Properties

Label 197.10.a.a.1.11
Level 197197
Weight 1010
Character 197.1
Self dual yes
Analytic conductor 101.462101.462
Analytic rank 11
Dimension 7171
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 197 197
Weight: k k == 10 10
Character orbit: [χ][\chi] == 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 101.462059724101.462059724
Analytic rank: 11
Dimension: 7171
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.11
Character χ\chi == 197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q31.8115q2+226.712q3+499.972q41449.41q57212.06q6+9874.56q7+382.633q8+31715.5q9+46108.1q10+22839.8q11+113350.q1255689.1q13314125.q14328600.q15268158.q1645944.5q171.00892e6q18592450.q19724666.q20+2.23868e6q21726569.q22+212010.q23+86747.7q24+147677.q25+1.77155e6q26+2.72791e6q27+4.93700e6q284.85128e6q29+1.04533e7q30+1.67305e6q31+8.33459e6q32+5.17806e6q33+1.46156e6q341.43123e7q35+1.58568e7q362.08066e7q37+1.88467e7q381.26254e7q39554594.q401.07126e7q417.12159e7q422.66249e6q43+1.14193e7q444.59688e7q456.74436e6q46709244.q476.07946e7q48+5.71534e7q494.69784e6q501.04162e7q512.78430e7q521.71152e7q538.67788e7q543.31043e7q55+3.77834e6q561.34316e8q57+1.54327e8q58+1.01753e8q591.64291e8q60+6.69100e7q615.32221e7q62+3.13176e8q631.27839e8q64+8.07166e7q651.64722e8q662.30667e8q672.29709e7q68+4.80653e7q69+4.55297e8q701.98475e8q71+1.21354e7q725.27407e7q73+6.61890e8q74+3.34803e7q752.96208e8q76+2.25533e8q77+4.01633e8q781.54549e7q79+3.88672e8q805.80570e6q81+3.40784e8q82+1.07145e8q83+1.11928e9q84+6.65926e7q85+8.46980e7q861.09984e9q87+8.73927e6q884.82280e8q89+1.46234e9q905.49905e8q91+1.05999e8q92+3.79300e8q93+2.25621e7q94+8.58706e8q95+1.88955e9q96+1.54578e9q971.81813e9q98+7.24375e8q99+O(q100)q-31.8115 q^{2} +226.712 q^{3} +499.972 q^{4} -1449.41 q^{5} -7212.06 q^{6} +9874.56 q^{7} +382.633 q^{8} +31715.5 q^{9} +46108.1 q^{10} +22839.8 q^{11} +113350. q^{12} -55689.1 q^{13} -314125. q^{14} -328600. q^{15} -268158. q^{16} -45944.5 q^{17} -1.00892e6 q^{18} -592450. q^{19} -724666. q^{20} +2.23868e6 q^{21} -726569. q^{22} +212010. q^{23} +86747.7 q^{24} +147677. q^{25} +1.77155e6 q^{26} +2.72791e6 q^{27} +4.93700e6 q^{28} -4.85128e6 q^{29} +1.04533e7 q^{30} +1.67305e6 q^{31} +8.33459e6 q^{32} +5.17806e6 q^{33} +1.46156e6 q^{34} -1.43123e7 q^{35} +1.58568e7 q^{36} -2.08066e7 q^{37} +1.88467e7 q^{38} -1.26254e7 q^{39} -554594. q^{40} -1.07126e7 q^{41} -7.12159e7 q^{42} -2.66249e6 q^{43} +1.14193e7 q^{44} -4.59688e7 q^{45} -6.74436e6 q^{46} -709244. q^{47} -6.07946e7 q^{48} +5.71534e7 q^{49} -4.69784e6 q^{50} -1.04162e7 q^{51} -2.78430e7 q^{52} -1.71152e7 q^{53} -8.67788e7 q^{54} -3.31043e7 q^{55} +3.77834e6 q^{56} -1.34316e8 q^{57} +1.54327e8 q^{58} +1.01753e8 q^{59} -1.64291e8 q^{60} +6.69100e7 q^{61} -5.32221e7 q^{62} +3.13176e8 q^{63} -1.27839e8 q^{64} +8.07166e7 q^{65} -1.64722e8 q^{66} -2.30667e8 q^{67} -2.29709e7 q^{68} +4.80653e7 q^{69} +4.55297e8 q^{70} -1.98475e8 q^{71} +1.21354e7 q^{72} -5.27407e7 q^{73} +6.61890e8 q^{74} +3.34803e7 q^{75} -2.96208e8 q^{76} +2.25533e8 q^{77} +4.01633e8 q^{78} -1.54549e7 q^{79} +3.88672e8 q^{80} -5.80570e6 q^{81} +3.40784e8 q^{82} +1.07145e8 q^{83} +1.11928e9 q^{84} +6.65926e7 q^{85} +8.46980e7 q^{86} -1.09984e9 q^{87} +8.73927e6 q^{88} -4.82280e8 q^{89} +1.46234e9 q^{90} -5.49905e8 q^{91} +1.05999e8 q^{92} +3.79300e8 q^{93} +2.25621e7 q^{94} +8.58706e8 q^{95} +1.88955e9 q^{96} +1.54578e9 q^{97} -1.81813e9 q^{98} +7.24375e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 71q32q2892q3+16896q42329q510272q637846q724933q8+419903q9138907q10143074q11496640q12433821q13130143q14670126q15+6380320552q99+O(q100) 71 q - 32 q^{2} - 892 q^{3} + 16896 q^{4} - 2329 q^{5} - 10272 q^{6} - 37846 q^{7} - 24933 q^{8} + 419903 q^{9} - 138907 q^{10} - 143074 q^{11} - 496640 q^{12} - 433821 q^{13} - 130143 q^{14} - 670126 q^{15}+ \cdots - 6380320552 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −31.8115 −1.40588 −0.702942 0.711248i 0.748130π-0.748130\pi
−0.702942 + 0.711248i 0.748130π0.748130\pi
33 226.712 1.61596 0.807978 0.589213i 0.200562π-0.200562\pi
0.807978 + 0.589213i 0.200562π0.200562\pi
44 499.972 0.976508
55 −1449.41 −1.03712 −0.518558 0.855042i 0.673531π-0.673531\pi
−0.518558 + 0.855042i 0.673531π0.673531\pi
66 −7212.06 −2.27184
77 9874.56 1.55445 0.777225 0.629223i 0.216627π-0.216627\pi
0.777225 + 0.629223i 0.216627π0.216627\pi
88 382.633 0.0330277
99 31715.5 1.61131
1010 46108.1 1.45806
1111 22839.8 0.470355 0.235177 0.971952i 0.424433π-0.424433\pi
0.235177 + 0.971952i 0.424433π0.424433\pi
1212 113350. 1.57799
1313 −55689.1 −0.540785 −0.270393 0.962750i 0.587154π-0.587154\pi
−0.270393 + 0.962750i 0.587154π0.587154\pi
1414 −314125. −2.18537
1515 −328600. −1.67593
1616 −268158. −1.02294
1717 −45944.5 −0.133418 −0.0667088 0.997772i 0.521250π-0.521250\pi
−0.0667088 + 0.997772i 0.521250π0.521250\pi
1818 −1.00892e6 −2.26532
1919 −592450. −1.04294 −0.521471 0.853269i 0.674617π-0.674617\pi
−0.521471 + 0.853269i 0.674617π0.674617\pi
2020 −724666. −1.01275
2121 2.23868e6 2.51192
2222 −726569. −0.661264
2323 212010. 0.157972 0.0789862 0.996876i 0.474832π-0.474832\pi
0.0789862 + 0.996876i 0.474832π0.474832\pi
2424 86747.7 0.0533713
2525 147677. 0.0756108
2626 1.77155e6 0.760281
2727 2.72791e6 0.987853
2828 4.93700e6 1.51793
2929 −4.85128e6 −1.27369 −0.636847 0.770990i 0.719762π-0.719762\pi
−0.636847 + 0.770990i 0.719762π0.719762\pi
3030 1.04533e7 2.35617
3131 1.67305e6 0.325372 0.162686 0.986678i 0.447984π-0.447984\pi
0.162686 + 0.986678i 0.447984π0.447984\pi
3232 8.33459e6 1.40511
3333 5.17806e6 0.760072
3434 1.46156e6 0.187570
3535 −1.43123e7 −1.61215
3636 1.58568e7 1.57346
3737 −2.08066e7 −1.82513 −0.912564 0.408933i 0.865901π-0.865901\pi
−0.912564 + 0.408933i 0.865901π0.865901\pi
