Properties

Label 197.10.a.a.1.11
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $1$
Dimension $71$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(1\)
Dimension: \(71\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-31.8115 q^{2} +226.712 q^{3} +499.972 q^{4} -1449.41 q^{5} -7212.06 q^{6} +9874.56 q^{7} +382.633 q^{8} +31715.5 q^{9} +46108.1 q^{10} +22839.8 q^{11} +113350. q^{12} -55689.1 q^{13} -314125. q^{14} -328600. q^{15} -268158. q^{16} -45944.5 q^{17} -1.00892e6 q^{18} -592450. q^{19} -724666. q^{20} +2.23868e6 q^{21} -726569. q^{22} +212010. q^{23} +86747.7 q^{24} +147677. q^{25} +1.77155e6 q^{26} +2.72791e6 q^{27} +4.93700e6 q^{28} -4.85128e6 q^{29} +1.04533e7 q^{30} +1.67305e6 q^{31} +8.33459e6 q^{32} +5.17806e6 q^{33} +1.46156e6 q^{34} -1.43123e7 q^{35} +1.58568e7 q^{36} -2.08066e7 q^{37} +1.88467e7 q^{38} -1.26254e7 q^{39} -554594. q^{40} -1.07126e7 q^{41} -7.12159e7 q^{42} -2.66249e6 q^{43} +1.14193e7 q^{44} -4.59688e7 q^{45} -6.74436e6 q^{46} -709244. q^{47} -6.07946e7 q^{48} +5.71534e7 q^{49} -4.69784e6 q^{50} -1.04162e7 q^{51} -2.78430e7 q^{52} -1.71152e7 q^{53} -8.67788e7 q^{54} -3.31043e7 q^{55} +3.77834e6 q^{56} -1.34316e8 q^{57} +1.54327e8 q^{58} +1.01753e8 q^{59} -1.64291e8 q^{60} +6.69100e7 q^{61} -5.32221e7 q^{62} +3.13176e8 q^{63} -1.27839e8 q^{64} +8.07166e7 q^{65} -1.64722e8 q^{66} -2.30667e8 q^{67} -2.29709e7 q^{68} +4.80653e7 q^{69} +4.55297e8 q^{70} -1.98475e8 q^{71} +1.21354e7 q^{72} -5.27407e7 q^{73} +6.61890e8 q^{74} +3.34803e7 q^{75} -2.96208e8 q^{76} +2.25533e8 q^{77} +4.01633e8 q^{78} -1.54549e7 q^{79} +3.88672e8 q^{80} -5.80570e6 q^{81} +3.40784e8 q^{82} +1.07145e8 q^{83} +1.11928e9 q^{84} +6.65926e7 q^{85} +8.46980e7 q^{86} -1.09984e9 q^{87} +8.73927e6 q^{88} -4.82280e8 q^{89} +1.46234e9 q^{90} -5.49905e8 q^{91} +1.05999e8 q^{92} +3.79300e8 q^{93} +2.25621e7 q^{94} +8.58706e8 q^{95} +1.88955e9 q^{96} +1.54578e9 q^{97} -1.81813e9 q^{98} +7.24375e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 71 q - 32 q^{2} - 892 q^{3} + 16896 q^{4} - 2329 q^{5} - 10272 q^{6} - 37846 q^{7} - 24933 q^{8} + 419903 q^{9} - 138907 q^{10} - 143074 q^{11} - 496640 q^{12} - 433821 q^{13} - 130143 q^{14} - 670126 q^{15}+ \cdots - 6380320552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −31.8115 −1.40588 −0.702942 0.711248i \(-0.748130\pi\)
−0.702942 + 0.711248i \(0.748130\pi\)
\(3\) 226.712 1.61596 0.807978 0.589213i \(-0.200562\pi\)
0.807978 + 0.589213i \(0.200562\pi\)
\(4\) 499.972 0.976508
\(5\) −1449.41 −1.03712 −0.518558 0.855042i \(-0.673531\pi\)
−0.518558 + 0.855042i \(0.673531\pi\)
\(6\) −7212.06 −2.27184
\(7\) 9874.56 1.55445 0.777225 0.629223i \(-0.216627\pi\)
0.777225 + 0.629223i \(0.216627\pi\)
\(8\) 382.633 0.0330277
\(9\) 31715.5 1.61131
\(10\) 46108.1 1.45806
\(11\) 22839.8 0.470355 0.235177 0.971952i \(-0.424433\pi\)
0.235177 + 0.971952i \(0.424433\pi\)
\(12\) 113350. 1.57799
\(13\) −55689.1 −0.540785 −0.270393 0.962750i \(-0.587154\pi\)
−0.270393 + 0.962750i \(0.587154\pi\)
\(14\) −314125. −2.18537
\(15\) −328600. −1.67593
\(16\) −268158. −1.02294
\(17\) −45944.5 −0.133418 −0.0667088 0.997772i \(-0.521250\pi\)
−0.0667088 + 0.997772i \(0.521250\pi\)
\(18\) −1.00892e6 −2.26532
\(19\) −592450. −1.04294 −0.521471 0.853269i \(-0.674617\pi\)
−0.521471 + 0.853269i \(0.674617\pi\)
\(20\) −724666. −1.01275
\(21\) 2.23868e6 2.51192
\(22\) −726569. −0.661264
\(23\) 212010. 0.157972 0.0789862 0.996876i \(-0.474832\pi\)
0.0789862 + 0.996876i \(0.474832\pi\)
\(24\) 86747.7 0.0533713
\(25\) 147677. 0.0756108
\(26\) 1.77155e6 0.760281
\(27\) 2.72791e6 0.987853
\(28\) 4.93700e6 1.51793
\(29\) −4.85128e6 −1.27369 −0.636847 0.770990i \(-0.719762\pi\)
−0.636847 + 0.770990i \(0.719762\pi\)
\(30\) 1.04533e7 2.35617
\(31\) 1.67305e6 0.325372 0.162686 0.986678i \(-0.447984\pi\)
0.162686 + 0.986678i \(0.447984\pi\)
\(32\) 8.33459e6 1.40511
\(33\) 5.17806e6 0.760072
\(34\) 1.46156e6 0.187570
\(35\) −1.43123e7 −1.61215
\(36\) 1.58568e7 1.57346
\(37\) −2.08066e7 −1.82513 −0.912564 0.408933i \(-0.865901\pi\)
−0.912564 + 0.408933i \(0.865901\pi\)
\(38\) 1.88467e7 1.46626
\(39\) −1.26254e7 −0.873885
\(40\) −554594. −0.0342535
\(41\) −1.07126e7 −0.592062 −0.296031 0.955178i \(-0.595663\pi\)
−0.296031 + 0.955178i \(0.595663\pi\)
\(42\) −7.12159e7 −3.53147
\(43\) −2.66249e6 −0.118763 −0.0593814 0.998235i \(-0.518913\pi\)
