Properties

Label 196.6.e.l.165.3
Level $196$
Weight $6$
Character 196.165
Analytic conductor $31.435$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(165,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.165");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.4352286833\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} - 1166 x^{6} + 3512 x^{5} + 513939 x^{4} - 1033736 x^{3} - 101466410 x^{2} + \cdots + 7574050372 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.3
Root \(-17.3608 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 196.165
Dual form 196.6.e.l.177.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.65464 - 16.7223i) q^{3} +(24.9936 + 43.2902i) q^{5} +(-64.9240 - 112.452i) q^{9} +(175.576 - 304.107i) q^{11} -853.910 q^{13} +965.216 q^{15} +(1133.70 - 1963.63i) q^{17} +(100.814 + 174.615i) q^{19} +(534.608 + 925.968i) q^{23} +(313.140 - 542.375i) q^{25} +2184.88 q^{27} +6862.06 q^{29} +(2701.41 - 4678.98i) q^{31} +(-3390.24 - 5872.08i) q^{33} +(-4958.55 - 8588.46i) q^{37} +(-8244.19 + 14279.4i) q^{39} +9383.43 q^{41} -22378.6 q^{43} +(3245.37 - 5621.14i) q^{45} +(-3396.47 - 5882.86i) q^{47} +(-21891.0 - 37916.3i) q^{51} +(-1747.06 + 3026.00i) q^{53} +17553.1 q^{55} +3893.29 q^{57} +(13771.8 - 23853.4i) q^{59} +(-14450.9 - 25029.7i) q^{61} +(-21342.3 - 36965.9i) q^{65} +(-35229.8 + 61019.9i) q^{67} +20645.8 q^{69} +24149.9 q^{71} +(31115.3 - 53893.3i) q^{73} +(-6046.51 - 10472.9i) q^{75} +(39879.0 + 69072.4i) q^{79} +(36870.8 - 63862.1i) q^{81} -6356.40 q^{83} +113341. q^{85} +(66250.7 - 114750. i) q^{87} +(-30094.8 - 52125.7i) q^{89} +(-52162.2 - 90347.6i) q^{93} +(-5039.41 + 8728.52i) q^{95} +3180.12 q^{97} -45596.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 1480 q^{9} + 444 q^{11} - 7648 q^{15} - 3408 q^{23} - 11904 q^{25} + 41448 q^{29} - 13732 q^{37} - 25608 q^{39} - 57992 q^{43} - 181852 q^{51} - 528 q^{53} + 179080 q^{57} - 110220 q^{65} - 195384 q^{67}+ \cdots + 132824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.65464 16.7223i 0.619345 1.07274i −0.370260 0.928928i \(-0.620731\pi\)
0.989605 0.143809i \(-0.0459352\pi\)
\(4\) 0 0
\(5\) 24.9936 + 43.2902i 0.447099 + 0.774398i 0.998196 0.0600431i \(-0.0191238\pi\)
−0.551097 + 0.834441i \(0.685790\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −64.9240 112.452i −0.267177 0.462764i
\(10\) 0 0
\(11\) 175.576 304.107i 0.437505 0.757782i −0.559991 0.828499i \(-0.689195\pi\)
0.997496 + 0.0707170i \(0.0225287\pi\)
\(12\) 0 0
\(13\) −853.910 −1.40137 −0.700687 0.713469i \(-0.747123\pi\)
−0.700687 + 0.713469i \(0.747123\pi\)
\(14\) 0 0
\(15\) 965.216 1.10763
\(16\) 0 0
\(17\) 1133.70 1963.63i 0.951430 1.64792i 0.209095 0.977895i \(-0.432948\pi\)
0.742334 0.670030i \(-0.233719\pi\)
\(18\) 0 0
\(19\) 100.814 + 174.615i 0.0640674 + 0.110968i 0.896280 0.443489i \(-0.146259\pi\)
−0.832213 + 0.554457i \(0.812926\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 534.608 + 925.968i 0.210725 + 0.364986i 0.951942 0.306280i \(-0.0990842\pi\)
−0.741217 + 0.671266i \(0.765751\pi\)
\(24\) 0 0
\(25\) 313.140 542.375i 0.100205 0.173560i
\(26\) 0 0
\(27\) 2184.88 0.576791
\(28\) 0 0
\(29\) 6862.06 1.51516 0.757582 0.652740i \(-0.226380\pi\)
0.757582 + 0.652740i \(0.226380\pi\)
\(30\) 0 0
\(31\) 2701.41 4678.98i 0.504877 0.874473i −0.495107 0.868832i \(-0.664871\pi\)
0.999984 0.00564122i \(-0.00179567\pi\)
\(32\) 0 0
\(33\) −3390.24 5872.08i −0.541934 0.938657i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4958.55 8588.46i −0.595457 1.03136i −0.993482 0.113988i \(-0.963638\pi\)
0.398025 0.917375i \(-0.369696\pi\)
\(38\) 0 0
\(39\) −8244.19 + 14279.4i −0.867934 + 1.50331i
\(40\) 0 0
\(41\) 9383.43 0.871770 0.435885 0.900002i \(-0.356435\pi\)
0.435885 + 0.900002i \(0.356435\pi\)
\(42\) 0 0
\(43\) −22378.6 −1.84570 −0.922851 0.385158i \(-0.874147\pi\)
−0.922851 + 0.385158i \(0.874147\pi\)
\(44\) 0 0
\(45\) 3245.37 5621.14i 0.238909 0.413803i
\(46\) 0 0
\(47\) −3396.47 5882.86i −0.224276 0.388458i 0.731826 0.681492i \(-0.238668\pi\)
−0.956102 + 0.293034i \(0.905335\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −21891.0 37916.3i −1.17853 2.04127i
\(52\) 0 0
\(53\) −1747.06 + 3026.00i −0.0854317 + 0.147972i −0.905575 0.424186i \(-0.860560\pi\)
0.820143 + 0.572158i \(0.193894\pi\)
\(54\) 0 0
\(55\) 17553.1 0.782433
\(56\) 0 0
\(57\) 3893.29 0.158719
\(58\) 0 0
\(59\) 13771.8 23853.4i 0.515062 0.892114i −0.484785 0.874633i \(-0.661102\pi\)
0.999847 0.0174808i \(-0.00556458\pi\)
\(60\) 0 0
\(61\) −14450.9 25029.7i −0.497245 0.861254i 0.502750 0.864432i \(-0.332322\pi\)
−0.999995 + 0.00317808i \(0.998988\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −21342.3 36965.9i −0.626553 1.08522i
\(66\) 0 0
\(67\) −35229.8 + 61019.9i −0.958790 + 1.66067i −0.233345 + 0.972394i \(0.574967\pi\)
−0.725445 + 0.688280i \(0.758366\pi\)
\(68\) 0 0
\(69\) 20645.8 0.522046
\(70\) 0 0
\(71\) 24149.9 0.568550 0.284275 0.958743i \(-0.408247\pi\)
0.284275 + 0.958743i \(0.408247\pi\)
\(72\) 0 0
\(73\) 31115.3 53893.3i 0.683387 1.18366i −0.290554 0.956859i \(-0.593840\pi\)