3838 1.88467e7 1.46626
3939 −1.26254e7 −0.873885
4040 −554594. −0.0342535
4141 −1.07126e7 −0.592062 −0.296031 0.955178i 0.595663π-0.595663\pi
−0.296031 + 0.955178i 0.595663π0.595663\pi
4242 −7.12159e7 −3.53147
4343 −2.66249e6 −0.118763 −0.0593814 0.998235i 0.518913π-0.518913\pi
−0.0593814 + 0.998235i 0.518913π0.518913\pi
4444 1.14193e7 0.459305
4545 −4.59688e7 −1.67112
4646 −6.74436e6 −0.222091
4747 −709244. −0.0212009 −0.0106005 0.999944i 0.503374π-0.503374\pi
−0.0106005 + 0.999944i 0.503374π0.503374\pi
4848 −6.07946e7 −1.65303
4949 5.71534e7 1.41631
5050 −4.69784e6 −0.106300
5151 −1.04162e7 −0.215597
5252 −2.78430e7 −0.528081
5353 −1.71152e7 −0.297949 −0.148974 0.988841i 0.547597π-0.547597\pi
−0.148974 + 0.988841i 0.547597π0.547597\pi
5454 −8.67788e7 −1.38881
5555 −3.31043e7 −0.487813
5656 3.77834e6 0.0513399
5757 −1.34316e8 −1.68535
5858 1.54327e8 1.79067
5959 1.01753e8 1.09323 0.546614 0.837384i 0.315916π-0.315916\pi
0.546614 + 0.837384i 0.315916π0.315916\pi
6060 −1.64291e8 −1.63656
6161 6.69100e7 0.618738 0.309369 0.950942i 0.399882π-0.399882\pi
0.309369 + 0.950942i 0.399882π0.399882\pi
6262 −5.32221e7 −0.457435
6363 3.13176e8 2.50470
6464 −1.27839e8 −0.952476
6565 8.07166e7 0.560857
6666 −1.64722e8 −1.06857
6767 −2.30667e8 −1.39846 −0.699229 0.714898i 0.746473π-0.746473\pi
−0.699229 + 0.714898i 0.746473π0.746473\pi
6868 −2.29709e7 −0.130283
6969 4.80653e7 0.255276
7070 4.55297e8 2.26649
7171 −1.98475e8 −0.926921 −0.463460 0.886118i 0.653392π-0.653392\pi
−0.463460 + 0.886118i 0.653392π0.653392\pi
7272 1.21354e7 0.0532179
7373 −5.27407e7 −0.217367 −0.108683 0.994076i 0.534663π-0.534663\pi
−0.108683 + 0.994076i 0.534663π0.534663\pi
7474 6.61890e8 2.56592
7575 3.34803e7 0.122184
7676 −2.96208e8 −1.01844
7777 2.25533e8 0.731142
7878 4.01633e8 1.22858
7979 −1.54549e7 −0.0446420 −0.0223210 0.999751i 0.507106π-0.507106\pi
−0.0223210 + 0.999751i 0.507106π0.507106\pi
8080 3.88672e8 1.06091
8181 −5.80570e6 −0.0149855
8282 3.40784e8 0.832370
8383 1.07145e8 0.247811 0.123906 0.992294i 0.460458π-0.460458\pi
0.123906 + 0.992294i 0.460458π0.460458\pi
8484 1.11928e9 2.45291
8585 6.65926e7 0.138370
8686 8.46980e7 0.166967
8787 −1.09984e9 −2.05823
8888 8.73927e6 0.0155347
8989 −4.82280e8 −0.814787 −0.407393 0.913253i 0.633562π-0.633562\pi
−0.407393 + 0.913253i 0.633562π0.633562\pi
9090 1.46234e9 2.34940
9191 −5.49905e8 −0.840624
9292 1.05999e8 0.154261
9393 3.79300e8 0.525787
9494 2.25621e7 0.0298061
9595 8.58706e8 1.08165
9696 1.88955e9 2.27059
9797 1.54578e9 1.77286 0.886431 0.462860i 0.153177π-0.153177\pi
0.886431 + 0.462860i 0.153177π0.153177\pi
9898 −1.81813e9 −1.99117
9999 7.24375e8 0.757888
100100 7.38345e7 0.0738345
101101 1.06860e9 1.02181 0.510903 0.859638i 0.329311π-0.329311\pi
0.510903 + 0.859638i 0.329311π0.329311\pi
102102 3.31354e8 0.303104
103103 1.04264e8 0.0912778 0.0456389 0.998958i 0.485468π-0.485468\pi
0.0456389 + 0.998958i 0.485468π0.485468\pi
104104 −2.13085e7 −0.0178609
105105 −3.24478e9 −2.60516
106106 5.44462e8 0.418881
107107 −1.11846e9 −0.824887 −0.412443 0.910983i 0.635325π-0.635325\pi
−0.412443 + 0.910983i 0.635325π0.635325\pi
108108 1.36388e9 0.964646
109109 −1.55330e8 −0.105399 −0.0526994 0.998610i 0.516783π-0.516783\pi
−0.0526994 + 0.998610i 0.516783π0.516783\pi
110110 1.05310e9 0.685807
111111 −4.71711e9 −2.94933
112112 −2.64794e9 −1.59011
113113 1.04099e9 0.600610 0.300305 0.953843i 0.402912π-0.402912\pi
0.300305 + 0.953843i 0.402912π0.402912\pi
114114 4.27278e9 2.36940
115115 −3.07290e8 −0.163836
116116 −2.42550e9 −1.24377
117117 −1.76620e9 −0.871374
118118 −3.23690e9 −1.53695
119119 −4.53681e8 −0.207391
120120 −1.25733e8 −0.0553522
121121 −1.83629e9 −0.778767
122122 −2.12851e9 −0.869873
123123 −2.42868e9 −0.956746
124124 8.36476e8 0.317728
125125 2.61684e9 0.958699
126126 −9.96261e9 −3.52132
127127 −4.17361e7 −0.0142362 −0.00711812 0.999975i 0.502266π-0.502266\pi
−0.00711812 + 0.999975i 0.502266π0.502266\pi
128128 −2.00555e8 −0.0660371
129129 −6.03620e8 −0.191916
130130 −2.56772e9 −0.788500
131131 1.80732e9 0.536186 0.268093 0.963393i 0.413607π-0.413607\pi
0.268093 + 0.963393i 0.413607π0.413607\pi
132132 2.58889e9 0.742216
133133 −5.85018e9 −1.62120
134134 7.33787e9 1.96607
135135 −3.95387e9 −1.02452
136136 −1.75799e7 −0.00440647
137137 4.84892e9 1.17599 0.587994 0.808865i 0.299918π-0.299918\pi
0.587994 + 0.808865i 0.299918π0.299918\pi
138138 −1.52903e9 −0.358889
139139 −6.95317e9 −1.57985 −0.789925 0.613203i 0.789881π-0.789881\pi
−0.789925 + 0.613203i 0.789881π0.789881\pi
140140 −7.15576e9 −1.57427
141141 −1.60794e8 −0.0342598
142142 6.31378e9 1.30314
143143 −1.27193e9 −0.254361
144144 −8.50474e9 −1.64828
145145 7.03151e9 1.32097
146146 1.67776e9 0.305592
147147 1.29574e10 2.28870
148148 −1.04027e10 −1.78225
149149 3.74749e9 0.622877 0.311438 0.950266i 0.399189π-0.399189\pi
0.311438 + 0.950266i 0.399189π0.399189\pi
150150 −1.06506e9 −0.171776
151151 −3.54145e9 −0.554351 −0.277176 0.960819i 0.589398π-0.589398\pi
−0.277176 + 0.960819i 0.589398π0.589398\pi
152152 −2.26691e8 −0.0344460
153153 −1.45715e9 −0.214977
154154 −7.17455e9 −1.02790
155155 −2.42494e9 −0.337449
156156 −6.31234e9 −0.853355
157157 −7.86228e9 −1.03276 −0.516380 0.856359i 0.672721π-0.672721\pi
−0.516380 + 0.856359i 0.672721π0.672721\pi
158158 4.91643e8 0.0627614
159159 −3.88024e9 −0.481472
160160 −1.20803e10 −1.45726
161161 2.09351e9 0.245560
162162 1.84688e8 0.0210679
163163 −1.08952e10 −1.20890 −0.604452 0.796641i 0.706608π-0.706608\pi
−0.604452 + 0.796641i 0.706608π0.706608\pi
164164 −5.35599e9 −0.578153
165165 −7.50516e9 −0.788283
166166 −3.40844e9 −0.348393
167167 −9.27387e9 −0.922650 −0.461325 0.887231i 0.652626π-0.652626\pi
−0.461325 + 0.887231i 0.652626π0.652626\pi