−0.0593814 + 0.998235i \(0.518913\pi\)
\(44\) 1.14193e7 0.459305
\(45\) −4.59688e7 −1.67112
\(46\) −6.74436e6 −0.222091
\(47\) −709244. −0.0212009 −0.0106005 0.999944i \(-0.503374\pi\)
−0.0106005 + 0.999944i \(0.503374\pi\)
\(48\) −6.07946e7 −1.65303
\(49\) 5.71534e7 1.41631
\(50\) −4.69784e6 −0.106300
\(51\) −1.04162e7 −0.215597
\(52\) −2.78430e7 −0.528081
\(53\) −1.71152e7 −0.297949 −0.148974 0.988841i \(-0.547597\pi\)
−0.148974 + 0.988841i \(0.547597\pi\)
\(54\) −8.67788e7 −1.38881
\(55\) −3.31043e7 −0.487813
\(56\) 3.77834e6 0.0513399
\(57\) −1.34316e8 −1.68535
\(58\) 1.54327e8 1.79067
\(59\) 1.01753e8 1.09323 0.546614 0.837384i \(-0.315916\pi\)
0.546614 + 0.837384i \(0.315916\pi\)
\(60\) −1.64291e8 −1.63656
\(61\) 6.69100e7 0.618738 0.309369 0.950942i \(-0.399882\pi\)
0.309369 + 0.950942i \(0.399882\pi\)
\(62\) −5.32221e7 −0.457435
\(63\) 3.13176e8 2.50470
\(64\) −1.27839e8 −0.952476
\(65\) 8.07166e7 0.560857
\(66\) −1.64722e8 −1.06857
\(67\) −2.30667e8 −1.39846 −0.699229 0.714898i \(-0.746473\pi\)
−0.699229 + 0.714898i \(0.746473\pi\)
\(68\) −2.29709e7 −0.130283
\(69\) 4.80653e7 0.255276
\(70\) 4.55297e8 2.26649
\(71\) −1.98475e8 −0.926921 −0.463460 0.886118i \(-0.653392\pi\)
−0.463460 + 0.886118i \(0.653392\pi\)
\(72\) 1.21354e7 0.0532179
\(73\) −5.27407e7 −0.217367 −0.108683 0.994076i \(-0.534663\pi\)
−0.108683 + 0.994076i \(0.534663\pi\)
\(74\) 6.61890e8 2.56592
\(75\) 3.34803e7 0.122184
\(76\) −2.96208e8 −1.01844
\(77\) 2.25533e8 0.731142
\(78\) 4.01633e8 1.22858
\(79\) −1.54549e7 −0.0446420 −0.0223210 0.999751i \(-0.507106\pi\)
−0.0223210 + 0.999751i \(0.507106\pi\)
\(80\) 3.88672e8 1.06091
\(81\) −5.80570e6 −0.0149855
\(82\) 3.40784e8 0.832370
\(83\) 1.07145e8 0.247811 0.123906 0.992294i \(-0.460458\pi\)
0.123906 + 0.992294i \(0.460458\pi\)
\(84\) 1.11928e9 2.45291
\(85\) 6.65926e7 0.138370
\(86\) 8.46980e7 0.166967
\(87\) −1.09984e9 −2.05823
\(88\) 8.73927e6 0.0155347
\(89\) −4.82280e8 −0.814787 −0.407393 0.913253i \(-0.633562\pi\)
−0.407393 + 0.913253i \(0.633562\pi\)
\(90\) 1.46234e9 2.34940
\(91\) −5.49905e8 −0.840624
\(92\) 1.05999e8 0.154261
\(93\) 3.79300e8 0.525787
\(94\) 2.25621e7 0.0298061
\(95\) 8.58706e8 1.08165
\(96\) 1.88955e9 2.27059
\(97\) 1.54578e9 1.77286 0.886431 0.462860i \(-0.153177\pi\)
0.886431 + 0.462860i \(0.153177\pi\)
\(98\) −1.81813e9 −1.99117
\(99\) 7.24375e8 0.757888
\(100\) 7.38345e7 0.0738345
\(101\) 1.06860e9 1.02181 0.510903 0.859638i \(-0.329311\pi\)
0.510903 + 0.859638i \(0.329311\pi\)
\(102\) 3.31354e8 0.303104
\(103\) 1.04264e8 0.0912778 0.0456389 0.998958i \(-0.485468\pi\)
0.0456389 + 0.998958i \(0.485468\pi\)
\(104\) −2.13085e7 −0.0178609
\(105\) −3.24478e9 −2.60516
\(106\) 5.44462e8 0.418881
\(107\) −1.11846e9 −0.824887 −0.412443 0.910983i \(-0.635325\pi\)
−0.412443 + 0.910983i \(0.635325\pi\)
\(108\) 1.36388e9 0.964646
\(109\) −1.55330e8 −0.105399 −0.0526994 0.998610i \(-0.516783\pi\)
−0.0526994 + 0.998610i \(0.516783\pi\)
\(110\) 1.05310e9 0.685807
\(111\) −4.71711e9 −2.94933
\(112\) −2.64794e9 −1.59011
\(113\) 1.04099e9 0.600610 0.300305 0.953843i \(-0.402912\pi\)
0.300305 + 0.953843i \(0.402912\pi\)
\(114\) 4.27278e9 2.36940
\(115\) −3.07290e8 −0.163836
\(116\) −2.42550e9 −1.24377
\(117\) −1.76620e9 −0.871374
\(118\) −3.23690e9 −1.53695
\(119\) −4.53681e8 −0.207391
\(120\) −1.25733e8 −0.0553522
\(121\) −1.83629e9 −0.778767
\(122\) −2.12851e9 −0.869873
\(123\) −2.42868e9 −0.956746
\(124\) 8.36476e8 0.317728
\(125\) 2.61684e9 0.958699
\(126\) −9.96261e9 −3.52132
\(127\) −4.17361e7 −0.0142362 −0.00711812 0.999975i \(-0.502266\pi\)
−0.00711812 + 0.999975i \(0.502266\pi\)
\(128\) −2.00555e8 −0.0660371
\(129\) −6.03620e8 −0.191916
\(130\) −2.56772e9 −0.788500
\(131\) 1.80732e9 0.536186 0.268093 0.963393i \(-0.413607\pi\)
0.268093 + 0.963393i \(0.413607\pi\)
\(132\) 2.58889e9 0.742216
\(133\) −5.85018e9 −1.62120
\(134\) 7.33787e9 1.96607
\(135\) −3.95387e9 −1.02452
\(136\) −1.75799e7 −0.00440647
\(137\) 4.84892e9 1.17599 0.587994 0.808865i \(-0.299918\pi\)
0.587994 + 0.808865i \(0.299918\pi\)
\(138\) −1.52903e9 −0.358889
\(139\) −6.95317e9 −1.57985 −0.789925 0.613203i \(-0.789881\pi\)
−0.789925 + 0.613203i \(0.789881\pi\)
\(140\) −7.15576e9 −1.57427
\(141\) −1.60794e8 −0.0342598
\(142\) 6.31378e9 1.30314
\(143\) −1.27193e9 −0.254361
\(144\) −8.50474e9 −1.64828
\(145\) 7.03151e9 1.32097