0.973941 0.226802i \(-0.0728271\pi\)
\(74\) 0 0
\(75\) −6046.51 10472.9i −0.124123 0.214987i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 39879.0 + 69072.4i 0.718913 + 1.24519i 0.961431 + 0.275046i \(0.0886932\pi\)
−0.242518 + 0.970147i \(0.577973\pi\)
\(80\) 0 0
\(81\) 36870.8 63862.1i 0.624410 1.08151i
\(82\) 0 0
\(83\) −6356.40 −0.101278 −0.0506391 0.998717i \(-0.516126\pi\)
−0.0506391 + 0.998717i \(0.516126\pi\)
\(84\) 0 0
\(85\) 113341. 1.70153
\(86\) 0 0
\(87\) 66250.7 114750.i 0.938410 1.62537i
\(88\) 0 0
\(89\) −30094.8 52125.7i −0.402732 0.697552i 0.591323 0.806435i \(-0.298606\pi\)
−0.994055 + 0.108883i \(0.965273\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −52162.2 90347.6i −0.625387 1.08320i
\(94\) 0 0
\(95\) −5039.41 + 8728.52i −0.0572890 + 0.0992274i
\(96\) 0 0
\(97\) 3180.12 0.0343174 0.0171587 0.999853i \(-0.494538\pi\)
0.0171587 + 0.999853i \(0.494538\pi\)
\(98\) 0 0
\(99\) −45596.4 −0.467565
\(100\) 0 0
\(101\) −57609.6 + 99782.7i −0.561941 + 0.973311i 0.435386 + 0.900244i \(0.356612\pi\)
−0.997327 + 0.0730671i \(0.976721\pi\)
\(102\) 0 0
\(103\) 61032.7 + 105712.i 0.566852 + 0.981816i 0.996875 + 0.0789984i \(0.0251722\pi\)
−0.430023 + 0.902818i \(0.641494\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 27065.5 + 46878.8i 0.228537 + 0.395837i 0.957375 0.288849i \(-0.0932726\pi\)
−0.728838 + 0.684686i \(0.759939\pi\)
\(108\) 0 0
\(109\) −19919.2 + 34501.1i −0.160586 + 0.278142i −0.935079 0.354440i \(-0.884672\pi\)
0.774493 + 0.632582i \(0.218005\pi\)
\(110\) 0 0
\(111\) −191492. −1.47517
\(112\) 0 0
\(113\) −68432.6 −0.504159 −0.252079 0.967707i \(-0.581114\pi\)
−0.252079 + 0.967707i \(0.581114\pi\)
\(114\) 0 0
\(115\) −26723.6 + 46286.6i −0.188430 + 0.326370i
\(116\) 0 0
\(117\) 55439.3 + 96023.6i 0.374415 + 0.648505i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 18871.6 + 32686.6i 0.117178 + 0.202958i
\(122\) 0 0
\(123\) 90593.6 156913.i 0.539927 0.935180i
\(124\) 0 0
\(125\) 187516. 1.07340
\(126\) 0 0
\(127\) −256765. −1.41262 −0.706312 0.707901i \(-0.749642\pi\)
−0.706312 + 0.707901i \(0.749642\pi\)
\(128\) 0 0
\(129\) −216057. + 374222.i −1.14313 + 1.97995i
\(130\) 0 0
\(131\) −111262. 192711.i −0.566457 0.981133i −0.996912 0.0785210i \(-0.974980\pi\)
0.430455 0.902612i \(-0.358353\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 54608.1 + 94584.0i 0.257883 + 0.446666i
\(136\) 0 0
\(137\) −44204.5 + 76564.4i −0.201217 + 0.348518i −0.948921 0.315514i \(-0.897823\pi\)
0.747704 + 0.664033i \(0.231156\pi\)
\(138\) 0 0
\(139\) 105621. 0.463674 0.231837 0.972755i \(-0.425526\pi\)
0.231837 + 0.972755i \(0.425526\pi\)
\(140\) 0 0
\(141\) −131167. −0.555618
\(142\) 0 0
\(143\) −149926. + 259680.i −0.613109 + 1.06194i
\(144\) 0 0
\(145\) 171508. + 297060.i 0.677429 + 1.17334i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 224606. + 389029.i 0.828811 + 1.43554i 0.898971 + 0.438008i \(0.144316\pi\)
−0.0701597 + 0.997536i \(0.522351\pi\)
\(150\) 0 0
\(151\) −6412.37 + 11106.6i −0.0228863 + 0.0396403i −0.877242 0.480049i \(-0.840619\pi\)
0.854355 + 0.519689i \(0.173952\pi\)
\(152\) 0 0
\(153\) −294418. −1.01680
\(154\) 0 0
\(155\) 270072. 0.902921
\(156\) 0 0
\(157\) −77714.5 + 134605.i −0.251624 + 0.435826i −0.963973 0.265999i \(-0.914298\pi\)
0.712349 + 0.701826i \(0.247631\pi\)
\(158\) 0 0
\(159\) 33734.5 + 58429.9i 0.105823 + 0.183292i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 237031. + 410551.i 0.698774 + 1.21031i 0.968892 + 0.247485i \(0.0796042\pi\)
−0.270117 + 0.962827i \(0.587062\pi\)
\(164\) 0 0
\(165\) 169469. 293529.i 0.484596 0.839345i
\(166\) 0 0
\(167\) −308200. −0.855147 −0.427574 0.903981i \(-0.640632\pi\)
−0.427574 + 0.903981i \(0.640632\pi\)
\(168\) 0 0
\(169\) 357870. 0.963847
\(170\) 0 0
\(171\) 13090.5 22673.4i 0.0342347 0.0592962i
\(172\) 0 0
\(173\) 237470. + 411311.i 0.603245 + 1.04485i 0.992326 + 0.123648i \(0.0394594\pi\)
−0.389081 + 0.921204i \(0.627207\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −265923. 460592.i −0.638003 1.10505i
\(178\) 0 0
\(179\) 309853. 536681.i 0.722808 1.25194i −0.237062 0.971495i \(-0.576184\pi\)
0.959870 0.280446i \(-0.0904823\pi\)
\(180\) 0 0
\(181\) 108568. 0.246324 0.123162 0.992387i \(-0.460697\pi\)
0.123162 + 0.992387i \(0.460697\pi\)
\(182\) 0 0
\(183\) −558073. −1.23187
\(184\) 0 0
\(185\) 247864. 429313.i 0.532457 0.922242i
\(186\) 0 0
\(187\) −398102. 689533.i −0.832512 1.44195i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 122158. + 211585.i 0.242293 + 0.419663i 0.961367 0.275270i \(-0.0887673\pi\)
−0.719074 + 0.694933i \(0.755434\pi\)
\(192\) 0 0
\(193\) −32459.2 + 56221.0i −0.0627255 + 0.108644i −0.895683 0.444693i \(-0.853313\pi\)
0.832957 + 0.553337i \(0.186646\pi\)
\(194\) 0 0
\(195\) −824208. −1.55221
\(196\) 0 0
\(197\) 876652. 1.60939 0.804696 0.593687i \(-0.202328\pi\)
0.804696 + 0.593687i \(0.202328\pi\)
\(198\) 0 0
\(199\) 41282.9 71504.2i 0.0738989 0.127997i −0.826708 0.562631i \(-0.809789\pi\)
0.900607 + 0.434635i \(0.143122\pi\)
