42949e6 1.11711e6i 0.0456597 0.0356817i
\(997\) 3.75177e7i 1.19536i 0.801735 + 0.597680i \(0.203911\pi\)
−0.801735 + 0.597680i \(0.796089\pi\)
\(998\) 1.88794e7 6.50191e6i 0.600014 0.206640i
\(999\) −3.88614e7 −1.23198
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.6.d.c.195.18 yes 56
4.3 odd 2 inner 196.6.d.c.195.19 yes 56
7.6 odd 2 inner 196.6.d.c.195.17 56
28.27 even 2 inner 196.6.d.c.195.20 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.6.d.c.195.17 56 7.6 odd 2 inner
196.6.d.c.195.18 yes 56 1.1 even 1 trivial
196.6.d.c.195.19 yes 56 4.3 odd 2 inner
196.6.d.c.195.20 yes 56 28.27 even 2 inner