\(146\) 1.67776e9 0.305592
\(147\) 1.29574e10 2.28870
\(148\) −1.04027e10 −1.78225
\(149\) 3.74749e9 0.622877 0.311438 0.950266i \(-0.399189\pi\)
0.311438 + 0.950266i \(0.399189\pi\)
\(150\) −1.06506e9 −0.171776
\(151\) −3.54145e9 −0.554351 −0.277176 0.960819i \(-0.589398\pi\)
−0.277176 + 0.960819i \(0.589398\pi\)
\(152\) −2.26691e8 −0.0344460
\(153\) −1.45715e9 −0.214977
\(154\) −7.17455e9 −1.02790
\(155\) −2.42494e9 −0.337449
\(156\) −6.31234e9 −0.853355
\(157\) −7.86228e9 −1.03276 −0.516380 0.856359i \(-0.672721\pi\)
−0.516380 + 0.856359i \(0.672721\pi\)
\(158\) 4.91643e8 0.0627614
\(159\) −3.88024e9 −0.481472
\(160\) −1.20803e10 −1.45726
\(161\) 2.09351e9 0.245560
\(162\) 1.84688e8 0.0210679
\(163\) −1.08952e10 −1.20890 −0.604452 0.796641i \(-0.706608\pi\)
−0.604452 + 0.796641i \(0.706608\pi\)
\(164\) −5.35599e9 −0.578153
\(165\) −7.50516e9 −0.788283
\(166\) −3.40844e9 −0.348393
\(167\) −9.27387e9 −0.922650 −0.461325 0.887231i \(-0.652626\pi\)
−0.461325 + 0.887231i \(0.652626\pi\)
\(168\) 8.56595e8 0.0829629
\(169\) −7.50323e9 −0.707551
\(170\) −2.11841e9 −0.194531
\(171\) −1.87898e10 −1.68051
\(172\) −1.33117e9 −0.115973
\(173\) 5.32028e9 0.451572 0.225786 0.974177i \(-0.427505\pi\)
0.225786 + 0.974177i \(0.427505\pi\)
\(174\) 3.49877e10 2.89364
\(175\) 1.45825e9 0.117533
\(176\) −6.12467e9 −0.481145
\(177\) 2.30685e10 1.76661
\(178\) 1.53420e10 1.14549
\(179\) −2.54999e10 −1.85652 −0.928262 0.371927i \(-0.878697\pi\)
−0.928262 + 0.371927i \(0.878697\pi\)
\(180\) −2.29831e10 −1.63186
\(181\) −1.71854e10 −1.19016 −0.595082 0.803665i \(-0.702881\pi\)
−0.595082 + 0.803665i \(0.702881\pi\)
\(182\) 1.74933e10 1.18182
\(183\) 1.51693e10 0.999853
\(184\) 8.11221e7 0.00521746
\(185\) 3.01574e10 1.89287
\(186\) −1.20661e10 −0.739195
\(187\) −1.04936e9 −0.0627536
\(188\) −3.54602e8 −0.0207029
\(189\) 2.69369e10 1.53557
\(190\) −2.73167e10 −1.52068
\(191\) 3.23747e10 1.76017 0.880086 0.474813i \(-0.157484\pi\)
0.880086 + 0.474813i \(0.157484\pi\)
\(192\) −2.89827e10 −1.53916
\(193\) −2.47967e10 −1.28643 −0.643214 0.765686i \(-0.722400\pi\)
−0.643214 + 0.765686i \(0.722400\pi\)
\(194\) −4.91736e10 −2.49244
\(195\) 1.82994e10 0.906321
\(196\) 2.85751e10 1.38304
\(197\) −1.50614e9 −0.0712470
\(198\) −2.30435e10 −1.06550
\(199\) −4.38462e9 −0.198195 −0.0990976 0.995078i \(-0.531596\pi\)
−0.0990976 + 0.995078i \(0.531596\pi\)
\(200\) 5.65063e7 0.00249725
\(201\) −5.22951e10 −2.25984
\(202\) −3.39938e10 −1.43654
\(203\) −4.79043e10 −1.97989
\(204\) −5.20779e9 −0.210532
\(205\) 1.55270e10 0.614037
\(206\) −3.31678e9 −0.128326
\(207\) 6.72399e9 0.254543
\(208\) 1.49335e10 0.553191
\(209\) −1.35314e10 −0.490553
\(210\) 1.03221e11 3.66254
\(211\) −2.01589e10 −0.700157 −0.350078 0.936720i \(-0.613845\pi\)
−0.350078 + 0.936720i \(0.613845\pi\)
\(212\) −8.55714e9 −0.290949
\(213\) −4.49966e10 −1.49786
\(214\) 3.55800e10 1.15969
\(215\) 3.85906e9 0.123171
\(216\) 1.04379e9 0.0326265
\(217\) 1.65206e10 0.505774
\(218\) 4.94127e9 0.148178
\(219\) −1.19570e10 −0.351255
\(220\) −1.65512e10 −0.476353
\(221\) 2.55860e9 0.0721503
\(222\) 1.50058e11 4.14641
\(223\) −4.04449e9 −0.109520 −0.0547599 0.998500i \(-0.517439\pi\)
−0.0547599 + 0.998500i \(0.517439\pi\)
\(224\) 8.23004e10 2.18417
\(225\) 4.68365e9 0.121833
\(226\) −3.31154e10 −0.844387
\(227\) 6.97082e10 1.74248 0.871239 0.490859i \(-0.163317\pi\)
0.871239 + 0.490859i \(0.163317\pi\)
\(228\) −6.71541e10 −1.64576
\(229\) 9.62661e9 0.231320 0.115660 0.993289i \(-0.463102\pi\)
0.115660 + 0.993289i \(0.463102\pi\)
\(230\) 9.77537e9 0.230334
\(231\) 5.11311e10 1.18149
\(232\) −1.85626e9 −0.0420672
\(233\) −4.31272e10 −0.958628 −0.479314 0.877644i \(-0.659114\pi\)
−0.479314 + 0.877644i \(0.659114\pi\)
\(234\) 5.61856e10 1.22505
\(235\) 1.02799e9 0.0219879
\(236\) 5.08734e10 1.06755
\(237\) −3.50381e9 −0.0721394
\(238\) 1.44323e10 0.291567
\(239\) 5.30551e10 1.05181 0.525904 0.850544i \(-0.323727\pi\)
0.525904 + 0.850544i \(0.323727\pi\)
\(240\) 8.81166e10 1.71438
\(241\) 1.84165e10 0.351665 0.175833 0.984420i \(-0.443738\pi\)
0.175833 + 0.984420i \(0.443738\pi\)
\(242\) 5.84152e10 1.09485
\(243\) −5.50096e10 −1.01207
\(244\) 3.34531e10 0.604202
\(245\) −8.28389e10 −1.46888
\(246\) 7.72598e10 1.34507
\(247\) 3.29930e10 0.564008
\(248\) 6.40163e8 0.0107463
\(249\) 2.42911e10 0.400452
\(250\) −8.32457e10 −1.34782