\(200\) 0 0
\(201\) 680263. + 1.17825e6i 1.18764 + 2.05706i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 234526. + 406210.i 0.389768 + 0.675097i
\(206\) 0 0
\(207\) 69417.8 120235.i 0.112602 0.195032i
\(208\) 0 0
\(209\) 70802.1 0.112119
\(210\) 0 0
\(211\) −271448. −0.419740 −0.209870 0.977729i \(-0.567304\pi\)
−0.209870 + 0.977729i \(0.567304\pi\)
\(212\) 0 0
\(213\) 233158. 403842.i 0.352129 0.609905i
\(214\) 0 0
\(215\) −559321. 968773.i −0.825211 1.42931i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −600813. 1.04064e6i −0.846505 1.46619i
\(220\) 0 0
\(221\) −968080. + 1.67676e6i −1.33331 + 2.30936i
\(222\) 0 0
\(223\) 1.33163e6 1.79316 0.896582 0.442878i \(-0.146043\pi\)
0.896582 + 0.442878i \(0.146043\pi\)
\(224\) 0 0
\(225\) −81321.3 −0.107090
\(226\) 0 0
\(227\) −275746. + 477607.i −0.355177 + 0.615185i −0.987148 0.159807i \(-0.948913\pi\)
0.631971 + 0.774992i \(0.282246\pi\)
\(228\) 0 0
\(229\) −379756. 657756.i −0.478537 0.828850i 0.521160 0.853459i \(-0.325499\pi\)
−0.999697 + 0.0246085i \(0.992166\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −403097. 698185.i −0.486430 0.842521i 0.513448 0.858120i \(-0.328368\pi\)
−0.999878 + 0.0155992i \(0.995034\pi\)
\(234\) 0 0
\(235\) 169780. 294068.i 0.200547 0.347358i
\(236\) 0 0
\(237\) 1.54007e6 1.78102
\(238\) 0 0
\(239\) −798850. −0.904629 −0.452315 0.891858i \(-0.649402\pi\)
−0.452315 + 0.891858i \(0.649402\pi\)
\(240\) 0 0
\(241\) −36843.9 + 63815.6i −0.0408624 + 0.0707757i −0.885733 0.464195i \(-0.846344\pi\)
0.844871 + 0.534970i \(0.179677\pi\)
\(242\) 0 0
\(243\) −446485. 773334.i −0.485055 0.840140i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −86086.2 149106.i −0.0897824 0.155508i
\(248\) 0 0
\(249\) −61368.7 + 106294.i −0.0627262 + 0.108645i
\(250\) 0 0
\(251\) −25091.9 −0.0251391 −0.0125696 0.999921i \(-0.504001\pi\)
−0.0125696 + 0.999921i \(0.504001\pi\)
\(252\) 0 0
\(253\) 375457. 0.368773
\(254\) 0 0
\(255\) 1.09427e6 1.89533e6i 1.05384 1.82530i
\(256\) 0 0
\(257\) 181765. + 314826.i 0.171663 + 0.297329i 0.939001 0.343913i \(-0.111753\pi\)
−0.767338 + 0.641243i \(0.778419\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −445513. 771650.i −0.404817 0.701163i
\(262\) 0 0
\(263\) −1.05325e6 + 1.82428e6i −0.938946 + 1.62630i −0.171505 + 0.985183i \(0.554863\pi\)
−0.767441 + 0.641119i \(0.778470\pi\)
\(264\) 0 0
\(265\) −174662. −0.152786
\(266\) 0 0
\(267\) −1.16222e6 −0.997720
\(268\) 0 0
\(269\) −368099. + 637566.i −0.310159 + 0.537211i −0.978397 0.206737i \(-0.933716\pi\)
0.668238 + 0.743948i \(0.267049\pi\)
\(270\) 0 0
\(271\) −282812. 489844.i −0.233924 0.405168i 0.725036 0.688711i \(-0.241823\pi\)
−0.958959 + 0.283544i \(0.908490\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −109960. 190456.i −0.0876804 0.151867i
\(276\) 0 0
\(277\) 256114. 443603.i 0.200555 0.347372i −0.748152 0.663527i \(-0.769059\pi\)
0.948708 + 0.316155i \(0.102392\pi\)
\(278\) 0 0
\(279\) −701545. −0.539566
\(280\) 0 0
\(281\) 541721. 0.409270 0.204635 0.978838i \(-0.434399\pi\)
0.204635 + 0.978838i \(0.434399\pi\)
\(282\) 0 0
\(283\) 829595. 1.43690e6i 0.615744 1.06650i −0.374510 0.927223i \(-0.622189\pi\)
0.990253 0.139277i \(-0.0444778\pi\)
\(284\) 0 0
\(285\) 97307.4 + 168541.i 0.0709633 + 0.122912i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.86063e6 3.22271e6i −1.31044 2.26974i
\(290\) 0 0
\(291\) 30702.9 53179.0i 0.0212543 0.0368136i
\(292\) 0 0
\(293\) 130633. 0.0888962 0.0444481 0.999012i \(-0.485847\pi\)
0.0444481 + 0.999012i \(0.485847\pi\)
\(294\) 0 0
\(295\) 1.37682e6 0.921136
\(296\) 0 0
\(297\) 383613. 664437.i 0.252349 0.437082i
\(298\) 0 0
\(299\) −456507. 790694.i −0.295304 0.511482i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.11240e6 + 1.92673e6i 0.696071 + 1.20563i
\(304\) 0 0
\(305\) 722360. 1.25116e6i 0.444636 0.770132i
\(306\) 0 0
\(307\) −789634. −0.478167 −0.239084 0.970999i \(-0.576847\pi\)
−0.239084 + 0.970999i \(0.576847\pi\)
\(308\) 0 0
\(309\) 2.35699e6 1.40431
\(310\) 0 0
\(311\) 967984. 1.67660e6i 0.567502 0.982942i −0.429310 0.903157i \(-0.641243\pi\)
0.996812 0.0797851i \(-0.0254234\pi\)
\(312\) 0 0
\(313\) 914168. + 1.58338e6i 0.527430 + 0.913536i 0.999489 + 0.0319688i \(0.0101777\pi\)
−0.472059 + 0.881567i \(0.656489\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 841575. + 1.45765e6i 0.470376 + 0.814715i 0.999426 0.0338759i \(-0.0107851\pi\)
−0.529050 + 0.848590i \(0.677452\pi\)
\(318\) 0 0
\(319\) 1.20481e6 2.08680e6i 0.662893 1.14816i
\(320\) 0 0
\(321\) 1.04523e6 0.566173
\(322\) 0 0
\(323\) 457173. 0.243823
\(324\) 0 0
\(325\) −267394. + 463139.i −0.140424 + 0.243222i
\(326\) 0 0
\(327\) 384626. + 666192.i 0.198916 + 0.344532i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.49080e6 + 2.58215e6i 0.747912 + 1.29542i 0.948822 + 0.315811i \(0.102277\pi\)
−0.200910 + 0.979610i \(0.564390\pi\)
\(332\) 0 0
\(333\) −643858. + 1.11519e6i −0.318185 + 0.551112i
\(334\) 0 0
\(335\) −3.52208e6 −1.71470
\(336\) 0 0
\(337\) −1.45801e6 −0.699335 −0.349668 0.936874i \(-0.613705\pi\)