168168 8.56595e8 0.0829629
169169 −7.50323e9 −0.707551
170170 −2.11841e9 −0.194531
171171 −1.87898e10 −1.68051
172172 −1.33117e9 −0.115973
173173 5.32028e9 0.451572 0.225786 0.974177i 0.427505π-0.427505\pi
0.225786 + 0.974177i 0.427505π0.427505\pi
174174 3.49877e10 2.89364
175175 1.45825e9 0.117533
176176 −6.12467e9 −0.481145
177177 2.30685e10 1.76661
178178 1.53420e10 1.14549
179179 −2.54999e10 −1.85652 −0.928262 0.371927i 0.878697π-0.878697\pi
−0.928262 + 0.371927i 0.878697π0.878697\pi
180180 −2.29831e10 −1.63186
181181 −1.71854e10 −1.19016 −0.595082 0.803665i 0.702881π-0.702881\pi
−0.595082 + 0.803665i 0.702881π0.702881\pi
182182 1.74933e10 1.18182
183183 1.51693e10 0.999853
184184 8.11221e7 0.00521746
185185 3.01574e10 1.89287
186186 −1.20661e10 −0.739195
187187 −1.04936e9 −0.0627536
188188 −3.54602e8 −0.0207029
189189 2.69369e10 1.53557
190190 −2.73167e10 −1.52068
191191 3.23747e10 1.76017 0.880086 0.474813i 0.157484π-0.157484\pi
0.880086 + 0.474813i 0.157484π0.157484\pi
192192 −2.89827e10 −1.53916
193193 −2.47967e10 −1.28643 −0.643214 0.765686i 0.722400π-0.722400\pi
−0.643214 + 0.765686i 0.722400π0.722400\pi
194194 −4.91736e10 −2.49244
195195 1.82994e10 0.906321
196196 2.85751e10 1.38304
197197 −1.50614e9 −0.0712470
198198 −2.30435e10 −1.06550
199199 −4.38462e9 −0.198195 −0.0990976 0.995078i 0.531596π-0.531596\pi
−0.0990976 + 0.995078i 0.531596π0.531596\pi
200200 5.65063e7 0.00249725
201201 −5.22951e10 −2.25984
202202 −3.39938e10 −1.43654
203203 −4.79043e10 −1.97989
204204 −5.20779e9 −0.210532
205205 1.55270e10 0.614037
206206 −3.31678e9 −0.128326
207207 6.72399e9 0.254543
208208 1.49335e10 0.553191
209209 −1.35314e10 −0.490553
210210 1.03221e11 3.66254
211211 −2.01589e10 −0.700157 −0.350078 0.936720i 0.613845π-0.613845\pi
−0.350078 + 0.936720i 0.613845π0.613845\pi
212212 −8.55714e9 −0.290949
213213 −4.49966e10 −1.49786
214214 3.55800e10 1.15969
215215 3.85906e9 0.123171
216216 1.04379e9 0.0326265
217217 1.65206e10 0.505774
218218 4.94127e9 0.148178
219219 −1.19570e10 −0.351255
220220 −1.65512e10 −0.476353
221221 2.55860e9 0.0721503
222222 1.50058e11 4.14641
223223 −4.04449e9 −0.109520 −0.0547599 0.998500i 0.517439π-0.517439\pi
−0.0547599 + 0.998500i 0.517439π0.517439\pi
224224 8.23004e10 2.18417
225225 4.68365e9 0.121833
226226 −3.31154e10 −0.844387
227227 6.97082e10 1.74248 0.871239 0.490859i 0.163317π-0.163317\pi
0.871239 + 0.490859i 0.163317π0.163317\pi
228228 −6.71541e10 −1.64576
229229 9.62661e9 0.231320 0.115660 0.993289i 0.463102π-0.463102\pi
0.115660 + 0.993289i 0.463102π0.463102\pi
230230 9.77537e9 0.230334
231231 5.11311e10 1.18149
232232 −1.85626e9 −0.0420672
233233 −4.31272e10 −0.958628 −0.479314 0.877644i 0.659114π-0.659114\pi
−0.479314 + 0.877644i 0.659114π0.659114\pi
234234 5.61856e10 1.22505
235235 1.02799e9 0.0219879
236236 5.08734e10 1.06755
237237 −3.50381e9 −0.0721394
238238 1.44323e10 0.291567
239239 5.30551e10 1.05181 0.525904 0.850544i 0.323727π-0.323727\pi
0.525904 + 0.850544i 0.323727π0.323727\pi
240240 8.81166e10 1.71438
241241 1.84165e10 0.351665 0.175833 0.984420i 0.443738π-0.443738\pi
0.175833 + 0.984420i 0.443738π0.443738\pi
242242 5.84152e10 1.09485
243243 −5.50096e10 −1.01207
244244 3.34531e10 0.604202
245245 −8.28389e10 −1.46888
246246 7.72598e10 1.34507
247247 3.29930e10 0.564008
248248 6.40163e8 0.0107463
249249 2.42911e10 0.400452
250250 −8.32457e10 −1.34782
251251 8.68512e10 1.38116 0.690580 0.723256i 0.257355π-0.257355\pi
0.690580 + 0.723256i 0.257355π0.257355\pi
252252 1.56579e11 2.44586
253253 4.84227e9 0.0743030
254254 1.32769e9 0.0200145
255255 1.50974e10 0.223599
256256 7.18336e10 1.04532
257257 −9.81614e10 −1.40359 −0.701797 0.712377i 0.747619π-0.747619\pi
−0.701797 + 0.712377i 0.747619π0.747619\pi
258258 1.92021e10 0.269811
259259 −2.05456e11 −2.83707
260260 4.03560e10 0.547682
261261 −1.53861e11 −2.05232
262262 −5.74937e10 −0.753815
263263 −2.85914e10 −0.368498 −0.184249 0.982880i 0.558985π-0.558985\pi
−0.184249 + 0.982880i 0.558985π0.558985\pi
264264 1.98130e9 0.0251034
265265 2.48071e10 0.309008
266266 1.86103e11 2.27922
267267 −1.09339e11 −1.31666
268268 −1.15327e11 −1.36560
269269 1.32052e10 0.153766 0.0768830 0.997040i 0.475503π-0.475503\pi
0.0768830 + 0.997040i 0.475503π0.475503\pi
270270 1.25778e11 1.44035
271271 2.43678e10 0.274444 0.137222 0.990540i 0.456183π-0.456183\pi
0.137222 + 0.990540i 0.456183π0.456183\pi
272272 1.23204e10 0.136478
273273 −1.24670e11 −1.35841
274274 −1.54252e11 −1.65330
275275 3.37292e9 0.0355639
276276 2.40313e10 0.249279
277277 −1.29647e11 −1.32313 −0.661565 0.749887i 0.730108π-0.730108\pi
−0.661565 + 0.749887i 0.730108π0.730108\pi
278278 2.21191e11 2.22109
279279 5.30614e10 0.524276
280280 −5.47638e9 −0.0532454
281281 −1.47068e11 −1.40715 −0.703575 0.710621i 0.748414π-0.748414\pi
−0.703575 + 0.710621i 0.748414π0.748414\pi
282282 5.11511e9 0.0481653
283283 −2.58242e10 −0.239325 −0.119662 0.992815i 0.538181π-0.538181\pi
−0.119662 + 0.992815i 0.538181π0.538181\pi
284284 −9.92318e10 −0.905145
285285 1.94679e11 1.74790
286286 4.04619e10 0.357602
287287 −1.05782e11 −0.920330
288288 2.64335e11 2.26407
289289 −1.16477e11 −0.982200
290290 −2.23683e11 −1.85713
291291 3.50447e11 2.86487
292292 −2.63689e10 −0.212260
293293 −1.73204e11 −1.37295 −0.686473 0.727155i 0.740842π-0.740842\pi
−0.686473 + 0.727155i 0.740842π0.740842\pi
294294 −4.12193e11 −3.21764
295295 −1.47482e11 −1.13381
296296 −7.96130e9 −0.0602798
297297 6.23048e10 0.464641
298298 −1.19213e11 −0.875692
299299 −1.18066e10 −0.0854291
300300 1.67392e10 0.119313
301301 −2.62910e10 −0.184611
302302 1.12659e11 0.779353
303303 2.42265e11 1.65119
304304 1.58870e11 1.06687
305305 −9.69803e10 −0.641704
306306 4.63541e10 0.302233