\(251\) 8.68512e10 1.38116 0.690580 0.723256i \(-0.257355\pi\)
0.690580 + 0.723256i \(0.257355\pi\)
\(252\) 1.56579e11 2.44586
\(253\) 4.84227e9 0.0743030
\(254\) 1.32769e9 0.0200145
\(255\) 1.50974e10 0.223599
\(256\) 7.18336e10 1.04532
\(257\) −9.81614e10 −1.40359 −0.701797 0.712377i \(-0.747619\pi\)
−0.701797 + 0.712377i \(0.747619\pi\)
\(258\) 1.92021e10 0.269811
\(259\) −2.05456e11 −2.83707
\(260\) 4.03560e10 0.547682
\(261\) −1.53861e11 −2.05232
\(262\) −5.74937e10 −0.753815
\(263\) −2.85914e10 −0.368498 −0.184249 0.982880i \(-0.558985\pi\)
−0.184249 + 0.982880i \(0.558985\pi\)
\(264\) 1.98130e9 0.0251034
\(265\) 2.48071e10 0.309008
\(266\) 1.86103e11 2.27922
\(267\) −1.09339e11 −1.31666
\(268\) −1.15327e11 −1.36560
\(269\) 1.32052e10 0.153766 0.0768830 0.997040i \(-0.475503\pi\)
0.0768830 + 0.997040i \(0.475503\pi\)
\(270\) 1.25778e11 1.44035
\(271\) 2.43678e10 0.274444 0.137222 0.990540i \(-0.456183\pi\)
0.137222 + 0.990540i \(0.456183\pi\)
\(272\) 1.23204e10 0.136478
\(273\) −1.24670e11 −1.35841
\(274\) −1.54252e11 −1.65330
\(275\) 3.37292e9 0.0355639
\(276\) 2.40313e10 0.249279
\(277\) −1.29647e11 −1.32313 −0.661565 0.749887i \(-0.730108\pi\)
−0.661565 + 0.749887i \(0.730108\pi\)
\(278\) 2.21191e11 2.22109
\(279\) 5.30614e10 0.524276
\(280\) −5.47638e9 −0.0532454
\(281\) −1.47068e11 −1.40715 −0.703575 0.710621i \(-0.748414\pi\)
−0.703575 + 0.710621i \(0.748414\pi\)
\(282\) 5.11511e9 0.0481653
\(283\) −2.58242e10 −0.239325 −0.119662 0.992815i \(-0.538181\pi\)
−0.119662 + 0.992815i \(0.538181\pi\)
\(284\) −9.92318e10 −0.905145
\(285\) 1.94679e11 1.74790
\(286\) 4.04619e10 0.357602
\(287\) −1.05782e11 −0.920330
\(288\) 2.64335e11 2.26407
\(289\) −1.16477e11 −0.982200
\(290\) −2.23683e11 −1.85713
\(291\) 3.50447e11 2.86487
\(292\) −2.63689e10 −0.212260
\(293\) −1.73204e11 −1.37295 −0.686473 0.727155i \(-0.740842\pi\)
−0.686473 + 0.727155i \(0.740842\pi\)
\(294\) −4.12193e11 −3.21764
\(295\) −1.47482e11 −1.13381
\(296\) −7.96130e9 −0.0602798
\(297\) 6.23048e10 0.464641
\(298\) −1.19213e11 −0.875692
\(299\) −1.18066e10 −0.0854291
\(300\) 1.67392e10 0.119313
\(301\) −2.62910e10 −0.184611
\(302\) 1.12659e11 0.779353
\(303\) 2.42265e11 1.65119
\(304\) 1.58870e11 1.06687
\(305\) −9.69803e10 −0.641704
\(306\) 4.63541e10 0.302233
\(307\) 3.24017e10 0.208183 0.104091 0.994568i \(-0.466807\pi\)
0.104091 + 0.994568i \(0.466807\pi\)
\(308\) 1.12760e11 0.713966
\(309\) 2.36378e10 0.147501
\(310\) 7.71409e10 0.474414
\(311\) −1.57812e11 −0.956571 −0.478285 0.878205i \(-0.658742\pi\)
−0.478285 + 0.878205i \(0.658742\pi\)
\(312\) −4.83090e9 −0.0288624
\(313\) 2.42108e11 1.42580 0.712901 0.701265i \(-0.247381\pi\)
0.712901 + 0.701265i \(0.247381\pi\)
\(314\) 2.50111e11 1.45194
\(315\) −4.53922e11 −2.59767
\(316\) −7.72700e9 −0.0435932
\(317\) 1.56550e11 0.870734 0.435367 0.900253i \(-0.356619\pi\)
0.435367 + 0.900253i \(0.356619\pi\)
\(318\) 1.23436e11 0.676893
\(319\) −1.10802e11 −0.599088
\(320\) 1.85292e11 0.987829
\(321\) −2.53569e11 −1.33298
\(322\) −6.65976e10 −0.345229
\(323\) 2.72198e10 0.139147
\(324\) −2.90269e9 −0.0146335
\(325\) −8.22401e9 −0.0408892
\(326\) 3.46594e11 1.69958
\(327\) −3.52152e10 −0.170320
\(328\) −4.09900e9 −0.0195544
\(329\) −7.00347e9 −0.0329558
\(330\) 2.38751e11 1.10823
\(331\) −5.53303e10 −0.253360 −0.126680 0.991944i \(-0.540432\pi\)
−0.126680 + 0.991944i \(0.540432\pi\)
\(332\) 5.35695e10 0.241989
\(333\) −6.59891e11 −2.94085
\(334\) 2.95016e11 1.29714
\(335\) 3.34332e11 1.45036
\(336\) −6.00320e11 −2.56955
\(337\) 1.45508e11 0.614542 0.307271 0.951622i \(-0.400584\pi\)
0.307271 + 0.951622i \(0.400584\pi\)
\(338\) 2.38689e11 0.994734
\(339\) 2.36005e11 0.970559
\(340\) 3.32944e10 0.135119
\(341\) 3.82121e10 0.153040
\(342\) 5.97732e11 2.36260
\(343\) 1.65890e11 0.647138
\(344\) −1.01876e9 −0.00392246
\(345\) −6.96665e10 −0.264751
\(346\) −1.69246e11 −0.634857
\(347\) −6.39428e10 −0.236761 −0.118380 0.992968i \(-0.537770\pi\)
−0.118380 + 0.992968i \(0.537770\pi\)
\(348\) −5.49891e11 −2.00988
\(349\) −1.14191e11 −0.412020 −0.206010 0.978550i \(-0.566048\pi\)
−0.206010 + 0.978550i \(0.566048\pi\)
\(350\) −4.63891e10 −0.165238
\(351\) −1.51915e11 −0.534216
\(352\) 1.90361e11 0.660899
\(353\) −1.16026e10 −0.0397712 −0.0198856 0.999802i \(-0.506330\pi\)
−0.0198856 + 0.999802i \(0.506330\pi\)
\(354\) −7.33845e11 −2.48365
\(355\) 2.87672e11 0.961325