−0.349668 + 0.936874i \(0.613705\pi\)
\(338\) 0 0
\(339\) −660692. + 1.14435e6i −0.312248 + 0.540830i
\(340\) 0 0
\(341\) −948605. 1.64303e6i −0.441773 0.765174i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 516012. + 893760.i 0.233406 + 0.404271i
\(346\) 0 0
\(347\) −1.67340e6 + 2.89842e6i −0.746065 + 1.29222i 0.203631 + 0.979048i \(0.434726\pi\)
−0.949696 + 0.313174i \(0.898608\pi\)
\(348\) 0 0
\(349\) 3.49755e6 1.53709 0.768546 0.639794i \(-0.220980\pi\)
0.768546 + 0.639794i \(0.220980\pi\)
\(350\) 0 0
\(351\) −1.86569e6 −0.808300
\(352\) 0 0
\(353\) −1.50300e6 + 2.60327e6i −0.641981 + 1.11194i 0.343009 + 0.939332i \(0.388554\pi\)
−0.984990 + 0.172611i \(0.944780\pi\)
\(354\) 0 0
\(355\) 603592. + 1.04545e6i 0.254198 + 0.440284i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −616235. 1.06735e6i −0.252354 0.437090i 0.711819 0.702362i \(-0.247871\pi\)
−0.964173 + 0.265273i \(0.914538\pi\)
\(360\) 0 0
\(361\) 1.21772e6 2.10916e6i 0.491791 0.851807i
\(362\) 0 0
\(363\) 728795. 0.290294
\(364\) 0 0
\(365\) 3.11073e6 1.22217
\(366\) 0 0
\(367\) −1.08024e6 + 1.87103e6i −0.418653 + 0.725128i −0.995804 0.0915094i \(-0.970831\pi\)
0.577152 + 0.816637i \(0.304164\pi\)
\(368\) 0 0
\(369\) −609210. 1.05518e6i −0.232917 0.403424i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 667602. + 1.15632e6i 0.248454 + 0.430335i 0.963097 0.269154i \(-0.0867442\pi\)
−0.714643 + 0.699489i \(0.753411\pi\)
\(374\) 0 0
\(375\) 1.81040e6 3.13570e6i 0.664808 1.15148i
\(376\) 0 0
\(377\) −5.85959e6 −2.12331
\(378\) 0 0
\(379\) −3.68471e6 −1.31767 −0.658834 0.752289i \(-0.728950\pi\)
−0.658834 + 0.752289i \(0.728950\pi\)
\(380\) 0 0
\(381\) −2.47897e6 + 4.29371e6i −0.874902 + 1.51537i
\(382\) 0 0
\(383\) 2.00557e6 + 3.47375e6i 0.698620 + 1.21005i 0.968945 + 0.247276i \(0.0795355\pi\)
−0.270325 + 0.962769i \(0.587131\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.45291e6 + 2.51651e6i 0.493129 + 0.854124i
\(388\) 0 0
\(389\) 903585. 1.56505e6i 0.302757 0.524391i −0.674002 0.738729i \(-0.735426\pi\)
0.976760 + 0.214338i \(0.0687595\pi\)
\(390\) 0 0
\(391\) 2.42435e6 0.801960
\(392\) 0 0
\(393\) −4.29676e6 −1.40333
\(394\) 0 0
\(395\) −1.99344e6 + 3.45273e6i −0.642850 + 1.11345i
\(396\) 0 0
\(397\) 1.64164e6 + 2.84341e6i 0.522759 + 0.905446i 0.999649 + 0.0264828i \(0.00843073\pi\)
−0.476890 + 0.878963i \(0.658236\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.54549e6 2.67686e6i −0.479959 0.831313i 0.519777 0.854302i \(-0.326015\pi\)
−0.999736 + 0.0229888i \(0.992682\pi\)
\(402\) 0 0
\(403\) −2.30676e6 + 3.99543e6i −0.707522 + 1.22546i
\(404\) 0 0
\(405\) 3.68613e6 1.11669
\(406\) 0 0
\(407\) −3.48241e6 −1.04206
\(408\) 0 0
\(409\) −208424. + 361000.i −0.0616082 + 0.106709i −0.895184 0.445696i \(-0.852956\pi\)
0.833576 + 0.552404i \(0.186290\pi\)
\(410\) 0 0
\(411\) 853557. + 1.47840e6i 0.249246 + 0.431706i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −158869. 275170.i −0.0452814 0.0784297i
\(416\) 0 0
\(417\) 1.01973e6 1.76622e6i 0.287174 0.497400i
\(418\) 0 0
\(419\) −4.70440e6 −1.30909 −0.654544 0.756024i \(-0.727139\pi\)
−0.654544 + 0.756024i \(0.727139\pi\)
\(420\) 0 0
\(421\) −2.75525e6 −0.757626 −0.378813 0.925473i \(-0.623668\pi\)
−0.378813 + 0.925473i \(0.623668\pi\)
\(422\) 0 0
\(423\) −441025. + 763877.i −0.119843 + 0.207574i
\(424\) 0 0
\(425\) −710016. 1.22978e6i −0.190676 0.330260i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.89497e6 + 5.01423e6i 0.759452 + 1.31541i
\(430\) 0 0
\(431\) 124955. 216428.i 0.0324011 0.0561203i −0.849370 0.527798i \(-0.823018\pi\)
0.881771 + 0.471677i \(0.156351\pi\)
\(432\) 0 0
\(433\) −7.61708e6 −1.95240 −0.976199 0.216875i \(-0.930414\pi\)
−0.976199 + 0.216875i \(0.930414\pi\)
\(434\) 0 0
\(435\) 6.62338e6 1.67825
\(436\) 0 0
\(437\) −107792. + 186701.i −0.0270012 + 0.0467675i
\(438\) 0 0
\(439\) −1.65424e6 2.86522e6i −0.409672 0.709573i 0.585181 0.810903i \(-0.301024\pi\)
−0.994853 + 0.101330i \(0.967690\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −695387. 1.20444e6i −0.168351 0.291593i 0.769489 0.638660i \(-0.220511\pi\)
−0.937840 + 0.347067i \(0.887178\pi\)
\(444\) 0 0
\(445\) 1.50435e6 2.60562e6i 0.360122 0.623750i
\(446\) 0 0
\(447\) 8.67396e6 2.05328
\(448\) 0 0
\(449\) 7.39368e6 1.73079 0.865396 0.501089i \(-0.167067\pi\)
0.865396 + 0.501089i \(0.167067\pi\)
\(450\) 0 0
\(451\) 1.64751e6 2.85356e6i 0.381404 0.660612i
\(452\) 0 0
\(453\) 123818. + 214459.i 0.0283491 + 0.0491021i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.77267e6 + 3.07035e6i 0.397042 + 0.687697i 0.993360 0.115051i \(-0.0367033\pi\)
−0.596317 + 0.802749i \(0.703370\pi\)
\(458\) 0 0
\(459\) 2.47701e6 4.29030e6i 0.548777 0.950509i
\(460\) 0 0
\(461\) −4.59122e6 −1.00618 −0.503090 0.864234i \(-0.667804\pi\)
−0.503090 + 0.864234i \(0.667804\pi\)
\(462\) 0 0
\(463\) −183800. −0.0398468 −0.0199234 0.999802i \(-0.506342\pi\)
−0.0199234 + 0.999802i \(0.506342\pi\)
\(464\) 0 0
\(465\) 2.60744e6 4.51622e6i 0.559220 0.968597i
\(466\) 0 0