307307 3.24017e10 0.208183 0.104091 0.994568i 0.466807π-0.466807\pi
0.104091 + 0.994568i 0.466807π0.466807\pi
308308 1.12760e11 0.713966
309309 2.36378e10 0.147501
310310 7.71409e10 0.474414
311311 −1.57812e11 −0.956571 −0.478285 0.878205i 0.658742π-0.658742\pi
−0.478285 + 0.878205i 0.658742π0.658742\pi
312312 −4.83090e9 −0.0288624
313313 2.42108e11 1.42580 0.712901 0.701265i 0.247381π-0.247381\pi
0.712901 + 0.701265i 0.247381π0.247381\pi
314314 2.50111e11 1.45194
315315 −4.53922e11 −2.59767
316316 −7.72700e9 −0.0435932
317317 1.56550e11 0.870734 0.435367 0.900253i 0.356619π-0.356619\pi
0.435367 + 0.900253i 0.356619π0.356619\pi
318318 1.23436e11 0.676893
319319 −1.10802e11 −0.599088
320320 1.85292e11 0.987829
321321 −2.53569e11 −1.33298
322322 −6.65976e10 −0.345229
323323 2.72198e10 0.139147
324324 −2.90269e9 −0.0146335
325325 −8.22401e9 −0.0408892
326326 3.46594e11 1.69958
327327 −3.52152e10 −0.170320
328328 −4.09900e9 −0.0195544
329329 −7.00347e9 −0.0329558
330330 2.38751e11 1.10823
331331 −5.53303e10 −0.253360 −0.126680 0.991944i 0.540432π-0.540432\pi
−0.126680 + 0.991944i 0.540432π0.540432\pi
332332 5.35695e10 0.241989
333333 −6.59891e11 −2.94085
334334 2.95016e11 1.29714
335335 3.34332e11 1.45036
336336 −6.00320e11 −2.56955
337337 1.45508e11 0.614542 0.307271 0.951622i 0.400584π-0.400584\pi
0.307271 + 0.951622i 0.400584π0.400584\pi
338338 2.38689e11 0.994734
339339 2.36005e11 0.970559
340340 3.32944e10 0.135119
341341 3.82121e10 0.153040
342342 5.97732e11 2.36260
343343 1.65890e11 0.647138
344344 −1.01876e9 −0.00392246
345345 −6.96665e10 −0.264751
346346 −1.69246e11 −0.634857
347347 −6.39428e10 −0.236761 −0.118380 0.992968i 0.537770π-0.537770\pi
−0.118380 + 0.992968i 0.537770π0.537770\pi
348348 −5.49891e11 −2.00988
349349 −1.14191e11 −0.412020 −0.206010 0.978550i 0.566048π-0.566048\pi
−0.206010 + 0.978550i 0.566048π0.566048\pi
350350 −4.63891e10 −0.165238
351351 −1.51915e11 −0.534216
352352 1.90361e11 0.660899
353353 −1.16026e10 −0.0397712 −0.0198856 0.999802i 0.506330π-0.506330\pi
−0.0198856 + 0.999802i 0.506330π0.506330\pi
354354 −7.33845e11 −2.48365
355355 2.87672e11 0.961325
356356 −2.41126e11 −0.795645
357357 −1.02855e11 −0.335134
358358 8.11192e11 2.61006
359359 −1.71039e11 −0.543462 −0.271731 0.962373i 0.587596π-0.587596\pi
−0.271731 + 0.962373i 0.587596π0.587596\pi
360360 −1.75892e10 −0.0551932
361361 2.83093e10 0.0877297
362362 5.46695e11 1.67323
363363 −4.16310e11 −1.25845
364364 −2.74937e11 −0.820875
365365 7.64431e10 0.225435
366366 −4.82559e11 −1.40568
367367 3.24996e11 0.935150 0.467575 0.883953i 0.345128π-0.345128\pi
0.467575 + 0.883953i 0.345128π0.345128\pi
368368 −5.68521e10 −0.161596
369369 −3.39755e11 −0.953996
370370 −9.59352e11 −2.66116
371371 −1.69006e11 −0.463146
372372 1.89639e11 0.513435
373373 7.12429e11 1.90569 0.952844 0.303459i 0.0981416π-0.0981416\pi
0.952844 + 0.303459i 0.0981416π0.0981416\pi
374374 3.33818e10 0.0882242
375375 5.93270e11 1.54922
376376 −2.71380e8 −0.000700218 0
377377 2.70163e11 0.688795
378378 −8.56902e11 −2.15883
379379 −2.74595e11 −0.683623 −0.341812 0.939768i 0.611040π-0.611040\pi
−0.341812 + 0.939768i 0.611040π0.611040\pi
380380 4.29329e11 1.05624
381381 −9.46209e9 −0.0230051
382382 −1.02989e12 −2.47460
383383 5.67014e11 1.34648 0.673239 0.739425i 0.264903π-0.264903\pi
0.673239 + 0.739425i 0.264903π0.264903\pi
384384 −4.54682e10 −0.106713
385385 −3.26891e11 −0.758280
386386 7.88820e11 1.80857
387387 −8.44422e10 −0.191364
388388 7.72847e11 1.73121
389389 −1.13858e11 −0.252109 −0.126055 0.992023i 0.540231π-0.540231\pi
−0.126055 + 0.992023i 0.540231π0.540231\pi
390390 −5.82133e11 −1.27418
391391 −9.74069e9 −0.0210763
392392 2.18688e10 0.0467775
393393 4.09743e11 0.866452
394394 4.79125e10 0.100165
395395 2.24005e10 0.0462989
396396 3.62167e11 0.740083
397397 9.79495e11 1.97900 0.989498 0.144544i 0.0461716π-0.0461716\pi
0.989498 + 0.144544i 0.0461716π0.0461716\pi
398398 1.39481e11 0.278639
399399 −1.32631e12 −2.61979
400400 −3.96008e10 −0.0773453
401401 5.14376e11 0.993415 0.496708 0.867918i 0.334542π-0.334542\pi
0.496708 + 0.867918i 0.334542π0.334542\pi
402402 1.66359e12 3.17708
403403 −9.31704e10 −0.175956
404404 5.34270e11 0.997802
405405 8.41486e9 0.0155417
406406 1.52391e12 2.78350
407407 −4.75219e11 −0.858458
408408 −3.98558e9 −0.00712066
409409 −6.04978e11 −1.06902 −0.534509 0.845163i 0.679503π-0.679503\pi
−0.534509 + 0.845163i 0.679503π0.679503\pi
410410 −4.93937e11 −0.863265
411411 1.09931e12 1.90034
412412 5.21288e10 0.0891334
413413 1.00476e12 1.69937
414414 −2.13900e11 −0.357857
415415 −1.55298e11 −0.257009
416416 −4.64146e11 −0.759861
417417 −1.57637e12 −2.55297
418418 4.30456e11 0.689660
419419 8.82181e11 1.39828 0.699141 0.714984i 0.253566π-0.253566\pi
0.699141 + 0.714984i 0.253566π0.253566\pi
420420 −1.62230e12 −2.54395
421421 −1.22008e12 −1.89287 −0.946434 0.322898i 0.895343π-0.895343\pi
−0.946434 + 0.322898i 0.895343π0.895343\pi
422422 6.41284e11 0.984339
423423 −2.24940e10 −0.0341613
424424 −6.54886e9 −0.00984056
425425 −6.78496e9 −0.0100878
426426 1.43141e12 2.10582
427427 6.60707e11 0.961797
428428 −5.59200e11 −0.805508
429429 −2.88362e11 −0.411036
430430 −1.22762e11 −0.173164
431431 −1.10357e12 −1.54046 −0.770232 0.637764i 0.779860π-0.779860\pi
−0.770232 + 0.637764i 0.779860π0.779860\pi
432432 −7.31509e11 −1.01051
433433 5.88410e11 0.804423 0.402212 0.915547i 0.368242π-0.368242\pi
0.402212 + 0.915547i 0.368242π0.368242\pi
434434 −5.25545e11 −0.711060
435435 1.59413e12 2.13463
436436 −7.76605e10 −0.102923
437437 −1.25605e11 −0.164756
438438 3.80369e11 0.493823
439439 5.62966e11 0.723422 0.361711 0.932290i 0.382193π-0.382193\pi
0.361711 + 0.932290i 0.382193π0.382193\pi
440440 −1.26668e10 −0.0161113