\(356\) −2.41126e11 −0.795645
\(357\) −1.02855e11 −0.335134
\(358\) 8.11192e11 2.61006
\(359\) −1.71039e11 −0.543462 −0.271731 0.962373i \(-0.587596\pi\)
−0.271731 + 0.962373i \(0.587596\pi\)
\(360\) −1.75892e10 −0.0551932
\(361\) 2.83093e10 0.0877297
\(362\) 5.46695e11 1.67323
\(363\) −4.16310e11 −1.25845
\(364\) −2.74937e11 −0.820875
\(365\) 7.64431e10 0.225435
\(366\) −4.82559e11 −1.40568
\(367\) 3.24996e11 0.935150 0.467575 0.883953i \(-0.345128\pi\)
0.467575 + 0.883953i \(0.345128\pi\)
\(368\) −5.68521e10 −0.161596
\(369\) −3.39755e11 −0.953996
\(370\) −9.59352e11 −2.66116
\(371\) −1.69006e11 −0.463146
\(372\) 1.89639e11 0.513435
\(373\) 7.12429e11 1.90569 0.952844 0.303459i \(-0.0981416\pi\)
0.952844 + 0.303459i \(0.0981416\pi\)
\(374\) 3.33818e10 0.0882242
\(375\) 5.93270e11 1.54922
\(376\) −2.71380e8 −0.000700218 0
\(377\) 2.70163e11 0.688795
\(378\) −8.56902e11 −2.15883
\(379\) −2.74595e11 −0.683623 −0.341812 0.939768i \(-0.611040\pi\)
−0.341812 + 0.939768i \(0.611040\pi\)
\(380\) 4.29329e11 1.05624
\(381\) −9.46209e9 −0.0230051
\(382\) −1.02989e12 −2.47460
\(383\) 5.67014e11 1.34648 0.673239 0.739425i \(-0.264903\pi\)
0.673239 + 0.739425i \(0.264903\pi\)
\(384\) −4.54682e10 −0.106713
\(385\) −3.26891e11 −0.758280
\(386\) 7.88820e11 1.80857
\(387\) −8.44422e10 −0.191364
\(388\) 7.72847e11 1.73121
\(389\) −1.13858e11 −0.252109 −0.126055 0.992023i \(-0.540231\pi\)
−0.126055 + 0.992023i \(0.540231\pi\)
\(390\) −5.82133e11 −1.27418
\(391\) −9.74069e9 −0.0210763
\(392\) 2.18688e10 0.0467775
\(393\) 4.09743e11 0.866452
\(394\) 4.79125e10 0.100165
\(395\) 2.24005e10 0.0462989
\(396\) 3.62167e11 0.740083
\(397\) 9.79495e11 1.97900 0.989498 0.144544i \(-0.0461716\pi\)
0.989498 + 0.144544i \(0.0461716\pi\)
\(398\) 1.39481e11 0.278639
\(399\) −1.32631e12 −2.61979
\(400\) −3.96008e10 −0.0773453
\(401\) 5.14376e11 0.993415 0.496708 0.867918i \(-0.334542\pi\)
0.496708 + 0.867918i \(0.334542\pi\)
\(402\) 1.66359e12 3.17708
\(403\) −9.31704e10 −0.175956
\(404\) 5.34270e11 0.997802
\(405\) 8.41486e9 0.0155417
\(406\) 1.52391e12 2.78350
\(407\) −4.75219e11 −0.858458
\(408\) −3.98558e9 −0.00712066
\(409\) −6.04978e11 −1.06902 −0.534509 0.845163i \(-0.679503\pi\)
−0.534509 + 0.845163i \(0.679503\pi\)
\(410\) −4.93937e11 −0.863265
\(411\) 1.09931e12 1.90034
\(412\) 5.21288e10 0.0891334
\(413\) 1.00476e12 1.69937
\(414\) −2.13900e11 −0.357857
\(415\) −1.55298e11 −0.257009
\(416\) −4.64146e11 −0.759861
\(417\) −1.57637e12 −2.55297
\(418\) 4.30456e11 0.689660
\(419\) 8.82181e11 1.39828 0.699141 0.714984i \(-0.253566\pi\)
0.699141 + 0.714984i \(0.253566\pi\)
\(420\) −1.62230e12 −2.54395
\(421\) −1.22008e12 −1.89287 −0.946434 0.322898i \(-0.895343\pi\)
−0.946434 + 0.322898i \(0.895343\pi\)
\(422\) 6.41284e11 0.984339
\(423\) −2.24940e10 −0.0341613
\(424\) −6.54886e9 −0.00984056
\(425\) −6.78496e9 −0.0100878
\(426\) 1.43141e12 2.10582
\(427\) 6.60707e11 0.961797
\(428\) −5.59200e11 −0.805508
\(429\) −2.88362e11 −0.411036
\(430\) −1.22762e11 −0.173164
\(431\) −1.10357e12 −1.54046 −0.770232 0.637764i \(-0.779860\pi\)
−0.770232 + 0.637764i \(0.779860\pi\)
\(432\) −7.31509e11 −1.01051
\(433\) 5.88410e11 0.804423 0.402212 0.915547i \(-0.368242\pi\)
0.402212 + 0.915547i \(0.368242\pi\)
\(434\) −5.25545e11 −0.711060
\(435\) 1.59413e12 2.13463
\(436\) −7.76605e10 −0.102923
\(437\) −1.25605e11 −0.164756
\(438\) 3.80369e11 0.493823
\(439\) 5.62966e11 0.723422 0.361711 0.932290i \(-0.382193\pi\)
0.361711 + 0.932290i \(0.382193\pi\)
\(440\) −1.26668e10 −0.0161113
\(441\) 1.81264e12 2.28212
\(442\) −8.13931e10 −0.101435
\(443\) 3.96636e11 0.489300 0.244650 0.969611i \(-0.421327\pi\)
0.244650 + 0.969611i \(0.421327\pi\)
\(444\) −2.35842e12 −2.88004
\(445\) 6.99023e11 0.845029
\(446\) 1.28661e11 0.153972
\(447\) 8.49602e11 1.00654
\(448\) −1.26236e12 −1.48058
\(449\) −2.23119e11 −0.259076 −0.129538 0.991574i \(-0.541349\pi\)
−0.129538 + 0.991574i \(0.541349\pi\)
\(450\) −1.48994e11 −0.171282
\(451\) −2.44673e11 −0.278479
\(452\) 5.20464e11 0.586500
\(453\) −8.02891e11 −0.895807
\(454\) −2.21752e12 −2.44972
\(455\) 7.97041e11 0.871825
\(456\) −5.13937e10 −0.0556632
\(457\) 1.18873e12 1.27486 0.637428 0.770510i \(-0.279998\pi\)
0.637428 + 0.770510i \(0.279998\pi\)
\(458\) −3.06237e11 −0.325209
\(459\) −1.25332e11 −0.131797
\(460\) −1.53637e11 −0.159987