\(467\) −1.29180e6 2.23747e6i −0.274097 0.474750i 0.695810 0.718226i \(-0.255046\pi\)
−0.969907 + 0.243476i \(0.921712\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.50061e6 + 2.59913e6i 0.311685 + 0.539854i
\(472\) 0 0
\(473\) −3.92914e6 + 6.80547e6i −0.807504 + 1.39864i
\(474\) 0 0
\(475\) 126276. 0.0256795
\(476\) 0 0
\(477\) 453705. 0.0913015
\(478\) 0 0
\(479\) −3.65373e6 + 6.32844e6i −0.727608 + 1.26025i 0.230284 + 0.973123i \(0.426035\pi\)
−0.957892 + 0.287130i \(0.907299\pi\)
\(480\) 0 0
\(481\) 4.23416e6 + 7.33378e6i 0.834458 + 1.44532i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 79482.7 + 137668.i 0.0153433 + 0.0265753i
\(486\) 0 0
\(487\) 2.54228e6 4.40336e6i 0.485737 0.841321i −0.514129 0.857713i \(-0.671885\pi\)
0.999866 + 0.0163923i \(0.00521806\pi\)
\(488\) 0 0
\(489\) 9.15381e6 1.73113
\(490\) 0 0
\(491\) 5.83908e6 1.09305 0.546526 0.837442i \(-0.315950\pi\)
0.546526 + 0.837442i \(0.315950\pi\)
\(492\) 0 0
\(493\) 7.77954e6 1.34746e7i 1.44157 2.49688i
\(494\) 0 0
\(495\) −1.13962e6 1.97388e6i −0.209048 0.362082i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.39100e6 7.60544e6i −0.789428 1.36733i −0.926318 0.376743i \(-0.877044\pi\)
0.136890 0.990586i \(-0.456289\pi\)
\(500\) 0 0
\(501\) −2.97555e6 + 5.15381e6i −0.529631 + 0.917348i
\(502\) 0 0
\(503\) −2.64568e6 −0.466248 −0.233124 0.972447i \(-0.574895\pi\)
−0.233124 + 0.972447i \(0.574895\pi\)
\(504\) 0 0
\(505\) −5.75948e6 −1.00497
\(506\) 0 0
\(507\) 3.45510e6 5.98441e6i 0.596954 1.03396i
\(508\) 0 0
\(509\) −5.58601e6 9.67525e6i −0.955668 1.65527i −0.732831 0.680410i \(-0.761802\pi\)
−0.222837 0.974856i \(-0.571532\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 220267. + 381514.i 0.0369535 + 0.0640054i
\(514\) 0 0
\(515\) −3.05085e6 + 5.28424e6i −0.506878 + 0.877938i
\(516\) 0 0
\(517\) −2.38535e6 −0.392488
\(518\) 0 0
\(519\) 9.17076e6 1.49447
\(520\) 0 0
\(521\) 1.08803e6 1.88453e6i 0.175610 0.304165i −0.764762 0.644312i \(-0.777144\pi\)
0.940372 + 0.340148i \(0.110477\pi\)
\(522\) 0 0
\(523\) 3.63489e6 + 6.29582e6i 0.581082 + 1.00646i 0.995352 + 0.0963088i \(0.0307036\pi\)
−0.414270 + 0.910154i \(0.635963\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.12519e6 1.06091e7i −0.960711 1.66400i
\(528\) 0 0
\(529\) 2.64656e6 4.58398e6i 0.411190 0.712202i
\(530\) 0 0
\(531\) −3.57647e6 −0.550451
\(532\) 0 0
\(533\) −8.01261e6 −1.22168
\(534\) 0 0
\(535\) −1.35293e6 + 2.34334e6i −0.204357 + 0.353957i
\(536\) 0 0
\(537\) −5.98303e6 1.03629e7i −0.895336 1.55077i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.83471e6 3.17782e6i −0.269510 0.466805i 0.699225 0.714901i \(-0.253528\pi\)
−0.968735 + 0.248096i \(0.920195\pi\)
\(542\) 0 0
\(543\) 1.04819e6 1.81551e6i 0.152559 0.264241i
\(544\) 0 0
\(545\) −1.99141e6 −0.287191
\(546\) 0 0
\(547\) −2.30515e6 −0.329406 −0.164703 0.986343i \(-0.552667\pi\)
−0.164703 + 0.986343i \(0.552667\pi\)
\(548\) 0 0
\(549\) −1.87642e6 + 3.25006e6i −0.265705 + 0.460214i
\(550\) 0 0
\(551\) 691793. + 1.19822e6i 0.0970727 + 0.168135i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.78608e6 8.28973e6i −0.659549 1.14237i
\(556\) 0 0
\(557\) −5.68748e6 + 9.85101e6i −0.776752 + 1.34537i 0.157053 + 0.987590i \(0.449801\pi\)
−0.933805 + 0.357783i \(0.883533\pi\)
\(558\) 0 0
\(559\) 1.91093e7 2.58652
\(560\) 0 0
\(561\) −1.53741e7 −2.06245
\(562\) 0 0
\(563\) −1.74187e6 + 3.01701e6i −0.231604 + 0.401150i −0.958280 0.285830i \(-0.907731\pi\)
0.726676 + 0.686980i \(0.241064\pi\)
\(564\) 0 0
\(565\) −1.71038e6 2.96246e6i −0.225409 0.390420i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.48015e6 4.29574e6i −0.321142 0.556234i 0.659582 0.751632i \(-0.270733\pi\)
−0.980724 + 0.195399i \(0.937400\pi\)
\(570\) 0 0
\(571\) −5.42961e6 + 9.40436e6i −0.696912 + 1.20709i 0.272619 + 0.962122i \(0.412110\pi\)
−0.969532 + 0.244966i \(0.921223\pi\)
\(572\) 0 0
\(573\) 4.71758e6 0.600251
\(574\) 0 0
\(575\) 669629. 0.0844627
\(576\) 0 0
\(577\) 2.92290e6 5.06261e6i 0.365489 0.633045i −0.623366 0.781930i \(-0.714235\pi\)
0.988854 + 0.148885i \(0.0475685\pi\)
\(578\) 0 0
\(579\) 626763. + 1.08559e6i 0.0776975 + 0.134576i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 613485. + 1.06259e6i 0.0747537 + 0.129477i
\(584\) 0 0
\(585\) −2.77125e6 + 4.79995e6i −0.334801 + 0.579892i
\(586\) 0 0
\(587\) −4.30716e6 −0.515936 −0.257968 0.966153i \(-0.583053\pi\)
−0.257968 + 0.966153i \(0.583053\pi\)
\(588\) 0 0
\(589\) 1.08936e6 0.129385
\(590\) 0 0
\(591\) 8.46376e6 1.46597e7i 0.996769 1.72645i
\(592\) 0 0
\(593\) 991555. + 1.71742e6i 0.115792 + 0.200558i 0.918096 0.396358i \(-0.129726\pi\)
−0.802304 + 0.596916i \(0.796393\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −797144. 1.38069e6i −0.0915379 0.158548i
\(598\) 0 0
\(599\) 2.58046e6 4.46949e6i 0.293853 0.508969i −0.680864 0.732410i \(-0.738396\pi\)
0.974717 + 0.223441i \(0.0717290\pi\)
\(600\) 0 0
\(601\) 9.35142e6 1.05607 0.528033 0.849224i \(-0.322930\pi\)
0.528033 + 0.849224i \(0.322930\pi\)
\(602\) 0 0
\(603\) 9.14905e6 1.02467
\(604\) 0 0
\(605\) −943340. + 1.63391e6i −0.104780 + 0.181485i