441441 1.81264e12 2.28212
442442 −8.13931e10 −0.101435
443443 3.96636e11 0.489300 0.244650 0.969611i 0.421327π-0.421327\pi
0.244650 + 0.969611i 0.421327π0.421327\pi
444444 −2.35842e12 −2.88004
445445 6.99023e11 0.845029
446446 1.28661e11 0.153972
447447 8.49602e11 1.00654
448448 −1.26236e12 −1.48058
449449 −2.23119e11 −0.259076 −0.129538 0.991574i 0.541349π-0.541349\pi
−0.129538 + 0.991574i 0.541349π0.541349\pi
450450 −1.48994e11 −0.171282
451451 −2.44673e11 −0.278479
452452 5.20464e11 0.586500
453453 −8.02891e11 −0.895807
454454 −2.21752e12 −2.44972
455455 7.97041e11 0.871825
456456 −5.13937e10 −0.0556632
457457 1.18873e12 1.27486 0.637428 0.770510i 0.279998π-0.279998\pi
0.637428 + 0.770510i 0.279998π0.279998\pi
458458 −3.06237e11 −0.325209
459459 −1.25332e11 −0.131797
460460 −1.53637e11 −0.159987
461461 3.10028e11 0.319703 0.159852 0.987141i 0.448898π-0.448898\pi
0.159852 + 0.987141i 0.448898π0.448898\pi
462462 −1.62656e12 −1.66104
463463 −1.04982e12 −1.06169 −0.530847 0.847468i 0.678126π-0.678126\pi
−0.530847 + 0.847468i 0.678126π0.678126\pi
464464 1.30091e12 1.30291
465465 −5.49763e11 −0.545302
466466 1.37194e12 1.34772
467467 −2.00259e11 −0.194835 −0.0974173 0.995244i 0.531058π-0.531058\pi
−0.0974173 + 0.995244i 0.531058π0.531058\pi
468468 −8.83052e11 −0.850903
469469 −2.27774e12 −2.17383
470470 −3.27019e10 −0.0309124
471471 −1.78247e12 −1.66890
472472 3.89339e10 0.0361068
473473 −6.08109e10 −0.0558607
474474 1.11461e11 0.101420
475475 −8.74914e10 −0.0788577
476476 −2.26828e11 −0.202519
477477 −5.42818e11 −0.480088
478478 −1.68776e12 −1.47872
479479 2.03940e10 0.0177008 0.00885040 0.999961i 0.497183π-0.497183\pi
0.00885040 + 0.999961i 0.497183π0.497183\pi
480480 −2.73875e12 −2.35487
481481 1.15870e12 0.987003
482482 −5.85855e11 −0.494400
483483 4.74623e11 0.396814
484484 −9.18094e11 −0.760471
485485 −2.24048e12 −1.83867
486486 1.74994e12 1.42285
487487 2.33165e12 1.87838 0.939190 0.343397i 0.111578π-0.111578\pi
0.939190 + 0.343397i 0.111578π0.111578\pi
488488 2.56020e10 0.0204355
489489 −2.47008e12 −1.95354
490490 2.63523e12 2.06508
491491 1.71540e12 1.33199 0.665993 0.745958i 0.268008π-0.268008\pi
0.665993 + 0.745958i 0.268008π0.268008\pi
492492 −1.21427e12 −0.934269
493493 2.22889e11 0.169933
494494 −1.04956e12 −0.792930
495495 −1.04992e12 −0.786018
496496 −4.48640e11 −0.332836
497497 −1.95985e12 −1.44085
498498 −7.72736e11 −0.562988
499499 3.25362e11 0.234917 0.117459 0.993078i 0.462525π-0.462525\pi
0.117459 + 0.993078i 0.462525π0.462525\pi
500500 1.30835e12 0.936177
501501 −2.10250e12 −1.49096
502502 −2.76287e12 −1.94175
503503 3.65217e11 0.254387 0.127193 0.991878i 0.459403π-0.459403\pi
0.127193 + 0.991878i 0.459403π0.459403\pi
504504 1.19832e11 0.0827245
505505 −1.54884e12 −1.05973
506506 −1.54040e11 −0.104461
507507 −1.70107e12 −1.14337
508508 −2.08669e10 −0.0139018
509509 −2.41548e12 −1.59505 −0.797525 0.603286i 0.793858π-0.793858\pi
−0.797525 + 0.603286i 0.793858π0.793858\pi
510510 −4.80270e11 −0.314354
511511 −5.20791e11 −0.337886
512512 −2.18245e12 −1.40356
513513 −1.61615e12 −1.03027
514514 3.12266e12 1.97329
515515 −1.51121e11 −0.0946657
516516 −3.01793e11 −0.187407
517517 −1.61990e10 −0.00997196
518518 6.53587e12 3.98859
519519 1.20617e12 0.729720
520520 3.08849e10 0.0185238
521521 −5.50115e11 −0.327103 −0.163551 0.986535i 0.552295π-0.552295\pi
−0.163551 + 0.986535i 0.552295π0.552295\pi
522522 4.89454e12 2.88532
523523 2.27108e12 1.32732 0.663658 0.748036i 0.269003π-0.269003\pi
0.663658 + 0.748036i 0.269003π0.269003\pi
524524 9.03611e11 0.523589
525525 3.30603e11 0.189928
526526 9.09536e11 0.518065
527527 −7.68672e10 −0.0434104
528528 −1.38854e12 −0.777509
529529 −1.75620e12 −0.975045
530530 −7.89151e11 −0.434429
531531 3.22713e12 1.76153
532532 −2.92493e12 −1.58312
533533 5.96574e11 0.320178
534534 3.47823e12 1.85107
535535 1.62112e12 0.855504
536536 −8.82610e10 −0.0461878
537537 −5.78115e12 −3.00006
538538 −4.20078e11 −0.216177
539539 1.30537e12 0.666169
540540 −1.97682e12 −1.00045
541541 −1.60456e12 −0.805320 −0.402660 0.915350i 0.631914π-0.631914\pi
−0.402660 + 0.915350i 0.631914π0.631914\pi
542542 −7.75175e11 −0.385836
543543 −3.89615e12 −1.92325
544544 −3.82928e11 −0.187466
545545 2.25137e11 0.109311
546546 3.96595e12 1.90977
547547 2.15732e10 0.0103032 0.00515159 0.999987i 0.498360π-0.498360\pi
0.00515159 + 0.999987i 0.498360π0.498360\pi
548548 2.42432e12 1.14836
549549 2.12208e12 0.996980
550550 −1.07298e11 −0.0499987
551551 2.87414e12 1.32839
552552 1.83914e10 0.00843118
553553 −1.52610e11 −0.0693937
554554 4.12426e12 1.86017
555555 6.83705e12 3.05880
556556 −3.47639e12 −1.54274
557557 −3.19479e12 −1.40635 −0.703176 0.711015i 0.748236π-0.748236\pi
−0.703176 + 0.711015i 0.748236π0.748236\pi
558558 −1.68796e12 −0.737071
559559 1.48272e11 0.0642252
560560 3.83796e12 1.64913
561561 −2.37903e11 −0.101407
562562 4.67846e12 1.97829
563563 2.47417e12 1.03787 0.518933 0.854815i 0.326329π-0.326329\pi
0.518933 + 0.854815i 0.326329π0.326329\pi
564564 −8.03926e10 −0.0334549
565565 −1.50882e12 −0.622902
566566 8.21506e11 0.336463
567567 −5.73287e10 −0.0232942
568568 −7.59431e10 −0.0306140
569569 2.14218e11 0.0856745 0.0428373 0.999082i 0.486360π-0.486360\pi
0.0428373 + 0.999082i 0.486360π0.486360\pi
570570 −6.19304e12 −2.45735
571571 −1.17952e12 −0.464348 −0.232174 0.972674i 0.574584π-0.574584\pi
−0.232174 + 0.972674i 0.574584π0.574584\pi
572572 −6.35928e11 −0.248385
573573 7.33974e12 2.84436
574574 3.36509e12 1.29388
575575 3.13091e10 0.0119444
576576 −4.05448e12 −1.53474
577577 −2.55613e12 −0.960044 −0.480022 0.877256i 0.659371π-0.659371\pi
−0.480022 + 0.877256i 0.659371π0.659371\pi
578578 3.70531e12 1.38086
579579 −5.62171e12 −2.07881