\(461\) 3.10028e11 0.319703 0.159852 0.987141i \(-0.448898\pi\)
0.159852 + 0.987141i \(0.448898\pi\)
\(462\) −1.62656e12 −1.66104
\(463\) −1.04982e12 −1.06169 −0.530847 0.847468i \(-0.678126\pi\)
−0.530847 + 0.847468i \(0.678126\pi\)
\(464\) 1.30091e12 1.30291
\(465\) −5.49763e11 −0.545302
\(466\) 1.37194e12 1.34772
\(467\) −2.00259e11 −0.194835 −0.0974173 0.995244i \(-0.531058\pi\)
−0.0974173 + 0.995244i \(0.531058\pi\)
\(468\) −8.83052e11 −0.850903
\(469\) −2.27774e12 −2.17383
\(470\) −3.27019e10 −0.0309124
\(471\) −1.78247e12 −1.66890
\(472\) 3.89339e10 0.0361068
\(473\) −6.08109e10 −0.0558607
\(474\) 1.11461e11 0.101420
\(475\) −8.74914e10 −0.0788577
\(476\) −2.26828e11 −0.202519
\(477\) −5.42818e11 −0.480088
\(478\) −1.68776e12 −1.47872
\(479\) 2.03940e10 0.0177008 0.00885040 0.999961i \(-0.497183\pi\)
0.00885040 + 0.999961i \(0.497183\pi\)
\(480\) −2.73875e12 −2.35487
\(481\) 1.15870e12 0.987003
\(482\) −5.85855e11 −0.494400
\(483\) 4.74623e11 0.396814
\(484\) −9.18094e11 −0.760471
\(485\) −2.24048e12 −1.83867
\(486\) 1.74994e12 1.42285
\(487\) 2.33165e12 1.87838 0.939190 0.343397i \(-0.111578\pi\)
0.939190 + 0.343397i \(0.111578\pi\)
\(488\) 2.56020e10 0.0204355
\(489\) −2.47008e12 −1.95354
\(490\) 2.63523e12 2.06508
\(491\) 1.71540e12 1.33199 0.665993 0.745958i \(-0.268008\pi\)
0.665993 + 0.745958i \(0.268008\pi\)
\(492\) −1.21427e12 −0.934269
\(493\) 2.22889e11 0.169933
\(494\) −1.04956e12 −0.792930
\(495\) −1.04992e12 −0.786018
\(496\) −4.48640e11 −0.332836
\(497\) −1.95985e12 −1.44085
\(498\) −7.72736e11 −0.562988
\(499\) 3.25362e11 0.234917 0.117459 0.993078i \(-0.462525\pi\)
0.117459 + 0.993078i \(0.462525\pi\)
\(500\) 1.30835e12 0.936177
\(501\) −2.10250e12 −1.49096
\(502\) −2.76287e12 −1.94175
\(503\) 3.65217e11 0.254387 0.127193 0.991878i \(-0.459403\pi\)
0.127193 + 0.991878i \(0.459403\pi\)
\(504\) 1.19832e11 0.0827245
\(505\) −1.54884e12 −1.05973
\(506\) −1.54040e11 −0.104461
\(507\) −1.70107e12 −1.14337
\(508\) −2.08669e10 −0.0139018
\(509\) −2.41548e12 −1.59505 −0.797525 0.603286i \(-0.793858\pi\)
−0.797525 + 0.603286i \(0.793858\pi\)
\(510\) −4.80270e11 −0.314354
\(511\) −5.20791e11 −0.337886
\(512\) −2.18245e12 −1.40356
\(513\) −1.61615e12 −1.03027
\(514\) 3.12266e12 1.97329
\(515\) −1.51121e11 −0.0946657
\(516\) −3.01793e11 −0.187407
\(517\) −1.61990e10 −0.00997196
\(518\) 6.53587e12 3.98859
\(519\) 1.20617e12 0.729720
\(520\) 3.08849e10 0.0185238
\(521\) −5.50115e11 −0.327103 −0.163551 0.986535i \(-0.552295\pi\)
−0.163551 + 0.986535i \(0.552295\pi\)
\(522\) 4.89454e12 2.88532
\(523\) 2.27108e12 1.32732 0.663658 0.748036i \(-0.269003\pi\)
0.663658 + 0.748036i \(0.269003\pi\)
\(524\) 9.03611e11 0.523589
\(525\) 3.30603e11 0.189928
\(526\) 9.09536e11 0.518065
\(527\) −7.68672e10 −0.0434104
\(528\) −1.38854e12 −0.777509
\(529\) −1.75620e12 −0.975045
\(530\) −7.89151e11 −0.434429
\(531\) 3.22713e12 1.76153
\(532\) −2.92493e12 −1.58312
\(533\) 5.96574e11 0.320178
\(534\) 3.47823e12 1.85107
\(535\) 1.62112e12 0.855504
\(536\) −8.82610e10 −0.0461878
\(537\) −5.78115e12 −3.00006
\(538\) −4.20078e11 −0.216177
\(539\) 1.30537e12 0.666169
\(540\) −1.97682e12 −1.00045
\(541\) −1.60456e12 −0.805320 −0.402660 0.915350i \(-0.631914\pi\)
−0.402660 + 0.915350i \(0.631914\pi\)
\(542\) −7.75175e11 −0.385836
\(543\) −3.89615e12 −1.92325
\(544\) −3.82928e11 −0.187466
\(545\) 2.25137e11 0.109311
\(546\) 3.96595e12 1.90977
\(547\) 2.15732e10 0.0103032 0.00515159 0.999987i \(-0.498360\pi\)
0.00515159 + 0.999987i \(0.498360\pi\)
\(548\) 2.42432e12 1.14836
\(549\) 2.12208e12 0.996980
\(550\) −1.07298e11 −0.0499987
\(551\) 2.87414e12 1.32839
\(552\) 1.83914e10 0.00843118
\(553\) −1.52610e11 −0.0693937
\(554\) 4.12426e12 1.86017
\(555\) 6.83705e12 3.05880
\(556\) −3.47639e12 −1.54274
\(557\) −3.19479e12 −1.40635 −0.703176 0.711015i \(-0.748236\pi\)
−0.703176 + 0.711015i \(0.748236\pi\)
\(558\) −1.68796e12 −0.737071
\(559\) 1.48272e11 0.0642252
\(560\) 3.83796e12 1.64913
\(561\) −2.37903e11 −0.101407
\(562\) 4.67846e12 1.97829
\(563\) 2.47417e12 1.03787 0.518933 0.854815i \(-0.326329\pi\)
0.518933 + 0.854815i \(0.326329\pi\)
\(564\) −8.03926e10 −0.0334549
\(565\) −1.50882e12 −0.622902
\(566\) 8.21506e11 0.336463
\(567\) −5.73287e10 −0.0232942
\(568\) −7.59431e10 −0.0306140
\(569\) 2.14218e11 0.0856745 0.0428373 0.999082i \(-0.486360\pi\)
0.0428373 + 0.999082i \(0.486360\pi\)