\(606\) 0 0
\(607\) −2.49850e6 4.32753e6i −0.275237 0.476725i 0.694958 0.719051i \(-0.255423\pi\)
−0.970195 + 0.242325i \(0.922090\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.90028e6 + 5.02343e6i 0.314295 + 0.544374i
\(612\) 0 0
\(613\) 1.81619e6 3.14574e6i 0.195214 0.338121i −0.751757 0.659441i \(-0.770793\pi\)
0.946971 + 0.321320i \(0.104127\pi\)
\(614\) 0 0
\(615\) 9.05704e6 0.965603
\(616\) 0 0
\(617\) 8.56763e6 0.906041 0.453021 0.891500i \(-0.350346\pi\)
0.453021 + 0.891500i \(0.350346\pi\)
\(618\) 0 0
\(619\) −8.51560e6 + 1.47494e7i −0.893282 + 1.54721i −0.0573647 + 0.998353i \(0.518270\pi\)
−0.835917 + 0.548856i \(0.815064\pi\)
\(620\) 0 0
\(621\) 1.16806e6 + 2.02313e6i 0.121544 + 0.210521i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.70814e6 + 6.42268e6i 0.379713 + 0.657682i
\(626\) 0 0
\(627\) 683569. 1.18398e6i 0.0694406 0.120275i
\(628\) 0 0
\(629\) −2.24861e7 −2.26614
\(630\) 0 0
\(631\) 5.97254e6 0.597153 0.298576 0.954386i \(-0.403488\pi\)
0.298576 + 0.954386i \(0.403488\pi\)
\(632\) 0 0
\(633\) −2.62073e6 + 4.53924e6i −0.259964 + 0.450271i
\(634\) 0 0
\(635\) −6.41748e6 1.11154e7i −0.631583 1.09393i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.56791e6 2.71569e6i −0.151903 0.263104i
\(640\) 0 0
\(641\) −3.19514e6 + 5.53414e6i −0.307146 + 0.531992i −0.977737 0.209835i \(-0.932707\pi\)
0.670591 + 0.741827i \(0.266041\pi\)
\(642\) 0 0
\(643\) 4.19353e6 0.399993 0.199996 0.979797i \(-0.435907\pi\)
0.199996 + 0.979797i \(0.435907\pi\)
\(644\) 0 0
\(645\) −2.16002e7 −2.04436
\(646\) 0 0
\(647\) 4.51885e6 7.82688e6i 0.424392 0.735069i −0.571971 0.820274i \(-0.693821\pi\)
0.996363 + 0.0852048i \(0.0271544\pi\)
\(648\) 0 0
\(649\) −4.83599e6 8.37617e6i −0.450685 0.780610i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.38371e6 + 7.59281e6i 0.402308 + 0.696818i 0.994004 0.109343i \(-0.0348747\pi\)
−0.591696 + 0.806161i \(0.701541\pi\)
\(654\) 0 0
\(655\) 5.56166e6 9.63307e6i 0.506525 0.877327i
\(656\) 0 0
\(657\) −8.08051e6 −0.730341
\(658\) 0 0
\(659\) 1.87668e7 1.68336 0.841680 0.539977i \(-0.181567\pi\)
0.841680 + 0.539977i \(0.181567\pi\)
\(660\) 0 0
\(661\) 3.50973e6 6.07902e6i 0.312442 0.541166i −0.666448 0.745551i \(-0.732186\pi\)
0.978890 + 0.204386i \(0.0655196\pi\)
\(662\) 0 0
\(663\) 1.86929e7 + 3.23771e7i 1.65156 + 2.86058i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.66852e6 + 6.35406e6i 0.319283 + 0.553014i
\(668\) 0 0
\(669\) 1.28564e7 2.22679e7i 1.11059 1.92359i
\(670\) 0 0
\(671\) −1.01489e7 −0.870190
\(672\) 0 0
\(673\) 1.21574e7 1.03468 0.517338 0.855781i \(-0.326923\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(674\) 0 0
\(675\) 684175. 1.18503e6i 0.0577973 0.100108i
\(676\) 0 0
\(677\) −445488. 771608.i −0.0373564 0.0647031i 0.846743 0.532003i \(-0.178560\pi\)
−0.884099 + 0.467299i \(0.845227\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 5.32446e6 + 9.22223e6i 0.439954 + 0.762023i
\(682\) 0 0
\(683\) −9.85489e6 + 1.70692e7i −0.808351 + 1.40011i 0.105654 + 0.994403i \(0.466307\pi\)
−0.914005 + 0.405703i \(0.867027\pi\)
\(684\) 0 0
\(685\) −4.41932e6 −0.359856
\(686\) 0 0
\(687\) −1.46656e7 −1.18552
\(688\) 0 0
\(689\) 1.49184e6 2.58394e6i 0.119722 0.207364i
\(690\) 0 0
\(691\) 6.87441e6 + 1.19068e7i 0.547697 + 0.948639i 0.998432 + 0.0559814i \(0.0178287\pi\)
−0.450735 + 0.892658i \(0.648838\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.63984e6 + 4.57234e6i 0.207308 + 0.359068i
\(696\) 0 0
\(697\) 1.06380e7 1.84256e7i 0.829428 1.43661i
\(698\) 0 0
\(699\) −1.55670e7 −1.20507
\(700\) 0 0
\(701\) 1.40261e7 1.07806 0.539031 0.842286i \(-0.318791\pi\)
0.539031 + 0.842286i \(0.318791\pi\)
\(702\) 0 0
\(703\) 999784. 1.73168e6i 0.0762988 0.132153i
\(704\) 0 0
\(705\) −3.27833e6 5.67823e6i −0.248416 0.430269i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.99965e6 1.03917e7i −0.448239 0.776373i 0.550032 0.835143i \(-0.314615\pi\)
−0.998272 + 0.0587701i \(0.981282\pi\)
\(710\) 0 0
\(711\) 5.17820e6 8.96891e6i 0.384154 0.665374i
\(712\) 0 0
\(713\) 5.77678e6 0.425561
\(714\) 0 0
\(715\) −1.49888e7 −1.09648
\(716\) 0 0
\(717\) −7.71261e6 + 1.33586e7i −0.560278 + 0.970430i
\(718\) 0 0
\(719\) 1.15673e7 + 2.00352e7i 0.834470 + 1.44534i 0.894461 + 0.447145i \(0.147559\pi\)
−0.0599918 + 0.998199i \(0.519107\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 711430. + 1.23223e6i 0.0506158 + 0.0876692i
\(724\) 0 0
\(725\) 2.14879e6 3.72181e6i 0.151827 0.262972i
\(726\) 0 0
\(727\) −117783. −0.00826505 −0.00413252 0.999991i \(-0.501315\pi\)
−0.00413252 + 0.999991i \(0.501315\pi\)
\(728\) 0 0
\(729\) 676615. 0.0471545
\(730\) 0 0
\(731\) −2.53706e7 + 4.39433e7i −1.75606 + 3.04158i
\(732\) 0 0
\(733\) −5.48298e6 9.49681e6i −0.376927 0.652856i 0.613687 0.789550i \(-0.289686\pi\)
−0.990613 + 0.136693i \(0.956353\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.23710e7 + 2.14273e7i 0.838952 + 1.45311i
\(738\) 0 0
\(739\) −2.33080e6 + 4.03707e6i −0.156998 + 0.271929i −0.933785 0.357835i \(-0.883515\pi\)
0.776787 + 0.629764i \(0.216848\pi\)