580580 3.51556e12 1.28994
581581 1.05801e12 0.385210
582582 −1.11483e13 −4.02767
583583 −3.90909e11 −0.140142
584584 −2.01804e10 −0.00717912
585585 2.55996e12 0.903716
586586 5.50988e12 1.93020
587587 1.41133e12 0.490632 0.245316 0.969443i 0.421108π-0.421108\pi
0.245316 + 0.969443i 0.421108π0.421108\pi
588588 6.47832e12 2.23493
589589 −9.91196e11 −0.339344
590590 4.69161e12 1.59400
591591 −3.41460e11 −0.115132
592592 5.57945e12 1.86700
593593 3.41543e12 1.13423 0.567113 0.823640i 0.308060π-0.308060\pi
0.567113 + 0.823640i 0.308060π0.308060\pi
594594 −1.98201e12 −0.653231
595595 6.57572e11 0.215089
596596 1.87364e12 0.608244
597597 −9.94047e11 −0.320275
598598 3.75587e11 0.120103
599599 −4.06951e12 −1.29158 −0.645790 0.763515i 0.723472π-0.723472\pi
−0.645790 + 0.763515i 0.723472π0.723472\pi
600600 1.28107e10 0.00403544
601601 3.72234e12 1.16381 0.581904 0.813258i 0.302308π-0.302308\pi
0.581904 + 0.813258i 0.302308π0.302308\pi
602602 8.36355e11 0.259541
603603 −7.31572e12 −2.25335
604604 −1.77063e12 −0.541328
605605 2.66155e12 0.807672
606606 −7.70680e12 −2.32139
607607 −5.57137e12 −1.66576 −0.832881 0.553452i 0.813310π-0.813310\pi
−0.832881 + 0.553452i 0.813310π0.813310\pi
608608 −4.93783e12 −1.46545
609609 −1.08605e13 −3.19942
610610 3.08509e12 0.902160
611611 3.94971e10 0.0114652
612612 −7.28534e11 −0.209927
613613 −4.09603e12 −1.17163 −0.585816 0.810444i 0.699226π-0.699226\pi
−0.585816 + 0.810444i 0.699226π0.699226\pi
614614 −1.03075e12 −0.292680
615615 3.52016e12 0.992257
616616 8.62965e10 0.0241479
617617 1.31949e11 0.0366541 0.0183270 0.999832i 0.494166π-0.494166\pi
0.0183270 + 0.999832i 0.494166π0.494166\pi
618618 −7.51955e11 −0.207369
619619 −4.89034e12 −1.33885 −0.669424 0.742880i 0.733459π-0.733459\pi
−0.669424 + 0.742880i 0.733459π0.733459\pi
620620 −1.21240e12 −0.329521
621621 5.78343e11 0.156053
622622 5.02022e12 1.34483
623623 −4.76230e12 −1.26654
624624 3.38560e12 0.893932
625625 −4.08132e12 −1.06989
626626 −7.70181e12 −2.00451
627627 −3.06774e12 −0.792712
628628 −3.93092e12 −1.00850
629629 9.55949e11 0.243504
630630 1.44399e13 3.65202
631631 7.13746e11 0.179230 0.0896152 0.995976i 0.471436π-0.471436\pi
0.0896152 + 0.995976i 0.471436π0.471436\pi
632632 −5.91355e9 −0.00147442
633633 −4.57027e12 −1.13142
634634 −4.98008e12 −1.22415
635635 6.04929e10 0.0147646
636636 −1.94001e12 −0.470161
637637 −3.18282e12 −0.765922
638638 3.52479e12 0.842248
639639 −6.29471e12 −1.49356
640640 2.90687e11 0.0684882
641641 −2.68785e12 −0.628846 −0.314423 0.949283i 0.601811π-0.601811\pi
−0.314423 + 0.949283i 0.601811π0.601811\pi
642642 8.06641e12 1.87401
643643 5.16853e12 1.19239 0.596194 0.802840i 0.296679π-0.296679\pi
0.596194 + 0.802840i 0.296679π0.296679\pi
644644 1.04669e12 0.239791
645645 8.74896e11 0.199039
646646 −8.65903e11 −0.195624
647647 8.53833e12 1.91560 0.957798 0.287443i 0.0928052π-0.0928052\pi
0.957798 + 0.287443i 0.0928052π0.0928052\pi
648648 −2.22145e9 −0.000494937 0
649649 2.32401e12 0.514205
650650 2.61618e11 0.0574854
651651 3.74542e12 0.817309
652652 −5.44731e12 −1.18050
653653 5.27979e12 1.13634 0.568168 0.822912i 0.307652π-0.307652\pi
0.568168 + 0.822912i 0.307652π0.307652\pi
654654 1.12025e12 0.239450
655655 −2.61956e12 −0.556087
656656 2.87266e12 0.605644
657657 −1.67270e12 −0.350246
658658 2.22791e11 0.0463320
659659 −2.34951e12 −0.485280 −0.242640 0.970116i 0.578013π-0.578013\pi
−0.242640 + 0.970116i 0.578013π0.578013\pi
660660 −3.75237e12 −0.769765
661661 7.26460e12 1.48015 0.740073 0.672526i 0.234791π-0.234791\pi
0.740073 + 0.672526i 0.234791π0.234791\pi
662662 1.76014e12 0.356194
663663 5.80067e11 0.116592
664664 4.09973e10 0.00818462
665665 8.47934e12 1.68138
666666 2.09921e13 4.13449
667667 −1.02852e12 −0.201209
668668 −4.63667e12 −0.900974
669669 −9.16937e11 −0.176979
670670 −1.06356e13 −2.03904
671671 1.52821e12 0.291026
672672 1.86585e13 3.52952
673673 −7.13952e12 −1.34153 −0.670766 0.741669i 0.734035π-0.734035\pi
−0.670766 + 0.741669i 0.734035π0.734035\pi
674674 −4.62882e12 −0.863974
675675 4.02850e11 0.0746923
676676 −3.75140e12 −0.690929
677677 −2.57187e12 −0.470543 −0.235272 0.971930i 0.575598π-0.575598\pi
−0.235272 + 0.971930i 0.575598π0.575598\pi
678678 −7.50766e12 −1.36449
679679 1.52639e13 2.75583
680680 2.54805e10 0.00457003
681681 1.58037e13 2.81577
682682 −1.21558e12 −0.215157
683683 −4.88447e12 −0.858864 −0.429432 0.903099i 0.641286π-0.641286\pi
−0.429432 + 0.903099i 0.641286π0.641286\pi
684684 −9.39438e12 −1.64103
685685 −7.02810e12 −1.21964
686686 −5.27721e12 −0.909801
687687 2.18247e12 0.373803
688688 7.13969e11 0.121487
689689 9.53132e11 0.161126
690690 2.21620e12 0.372209
691691 9.89790e12 1.65155 0.825775 0.564000i 0.190738π-0.190738\pi
0.825775 + 0.564000i 0.190738π0.190738\pi
692692 2.65999e12 0.440963
693693 7.15288e12 1.17810
694694 2.03412e12 0.332858
695695 1.00780e13 1.63849
696696 −4.20837e11 −0.0679787
697697 4.92184e11 0.0789915
698698 3.63260e12 0.579252
699699 −9.77747e12 −1.54910
700700 7.29083e11 0.114772
701701 6.90991e11 0.108079 0.0540395 0.998539i 0.482790π-0.482790\pi
0.0540395 + 0.998539i 0.482790π0.482790\pi
702702 4.83263e12 0.751046
703703 1.23269e13 1.90351
704704 −2.91982e12 −0.448001
705705 2.33058e11 0.0355314
706706 3.69096e11 0.0559137
707707 1.05520e13 1.58835
708708 1.15336e13 1.72511
709709 −1.33929e13 −1.99052 −0.995260 0.0972520i 0.968995π-0.968995\pi
−0.995260 + 0.0972520i 0.968995π0.968995\pi
710710 −9.15128e12 −1.35151
711711 −4.90158e11 −0.0719322
712712 −1.84536e11 −0.0269105
713713 3.54703e11 0.0513998
714714 3.27198e12 0.471160
715715 1.84355e12 0.263802
716716 −1.27493e13 −1.81291
717717 1.20282e13 1.69967
718718 5.44099e12 0.764044
719719 1.04525e13 1.45861 0.729304 0.684189i 0.239844π-0.239844\pi