\(570\) −6.19304e12 −2.45735
\(571\) −1.17952e12 −0.464348 −0.232174 0.972674i \(-0.574584\pi\)
−0.232174 + 0.972674i \(0.574584\pi\)
\(572\) −6.35928e11 −0.248385
\(573\) 7.33974e12 2.84436
\(574\) 3.36509e12 1.29388
\(575\) 3.13091e10 0.0119444
\(576\) −4.05448e12 −1.53474
\(577\) −2.55613e12 −0.960044 −0.480022 0.877256i \(-0.659371\pi\)
−0.480022 + 0.877256i \(0.659371\pi\)
\(578\) 3.70531e12 1.38086
\(579\) −5.62171e12 −2.07881
\(580\) 3.51556e12 1.28994
\(581\) 1.05801e12 0.385210
\(582\) −1.11483e13 −4.02767
\(583\) −3.90909e11 −0.140142
\(584\) −2.01804e10 −0.00717912
\(585\) 2.55996e12 0.903716
\(586\) 5.50988e12 1.93020
\(587\) 1.41133e12 0.490632 0.245316 0.969443i \(-0.421108\pi\)
0.245316 + 0.969443i \(0.421108\pi\)
\(588\) 6.47832e12 2.23493
\(589\) −9.91196e11 −0.339344
\(590\) 4.69161e12 1.59400
\(591\) −3.41460e11 −0.115132
\(592\) 5.57945e12 1.86700
\(593\) 3.41543e12 1.13423 0.567113 0.823640i \(-0.308060\pi\)
0.567113 + 0.823640i \(0.308060\pi\)
\(594\) −1.98201e12 −0.653231
\(595\) 6.57572e11 0.215089
\(596\) 1.87364e12 0.608244
\(597\) −9.94047e11 −0.320275
\(598\) 3.75587e11 0.120103
\(599\) −4.06951e12 −1.29158 −0.645790 0.763515i \(-0.723472\pi\)
−0.645790 + 0.763515i \(0.723472\pi\)
\(600\) 1.28107e10 0.00403544
\(601\) 3.72234e12 1.16381 0.581904 0.813258i \(-0.302308\pi\)
0.581904 + 0.813258i \(0.302308\pi\)
\(602\) 8.36355e11 0.259541
\(603\) −7.31572e12 −2.25335
\(604\) −1.77063e12 −0.541328
\(605\) 2.66155e12 0.807672
\(606\) −7.70680e12 −2.32139
\(607\) −5.57137e12 −1.66576 −0.832881 0.553452i \(-0.813310\pi\)
−0.832881 + 0.553452i \(0.813310\pi\)
\(608\) −4.93783e12 −1.46545
\(609\) −1.08605e13 −3.19942
\(610\) 3.08509e12 0.902160
\(611\) 3.94971e10 0.0114652
\(612\) −7.28534e11 −0.209927
\(613\) −4.09603e12 −1.17163 −0.585816 0.810444i \(-0.699226\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(614\) −1.03075e12 −0.292680
\(615\) 3.52016e12 0.992257
\(616\) 8.62965e10 0.0241479
\(617\) 1.31949e11 0.0366541 0.0183270 0.999832i \(-0.494166\pi\)
0.0183270 + 0.999832i \(0.494166\pi\)
\(618\) −7.51955e11 −0.207369
\(619\) −4.89034e12 −1.33885 −0.669424 0.742880i \(-0.733459\pi\)
−0.669424 + 0.742880i \(0.733459\pi\)
\(620\) −1.21240e12 −0.329521
\(621\) 5.78343e11 0.156053
\(622\) 5.02022e12 1.34483
\(623\) −4.76230e12 −1.26654
\(624\) 3.38560e12 0.893932
\(625\) −4.08132e12 −1.06989
\(626\) −7.70181e12 −2.00451
\(627\) −3.06774e12 −0.792712
\(628\) −3.93092e12 −1.00850
\(629\) 9.55949e11 0.243504
\(630\) 1.44399e13 3.65202
\(631\) 7.13746e11 0.179230 0.0896152 0.995976i \(-0.471436\pi\)
0.0896152 + 0.995976i \(0.471436\pi\)
\(632\) −5.91355e9 −0.00147442
\(633\) −4.57027e12 −1.13142
\(634\) −4.98008e12 −1.22415
\(635\) 6.04929e10 0.0147646
\(636\) −1.94001e12 −0.470161
\(637\) −3.18282e12 −0.765922
\(638\) 3.52479e12 0.842248
\(639\) −6.29471e12 −1.49356
\(640\) 2.90687e11 0.0684882
\(641\) −2.68785e12 −0.628846 −0.314423 0.949283i \(-0.601811\pi\)
−0.314423 + 0.949283i \(0.601811\pi\)
\(642\) 8.06641e12 1.87401
\(643\) 5.16853e12 1.19239 0.596194 0.802840i \(-0.296679\pi\)
0.596194 + 0.802840i \(0.296679\pi\)
\(644\) 1.04669e12 0.239791
\(645\) 8.74896e11 0.199039
\(646\) −8.65903e11 −0.195624
\(647\) 8.53833e12 1.91560 0.957798 0.287443i \(-0.0928052\pi\)
0.957798 + 0.287443i \(0.0928052\pi\)
\(648\) −2.22145e9 −0.000494937 0
\(649\) 2.32401e12 0.514205
\(650\) 2.61618e11 0.0574854
\(651\) 3.74542e12 0.817309
\(652\) −5.44731e12 −1.18050
\(653\) 5.27979e12 1.13634 0.568168 0.822912i \(-0.307652\pi\)
0.568168 + 0.822912i \(0.307652\pi\)
\(654\) 1.12025e12 0.239450
\(655\) −2.61956e12 −0.556087
\(656\) 2.87266e12 0.605644
\(657\) −1.67270e12 −0.350246
\(658\) 2.22791e11 0.0463320
\(659\) −2.34951e12 −0.485280 −0.242640 0.970116i \(-0.578013\pi\)
−0.242640 + 0.970116i \(0.578013\pi\)
\(660\) −3.75237e12 −0.769765
\(661\) 7.26460e12 1.48015 0.740073 0.672526i \(-0.234791\pi\)
0.740073 + 0.672526i \(0.234791\pi\)
\(662\) 1.76014e12 0.356194
\(663\) 5.80067e11 0.116592
\(664\) 4.09973e10 0.00818462
\(665\) 8.47934e12 1.68138
\(666\) 2.09921e13 4.13449
\(667\) −1.02852e12 −0.201209
\(668\) −4.63667e12 −0.900974
\(669\) −9.16937e11 −0.176979
\(670\) −1.06356e13 −2.03904
\(671\) 1.52821e12 0.291026
\(672\) 1.86585e13 3.52952
\(673\) −7.13952e12 −1.34153 −0.670766 0.741669i \(-0.734035\pi\)