\(740\) 0 0
\(741\) −3.32452e6 −0.222425
\(742\) 0 0
\(743\) −1.32766e7 −0.882296 −0.441148 0.897434i \(-0.645429\pi\)
−0.441148 + 0.897434i \(0.645429\pi\)
\(744\) 0 0
\(745\) −1.12274e7 + 1.94465e7i −0.741122 + 1.28366i
\(746\) 0 0
\(747\) 412683. + 714788.i 0.0270592 + 0.0468679i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.34018e6 + 1.09815e7i 0.410206 + 0.710497i 0.994912 0.100748i \(-0.0321235\pi\)
−0.584706 + 0.811245i \(0.698790\pi\)
\(752\) 0 0
\(753\) −242253. + 419595.i −0.0155698 + 0.0269677i
\(754\) 0 0
\(755\) −641073. −0.0409298
\(756\) 0 0
\(757\) −9.32262e6 −0.591287 −0.295643 0.955298i \(-0.595534\pi\)
−0.295643 + 0.955298i \(0.595534\pi\)
\(758\) 0 0
\(759\) 3.62491e6 6.27852e6i 0.228398 0.395597i
\(760\) 0 0
\(761\) −9.49205e6 1.64407e7i −0.594153 1.02910i −0.993666 0.112375i \(-0.964154\pi\)
0.399513 0.916728i \(-0.369179\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −7.35856e6 1.27454e7i −0.454610 0.787408i
\(766\) 0 0
\(767\) −1.17599e7 + 2.03687e7i −0.721795 + 1.25019i
\(768\) 0 0
\(769\) 9.22276e6 0.562400 0.281200 0.959649i \(-0.409268\pi\)
0.281200 + 0.959649i \(0.409268\pi\)
\(770\) 0 0
\(771\) 7.01949e6 0.425275
\(772\) 0 0
\(773\) 3.77508e6 6.53864e6i 0.227236 0.393585i −0.729752 0.683712i \(-0.760364\pi\)
0.956988 + 0.290127i \(0.0936977\pi\)
\(774\) 0 0
\(775\) −1.69184e6 2.93035e6i −0.101182 0.175253i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 945982. + 1.63849e6i 0.0558521 + 0.0967386i
\(780\) 0 0
\(781\) 4.24014e6 7.34413e6i 0.248744 0.430837i
\(782\) 0 0
\(783\) 1.49928e7 0.873934
\(784\) 0 0
\(785\) −7.76946e6 −0.450004
\(786\) 0 0
\(787\) 2.83241e6 4.90589e6i 0.163012 0.282345i −0.772935 0.634485i \(-0.781212\pi\)
0.935948 + 0.352139i \(0.114546\pi\)
\(788\) 0 0
\(789\) 2.03374e7 + 3.52255e7i 1.16306 + 2.01449i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.23398e7 + 2.13731e7i 0.696826 + 1.20694i
\(794\) 0 0
\(795\) −1.68629e6 + 2.92075e6i −0.0946271 + 0.163899i
\(796\) 0 0
\(797\) 2.25166e6 0.125561 0.0627807 0.998027i \(-0.480003\pi\)
0.0627807 + 0.998027i \(0.480003\pi\)
\(798\) 0 0
\(799\) −1.54023e7 −0.853532
\(800\) 0 0
\(801\) −3.90774e6 + 6.76841e6i −0.215201 + 0.372740i
\(802\) 0 0
\(803\) −1.09262e7 1.89247e7i −0.597971 1.03572i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.10773e6 + 1.23109e7i 0.384191 + 0.665438i
\(808\) 0 0
\(809\) −5.98181e6 + 1.03608e7i −0.321338 + 0.556573i −0.980764 0.195196i \(-0.937466\pi\)
0.659427 + 0.751769i \(0.270799\pi\)
\(810\) 0 0
\(811\) 958303. 0.0511624 0.0255812 0.999673i \(-0.491856\pi\)
0.0255812 + 0.999673i \(0.491856\pi\)
\(812\) 0 0
\(813\) −1.09218e7 −0.579518
\(814\) 0 0
\(815\) −1.18485e7 + 2.05223e7i −0.624843 + 1.08226i
\(816\) 0 0
\(817\) −2.25608e6 3.90764e6i −0.118249 0.204814i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.28014e7 2.21727e7i −0.662828 1.14805i −0.979869 0.199640i \(-0.936023\pi\)
0.317041 0.948412i \(-0.397311\pi\)
\(822\) 0 0
\(823\) 5.79776e6 1.00420e7i 0.298374 0.516799i −0.677390 0.735624i \(-0.736889\pi\)
0.975764 + 0.218825i \(0.0702224\pi\)
\(824\) 0 0
\(825\) −4.24649e6 −0.217218
\(826\) 0 0
\(827\) −4.22668e6 −0.214900 −0.107450 0.994211i \(-0.534269\pi\)
−0.107450 + 0.994211i \(0.534269\pi\)
\(828\) 0 0
\(829\) −6.64999e6 + 1.15181e7i −0.336074 + 0.582097i −0.983691 0.179869i \(-0.942432\pi\)
0.647617 + 0.761966i \(0.275766\pi\)
\(830\) 0 0
\(831\) −4.94538e6 8.56565e6i −0.248426 0.430287i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −7.70302e6 1.33420e7i −0.382335 0.662224i
\(836\) 0 0
\(837\) 5.90226e6 1.02230e7i 0.291209 0.504389i
\(838\) 0 0
\(839\) 3.03054e7 1.48633 0.743166 0.669107i \(-0.233323\pi\)
0.743166 + 0.669107i \(0.233323\pi\)
\(840\) 0 0
\(841\) 2.65768e7 1.29572
\(842\) 0 0
\(843\) 5.23012e6 9.05883e6i 0.253479 0.439039i
\(844\) 0 0
\(845\) 8.94445e6 + 1.54922e7i 0.430935 + 0.746402i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.60189e7 2.77455e7i −0.762716 1.32106i
\(850\) 0 0
\(851\) 5.30177e6 9.18293e6i 0.250955 0.434668i
\(852\) 0 0
\(853\) −1.04047e7 −0.489616 −0.244808 0.969572i \(-0.578725\pi\)
−0.244808 + 0.969572i \(0.578725\pi\)
\(854\) 0 0
\(855\) 1.30872e6 0.0612251
\(856\) 0 0
\(857\) 1.09750e7 1.90092e7i 0.510448 0.884122i −0.489479 0.872015i \(-0.662813\pi\)
0.999927 0.0121066i \(-0.00385374\pi\)
\(858\) 0 0
\(859\) −4.54468e6 7.87162e6i −0.210146 0.363983i 0.741614 0.670827i \(-0.234061\pi\)
−0.951760 + 0.306843i \(0.900727\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −912508. 1.58051e6i −0.0417071 0.0722387i 0.844418 0.535684i \(-0.179946\pi\)
−0.886125 + 0.463446i \(0.846613\pi\)
\(864\) 0 0
\(865\) −1.18705e7 + 2.05603e7i −0.539421 + 0.934304i
\(866\) 0 0
\(867\) −7.18550e7 −3.24645
\(868\) 0 0
\(869\) 2.80072e7 1.25811
\(870\) 0 0
\(871\) 3.00831e7 5.21055e7i 1.34362 2.32722i
\(872\) 0 0
\(873\) −206466. 357610.i −0.00916882 0.0158809i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.49745e6 + 1.29860e7i 0.329166 + 0.570132i 0.982347 0.187070i \(-0.0598992\pi\)