0.729304 + 0.684189i 0.239844π0.239844\pi
720720 1.23269e13 1.70945
721721 1.02956e12 0.141887
722722 −9.00562e11 −0.123338
723723 4.17524e12 0.568275
724724 −8.59224e12 −1.16220
725725 −7.16424e11 −0.0963050
726726 1.32434e13 1.76924
727727 6.95191e12 0.922996 0.461498 0.887141i 0.347312π-0.347312\pi
0.461498 + 0.887141i 0.347312π0.347312\pi
728728 −2.10412e11 −0.0277638
729729 −1.23571e13 −1.62047
730730 −2.43177e12 −0.316935
731731 1.22327e11 0.0158451
732732 7.58423e12 0.976364
733733 4.53224e12 0.579889 0.289944 0.957044i 0.406363π-0.406363\pi
0.289944 + 0.957044i 0.406363π0.406363\pi
734734 −1.03386e13 −1.31471
735735 −1.87806e13 −2.37365
736736 1.76702e12 0.221968
737737 −5.26839e12 −0.657771
738738 1.08081e13 1.34121
739739 −1.36577e13 −1.68452 −0.842261 0.539070i 0.818776π-0.818776\pi
−0.842261 + 0.539070i 0.818776π0.818776\pi
740740 1.50779e13 1.84840
741741 7.47992e12 0.911412
742742 5.37632e12 0.651130
743743 −2.57632e12 −0.310134 −0.155067 0.987904i 0.549559π-0.549559\pi
−0.155067 + 0.987904i 0.549559π0.549559\pi
744744 1.45133e11 0.0173655
745745 −5.43167e12 −0.645996
746746 −2.26634e13 −2.67918
747747 3.39815e12 0.399301
748748 −5.24652e11 −0.0612793
749749 −1.10443e13 −1.28224
750750 −1.88728e13 −2.17802
751751 1.06543e13 1.22221 0.611106 0.791548i 0.290725π-0.290725\pi
0.611106 + 0.791548i 0.290725π0.290725\pi
752752 1.90189e11 0.0216873
753753 1.96902e13 2.23189
754754 −8.59430e12 −0.968366
755755 5.13303e12 0.574927
756756 1.34677e13 1.49949
757757 9.12478e12 1.00993 0.504964 0.863140i 0.331506π-0.331506\pi
0.504964 + 0.863140i 0.331506π0.331506\pi
758758 8.73529e12 0.961094
759759 1.09780e12 0.120070
760760 3.28569e11 0.0357245
761761 −3.43279e12 −0.371036 −0.185518 0.982641i 0.559396π-0.559396\pi
−0.185518 + 0.982641i 0.559396π0.559396\pi
762762 3.01003e11 0.0323425
763763 −1.53381e12 −0.163837
764764 1.61864e13 1.71882
765765 2.11201e12 0.222957
766766 −1.80376e13 −1.89299
767767 −5.66650e12 −0.591202
768768 1.62856e13 1.68919
769769 8.63565e12 0.890484 0.445242 0.895410i 0.353118π-0.353118\pi
0.445242 + 0.895410i 0.353118π0.353118\pi
770770 1.03989e13 1.06605
771771 −2.22544e13 −2.26815
772772 −1.23976e13 −1.25621
773773 −7.03808e12 −0.709000 −0.354500 0.935056i 0.615349π-0.615349\pi
−0.354500 + 0.935056i 0.615349π0.615349\pi
774774 2.68623e12 0.269035
775775 2.47071e11 0.0246016
776776 5.91467e11 0.0585535
777777 −4.65794e13 −4.58458
778778 3.62198e12 0.354436
779779 6.34667e12 0.617487
780780 9.14920e12 0.885029
781781 −4.53312e12 −0.435981
782782 3.09866e11 0.0296308
783783 −1.32338e13 −1.25822
784784 −1.53261e13 −1.44880
785785 1.13957e13 1.07109
786786 −1.30345e13 −1.21813
787787 −6.36112e12 −0.591082 −0.295541 0.955330i 0.595500π-0.595500\pi
−0.295541 + 0.955330i 0.595500π0.595500\pi
788788 −7.53027e11 −0.0695733
789789 −6.48202e12 −0.595476
790790 −7.12594e11 −0.0650909
791791 1.02793e13 0.933618
792792 2.77170e11 0.0250313
793793 −3.72616e12 −0.334605
794794 −3.11592e13 −2.78224
795795 5.62407e12 0.499343
796796 −2.19219e12 −0.193539
797797 2.33981e12 0.205408 0.102704 0.994712i 0.467250π-0.467250\pi
0.102704 + 0.994712i 0.467250π0.467250\pi
798798 4.21919e13 3.68312
799799 3.25858e10 0.00282858
800800 1.23083e12 0.106241
801801 −1.52957e13 −1.31288
802802 −1.63631e13 −1.39663
803803 −1.20459e12 −0.102239
804804 −2.61461e13 −2.20676
805805 −3.03436e12 −0.254674
806806 2.96389e12 0.247374
807807 2.99379e12 0.248479
808808 4.08882e11 0.0337479
809809 1.07144e13 0.879423 0.439712 0.898139i 0.355081π-0.355081\pi
0.439712 + 0.898139i 0.355081π0.355081\pi
810810 −2.67689e11 −0.0218499
811811 −1.85316e13 −1.50425 −0.752125 0.659021i 0.770971π-0.770971\pi
−0.752125 + 0.659021i 0.770971π0.770971\pi
812812 −2.39508e13 −1.93338
813813 5.52447e12 0.443489
814814 1.51174e13 1.20689
815815 1.57917e13 1.25378
816816 2.79318e12 0.220543
817817 1.57739e12 0.123863
818818 1.92453e13 1.50291
819819 −1.74405e13 −1.35451
820820 7.76305e12 0.599612
821821 3.45942e12 0.265741 0.132871 0.991133i 0.457581π-0.457581\pi
0.132871 + 0.991133i 0.457581π0.457581\pi
822822 −3.49707e13 −2.67166
823823 −7.96788e12 −0.605402 −0.302701 0.953086i 0.597888π-0.597888\pi
−0.302701 + 0.953086i 0.597888π0.597888\pi
824824 3.98947e10 0.00301469
825825 7.64683e11 0.0574696
826826 −3.19630e13 −2.38911
827827 1.92430e13 1.43053 0.715266 0.698852i 0.246306π-0.246306\pi
0.715266 + 0.698852i 0.246306π0.246306\pi
828828 3.36181e12 0.248563
829829 −2.11659e13 −1.55647 −0.778235 0.627973i 0.783885π-0.783885\pi
−0.778235 + 0.627973i 0.783885π0.783885\pi
830830 4.94025e12 0.361324
831831 −2.93925e13 −2.13812
832832 7.11925e12 0.515085
833833 −2.62588e12 −0.188961
834834 5.01466e13 3.58917
835835 1.34417e13 0.956895
836836 −6.76534e12 −0.479029
837837 4.56391e12 0.321420
838838 −2.80635e13 −1.96582
839839 4.74291e12 0.330458 0.165229 0.986255i 0.447164π-0.447164\pi
0.165229 + 0.986255i 0.447164π0.447164\pi
840840 −1.24156e12 −0.0860422
841841 9.02777e12 0.622298
842842 3.88127e13 2.66115
843843 −3.33422e13 −2.27389
844844 −1.00789e13 −0.683709
845845 1.08753e13 0.733813
846846 7.15568e11 0.0480269
847847 −1.81326e13 −1.21055
848848 4.58958e12 0.304784
849849 −5.85466e12 −0.386738
850850 2.15840e11 0.0141823
851851 −4.41121e12 −0.288320
852852 −2.24971e13 −1.46267
853853 −2.76410e13 −1.78766 −0.893828 0.448411i 0.851990π-0.851990\pi
−0.893828 + 0.448411i 0.851990π0.851990\pi
854854 −2.10181e13 −1.35217
855855 2.72342e13 1.74288
856856 −4.27961e11 −0.0272441
857857 −2.86262e12 −0.181280 −0.0906399 0.995884i 0.528891π-0.528891\pi
−0.0906399 + 0.995884i 0.528891π0.528891\pi
858858 9.17322e12 0.577868
859859 −2.04273e13 −1.28009 −0.640046 0.768337i 0.721085π-0.721085\pi