−0.653181 + 0.757202i \(0.726566\pi\)
\(878\) 0 0
\(879\) 1.26121e6 2.18448e6i 0.0550574 0.0953622i
\(880\) 0 0
\(881\) −1.71560e6 −0.0744692 −0.0372346 0.999307i \(-0.511855\pi\)
−0.0372346 + 0.999307i \(0.511855\pi\)
\(882\) 0 0
\(883\) 3.86989e7 1.67031 0.835155 0.550015i \(-0.185378\pi\)
0.835155 + 0.550015i \(0.185378\pi\)
\(884\) 0 0
\(885\) 1.32927e7 2.30237e7i 0.570501 0.988137i
\(886\) 0 0
\(887\) −2.91307e6 5.04559e6i −0.124320 0.215329i 0.797147 0.603786i \(-0.206342\pi\)
−0.921467 + 0.388457i \(0.873008\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.29472e7 2.24253e7i −0.546365 0.946333i
\(892\) 0 0
\(893\) 684824. 1.18615e6i 0.0287376 0.0497750i
\(894\) 0 0
\(895\) 3.09774e7 1.29267
\(896\) 0 0
\(897\) −1.76297e7 −0.731581
\(898\) 0 0
\(899\) 1.85372e7 3.21074e7i 0.764972 1.32497i
\(900\) 0 0
\(901\) 3.96130e6 + 6.86118e6i 0.162565 + 0.281570i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.71351e6 + 4.69994e6i 0.110131 + 0.190753i
\(906\) 0 0
\(907\) −4.91979e6 + 8.52132e6i −0.198577 + 0.343945i −0.948067 0.318070i \(-0.896965\pi\)
0.749491 + 0.662015i \(0.230299\pi\)
\(908\) 0 0
\(909\) 1.49610e7 0.600551
\(910\) 0 0
\(911\) −2.53673e7 −1.01269 −0.506347 0.862330i \(-0.669004\pi\)
−0.506347 + 0.862330i \(0.669004\pi\)
\(912\) 0 0
\(913\) −1.11603e6 + 1.93302e6i −0.0443098 + 0.0767468i
\(914\) 0 0
\(915\) −1.39483e7 2.41591e7i −0.550766 0.953955i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.92923e6 + 5.07358e6i 0.114410 + 0.198164i 0.917544 0.397635i \(-0.130169\pi\)
−0.803134 + 0.595799i \(0.796835\pi\)
\(920\) 0 0
\(921\) −7.62362e6 + 1.32045e7i −0.296150 + 0.512948i
\(922\) 0 0
\(923\) −2.06218e7 −0.796751
\(924\) 0 0
\(925\) −6.21089e6 −0.238671
\(926\) 0 0
\(927\) 7.92498e6 1.37265e7i 0.302900 0.524637i
\(928\) 0 0
\(929\) −9264.30 16046.2i −0.000352187 0.000610006i 0.865849 0.500305i \(-0.166779\pi\)
−0.866201 + 0.499695i \(0.833445\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.86911e7 3.23739e7i −0.702959 1.21756i
\(934\) 0 0
\(935\) 1.99000e7 3.44678e7i 0.744430 1.28939i
\(936\) 0 0
\(937\) 3.91119e7 1.45533 0.727663 0.685935i \(-0.240606\pi\)
0.727663 + 0.685935i \(0.240606\pi\)
\(938\) 0 0
\(939\) 3.53038e7 1.30665
\(940\) 0 0
\(941\) 4.45258e6 7.71210e6i 0.163922 0.283922i −0.772350 0.635197i \(-0.780919\pi\)
0.936272 + 0.351276i \(0.114252\pi\)
\(942\) 0 0
\(943\) 5.01646e6 + 8.68876e6i 0.183704 + 0.318184i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.71918e6 + 6.44181e6i 0.134764 + 0.233417i 0.925507 0.378730i \(-0.123639\pi\)
−0.790744 + 0.612148i \(0.790306\pi\)
\(948\) 0 0
\(949\) −2.65697e7 + 4.60200e7i −0.957680 + 1.65875i
\(950\) 0 0
\(951\) 3.25004e7 1.16530
\(952\) 0 0
\(953\) 3.87886e7 1.38348 0.691739 0.722148i \(-0.256845\pi\)
0.691739 + 0.722148i \(0.256845\pi\)
\(954\) 0 0
\(955\) −6.10636e6 + 1.05765e7i −0.216658 + 0.375262i
\(956\) 0 0
\(957\) −2.32641e7 4.02946e7i −0.821119 1.42222i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −280639. 486080.i −0.00980255 0.0169785i
\(962\) 0 0
\(963\) 3.51440e6 6.08711e6i 0.122119 0.211517i
\(964\) 0 0
\(965\) −3.24509e6 −0.112178
\(966\) 0 0
\(967\) −2.80184e7 −0.963557 −0.481779 0.876293i \(-0.660009\pi\)
−0.481779 + 0.876293i \(0.660009\pi\)
\(968\) 0 0
\(969\) 4.41384e6 7.64499e6i 0.151010 0.261558i
\(970\) 0 0
\(971\) −2.22621e7 3.85591e7i −0.757736 1.31244i −0.944002 0.329939i \(-0.892972\pi\)
0.186266 0.982499i \(-0.440361\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.16318e6 + 8.94289e6i 0.173942 + 0.301277i
\(976\) 0 0
\(977\) −461021. + 798513.i −0.0154520 + 0.0267637i −0.873648 0.486558i \(-0.838252\pi\)
0.858196 + 0.513322i \(0.171585\pi\)
\(978\) 0 0
\(979\) −2.11357e7 −0.704790
\(980\) 0 0
\(981\) 5.17294e6 0.171619
\(982\) 0 0
\(983\) 2.06353e6 3.57414e6i 0.0681125 0.117974i −0.829958 0.557826i \(-0.811636\pi\)
0.898070 + 0.439852i \(0.144969\pi\)
\(984\) 0 0
\(985\) 2.19107e7 + 3.79504e7i 0.719558 + 1.24631i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.19638e7 2.07219e7i −0.388935 0.673656i
\(990\) 0 0
\(991\) −1.74696e6 + 3.02582e6i −0.0565065 + 0.0978722i −0.892895 0.450265i \(-0.851330\pi\)
0.836388 + 0.548137i \(0.184663\pi\)
\(992\) 0 0
\(993\) 5.75726e7 1.85286
\(994\) 0 0
\(995\) 4.12724e6 0.132161
\(996\) 0 0
\(997\) 5.80524e6 1.00550e7i 0.184962 0.320364i −0.758602 0.651555i \(-0.774117\pi\)
0.943564 + 0.331191i \(0.107450\pi\)
\(998\) 0 0
\(999\) −1.08339e7 1.87648e7i −0.343455 0.594881i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.6.e.l.165.3 8
7.2 even 3 inner 196.6.e.l.177.3 8
7.3 odd 6 196.6.a.k.1.3 yes 4
7.4 even 3 196.6.a.k.1.2 4
7.5 odd 6 inner 196.6.e.l.177.2 8
7.6 odd 2 inner 196.6.e.l.165.2 8
28.3 even 6 784.6.a.bi.1.2 4
28.11 odd 6 784.6.a.bi.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.6.a.k.1.2 4 7.4 even 3
196.6.a.k.1.3 yes 4 7.3 odd 6
196.6.e.l.165.2 8 7.6 odd 2 inner
196.6.e.l.165.3 8 1.1 even 1 trivial
196.6.e.l.177.2 8 7.5 odd 6 inner
196.6.e.l.177.3 8 7.2 even 3 inner
784.6.a.bi.1.2 4 28.3 even 6
784.6.a.bi.1.3 4 28.11 odd 6