−0.640046 + 0.768337i 0.721085π0.721085\pi
860860 1.92942e12 0.120277
861861 −2.39821e13 −1.48721
862862 3.51062e13 2.16571
863863 3.13209e13 1.92214 0.961072 0.276297i 0.0891075π-0.0891075\pi
0.961072 + 0.276297i 0.0891075π0.0891075\pi
864864 2.27360e13 1.38804
865865 −7.71129e12 −0.468333
866866 −1.87182e13 −1.13092
867867 −2.64068e13 −1.58719
868868 8.25983e12 0.493893
869869 −3.52986e11 −0.0209976
870870 −5.07117e13 −3.00104
871871 1.28456e13 0.756265
872872 −5.94344e10 −0.00348108
873873 4.90251e13 2.85663
874874 3.99569e12 0.231628
875875 2.58402e13 1.49025
876876 −5.97814e12 −0.343003
877877 1.00982e13 0.576430 0.288215 0.957566i 0.406938π-0.406938\pi
0.288215 + 0.957566i 0.406938π0.406938\pi
878878 −1.79088e13 −1.01705
879879 −3.92675e13 −2.21862
880880 8.87719e12 0.499003
881881 −2.31441e13 −1.29434 −0.647170 0.762346i 0.724048π-0.724048\pi
−0.647170 + 0.762346i 0.724048π0.724048\pi
882882 −5.76630e13 −3.20840
883883 −2.09580e13 −1.16019 −0.580093 0.814550i 0.696984π-0.696984\pi
−0.580093 + 0.814550i 0.696984π0.696984\pi
884884 1.27923e12 0.0704553
885885 −3.34359e13 −1.83218
886886 −1.26176e13 −0.687899
887887 −9.06620e12 −0.491778 −0.245889 0.969298i 0.579080π-0.579080\pi
−0.245889 + 0.969298i 0.579080π0.579080\pi
888888 −1.80493e12 −0.0974094
889889 −4.12126e11 −0.0221295
890890 −2.22370e13 −1.18801
891891 −1.32601e11 −0.00704851
892892 −2.02213e12 −0.106947
893893 4.20192e11 0.0221114
894894 −2.70271e13 −1.41508
895895 3.69600e13 1.92543
896896 −1.98039e12 −0.102651
897897 −2.67671e12 −0.138050
898898 7.09775e12 0.364231
899899 −8.11641e12 −0.414425
900900 2.34169e12 0.118970
901901 7.86351e11 0.0397516
902902 7.78343e12 0.391509
903903 −5.96048e12 −0.298323
904904 3.98317e11 0.0198367
905905 2.49088e13 1.23434
906906 2.55412e13 1.25940
907907 2.45443e12 0.120425 0.0602127 0.998186i 0.480822π-0.480822\pi
0.0602127 + 0.998186i 0.480822π0.480822\pi
908908 3.48521e13 1.70154
909909 3.38911e13 1.64645
910910 −2.53551e13 −1.22568
911911 −9.03552e12 −0.434631 −0.217315 0.976101i 0.569730π-0.569730\pi
−0.217315 + 0.976101i 0.569730π0.569730\pi
912912 3.60178e13 1.72401
913913 2.44717e12 0.116559
914914 −3.78153e13 −1.79230
915915 −2.19866e13 −1.03696
916916 4.81303e12 0.225886
917917 1.78465e13 0.833474
918918 3.98700e12 0.185291
919919 3.18443e13 1.47269 0.736346 0.676605i 0.236549π-0.236549\pi
0.736346 + 0.676605i 0.236549π0.236549\pi
920920 −1.17580e11 −0.00541111
921921 7.34585e12 0.336414
922922 −9.86247e12 −0.449466
923923 1.10529e13 0.501265
924924 2.55641e13 1.15374
925925 −3.07266e12 −0.137999
926926 3.33963e13 1.49262
927927 3.30677e12 0.147077
928928 −4.04334e13 −1.78968
929929 3.81113e13 1.67874 0.839368 0.543563i 0.182925π-0.182925\pi
0.839368 + 0.543563i 0.182925π0.182925\pi
930930 1.74888e13 0.766631
931931 −3.38605e13 −1.47713
932932 −2.15624e13 −0.936107
933933 −3.57778e13 −1.54578
934934 6.37054e12 0.273915
935935 1.52096e12 0.0650828
936936 −6.75809e11 −0.0287795
937937 −1.23336e13 −0.522709 −0.261355 0.965243i 0.584169π-0.584169\pi
−0.261355 + 0.965243i 0.584169π0.584169\pi
938938 7.24583e13 3.05615
939939 5.48888e13 2.30403
940940 5.13965e11 0.0214713
941941 7.37410e12 0.306588 0.153294 0.988181i 0.451012π-0.451012\pi
0.153294 + 0.988181i 0.451012π0.451012\pi
942942 5.67032e13 2.34627
943943 −2.27118e12 −0.0935294
944944 −2.72857e13 −1.11831
945945 −3.90427e13 −1.59256
946946 1.93449e12 0.0785336
947947 −9.64986e12 −0.389894 −0.194947 0.980814i 0.562453π-0.562453\pi
−0.194947 + 0.980814i 0.562453π0.562453\pi
948948 −1.75181e12 −0.0704447
949949 2.93708e12 0.117549
950950 2.78323e12 0.110865
951951 3.54917e13 1.40707
952952 −1.73594e11 −0.00684964
953953 1.04239e13 0.409365 0.204683 0.978828i 0.434384π-0.434384\pi
0.204683 + 0.978828i 0.434384π0.434384\pi
954954 1.72678e13 0.674948
955955 −4.69243e13 −1.82550
956956 2.65260e13 1.02710
957957 −2.51202e13 −0.968100
958958 −6.48764e11 −0.0248853
959959 4.78810e13 1.82801
960960 4.20080e13 1.59629
961961 −2.36405e13 −0.894133
962962 −3.68600e13 −1.38761
963963 −3.54725e13 −1.32915
964964 9.20771e12 0.343404
965965 3.59407e13 1.33418
966966 −1.50985e13 −0.557874
967967 −2.86459e13 −1.05352 −0.526761 0.850014i 0.676594π-0.676594\pi
−0.526761 + 0.850014i 0.676594π0.676594\pi
968968 −7.02626e11 −0.0257208
969969 6.17106e12 0.224855
970970 7.12729e13 2.58495
971971 −4.99282e13 −1.80243 −0.901217 0.433367i 0.857325π-0.857325\pi
−0.901217 + 0.433367i 0.857325π0.857325\pi
972972 −2.75032e13 −0.988293
973973 −6.86595e13 −2.45580
974974 −7.41734e13 −2.64078
975975 −1.86448e12 −0.0660751
976976 −1.79424e13 −0.632932
977977 −4.35658e13 −1.52975 −0.764874 0.644180i 0.777199π-0.777199\pi
−0.764874 + 0.644180i 0.777199π0.777199\pi
978978 7.85770e13 2.74644
979979 −1.10152e13 −0.383239
980980 −4.14171e13 −1.43437
981981 −4.92635e12 −0.169830
982982 −5.45695e13 −1.87262
983983 −1.86560e13 −0.637275 −0.318638 0.947877i 0.603225π-0.603225\pi
−0.318638 + 0.947877i 0.603225π0.603225\pi
984984 −9.29293e11 −0.0315991
985985 2.18302e12 0.0738915
986986 −7.09045e12 −0.238906
987987 −1.58777e12 −0.0532551
988988 1.64956e13 0.550758
989989 −5.64475e11 −0.0187612
990990 3.33995e13 1.10505
991991 4.65500e13 1.53316 0.766582 0.642147i 0.221956π-0.221956\pi
0.766582 + 0.642147i 0.221956π0.221956\pi
992992 1.39442e13 0.457183
993993 −1.25441e13 −0.409418
994994 6.23458e13 2.02567
995995 6.35513e12 0.205551
996996 1.21449e13 0.391044
997997 5.55137e12 0.177939 0.0889697 0.996034i 0.471643π-0.471643\pi
0.0889697 + 0.996034i 0.471643π0.471643\pi
998998 −1.03503e13 −0.330266
999999 −5.67585e13 −1.80296
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.a.1.11 71
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.a.1.11 71 1.1 even 1 trivial