−0.670766 + 0.741669i \(0.734035\pi\)
\(674\) −4.62882e12 −0.863974
\(675\) 4.02850e11 0.0746923
\(676\) −3.75140e12 −0.690929
\(677\) −2.57187e12 −0.470543 −0.235272 0.971930i \(-0.575598\pi\)
−0.235272 + 0.971930i \(0.575598\pi\)
\(678\) −7.50766e12 −1.36449
\(679\) 1.52639e13 2.75583
\(680\) 2.54805e10 0.00457003
\(681\) 1.58037e13 2.81577
\(682\) −1.21558e12 −0.215157
\(683\) −4.88447e12 −0.858864 −0.429432 0.903099i \(-0.641286\pi\)
−0.429432 + 0.903099i \(0.641286\pi\)
\(684\) −9.39438e12 −1.64103
\(685\) −7.02810e12 −1.21964
\(686\) −5.27721e12 −0.909801
\(687\) 2.18247e12 0.373803
\(688\) 7.13969e11 0.121487
\(689\) 9.53132e11 0.161126
\(690\) 2.21620e12 0.372209
\(691\) 9.89790e12 1.65155 0.825775 0.564000i \(-0.190738\pi\)
0.825775 + 0.564000i \(0.190738\pi\)
\(692\) 2.65999e12 0.440963
\(693\) 7.15288e12 1.17810
\(694\) 2.03412e12 0.332858
\(695\) 1.00780e13 1.63849
\(696\) −4.20837e11 −0.0679787
\(697\) 4.92184e11 0.0789915
\(698\) 3.63260e12 0.579252
\(699\) −9.77747e12 −1.54910
\(700\) 7.29083e11 0.114772
\(701\) 6.90991e11 0.108079 0.0540395 0.998539i \(-0.482790\pi\)
0.0540395 + 0.998539i \(0.482790\pi\)
\(702\) 4.83263e12 0.751046
\(703\) 1.23269e13 1.90351
\(704\) −2.91982e12 −0.448001
\(705\) 2.33058e11 0.0355314
\(706\) 3.69096e11 0.0559137
\(707\) 1.05520e13 1.58835
\(708\) 1.15336e13 1.72511
\(709\) −1.33929e13 −1.99052 −0.995260 0.0972520i \(-0.968995\pi\)
−0.995260 + 0.0972520i \(0.968995\pi\)
\(710\) −9.15128e12 −1.35151
\(711\) −4.90158e11 −0.0719322
\(712\) −1.84536e11 −0.0269105
\(713\) 3.54703e11 0.0513998
\(714\) 3.27198e12 0.471160
\(715\) 1.84355e12 0.263802
\(716\) −1.27493e13 −1.81291
\(717\) 1.20282e13 1.69967
\(718\) 5.44099e12 0.764044
\(719\) 1.04525e13 1.45861 0.729304 0.684189i \(-0.239844\pi\)
0.729304 + 0.684189i \(0.239844\pi\)
\(720\) 1.23269e13 1.70945
\(721\) 1.02956e12 0.141887
\(722\) −9.00562e11 −0.123338
\(723\) 4.17524e12 0.568275
\(724\) −8.59224e12 −1.16220
\(725\) −7.16424e11 −0.0963050
\(726\) 1.32434e13 1.76924
\(727\) 6.95191e12 0.922996 0.461498 0.887141i \(-0.347312\pi\)
0.461498 + 0.887141i \(0.347312\pi\)
\(728\) −2.10412e11 −0.0277638
\(729\) −1.23571e13 −1.62047
\(730\) −2.43177e12 −0.316935
\(731\) 1.22327e11 0.0158451
\(732\) 7.58423e12 0.976364
\(733\) 4.53224e12 0.579889 0.289944 0.957044i \(-0.406363\pi\)
0.289944 + 0.957044i \(0.406363\pi\)
\(734\) −1.03386e13 −1.31471
\(735\) −1.87806e13 −2.37365
\(736\) 1.76702e12 0.221968
\(737\) −5.26839e12 −0.657771
\(738\) 1.08081e13 1.34121
\(739\) −1.36577e13 −1.68452 −0.842261 0.539070i \(-0.818776\pi\)
−0.842261 + 0.539070i \(0.818776\pi\)
\(740\) 1.50779e13 1.84840
\(741\) 7.47992e12 0.911412
\(742\) 5.37632e12 0.651130
\(743\) −2.57632e12 −0.310134 −0.155067 0.987904i \(-0.549559\pi\)
−0.155067 + 0.987904i \(0.549559\pi\)
\(744\) 1.45133e11 0.0173655
\(745\) −5.43167e12 −0.645996
\(746\) −2.26634e13 −2.67918
\(747\) 3.39815e12 0.399301
\(748\) −5.24652e11 −0.0612793
\(749\) −1.10443e13 −1.28224
\(750\) −1.88728e13 −2.17802
\(751\) 1.06543e13 1.22221 0.611106 0.791548i \(-0.290725\pi\)
0.611106 + 0.791548i \(0.290725\pi\)
\(752\) 1.90189e11 0.0216873
\(753\) 1.96902e13 2.23189
\(754\) −8.59430e12 −0.968366
\(755\) 5.13303e12 0.574927
\(756\) 1.34677e13 1.49949
\(757\) 9.12478e12 1.00993 0.504964 0.863140i \(-0.331506\pi\)
0.504964 + 0.863140i \(0.331506\pi\)
\(758\) 8.73529e12 0.961094
\(759\) 1.09780e12 0.120070
\(760\) 3.28569e11 0.0357245
\(761\) −3.43279e12 −0.371036 −0.185518 0.982641i \(-0.559396\pi\)
−0.185518 + 0.982641i \(0.559396\pi\)
\(762\) 3.01003e11 0.0323425
\(763\) −1.53381e12 −0.163837
\(764\) 1.61864e13 1.71882
\(765\) 2.11201e12 0.222957
\(766\) −1.80376e13 −1.89299
\(767\) −5.66650e12 −0.591202
\(768\) 1.62856e13 1.68919
\(769\) 8.63565e12 0.890484 0.445242 0.895410i \(-0.353118\pi\)
0.445242 + 0.895410i \(0.353118\pi\)
\(770\) 1.03989e13 1.06605
\(771\) −2.22544e13 −2.26815
\(772\) −1.23976e13 −1.25621
\(773\) −7.03808e12 −0.709000 −0.354500 0.935056i \(-0.615349\pi\)
−0.354500 + 0.935056i \(0.615349\pi\)
\(774\) 2.68623e12 0.269035
\(775\) 2.47071e11 0.0246016
\(776\) 5.91467e11 0.0585535
\(777\) −4.65794e13 −4.58458
\(778\) 3.62198e12 0.354436
\(779\) 6.34667e12 0.617487
\(780\) 9.14920e12 0.885029
\(781\) −4.53312e12 −0.435981
\(782\) 3.09866e11 0.0296308
\(783\) −1.32338e13 −1.25822
\(784\) −1.53261e13 −1.44880
\(785\) 1.13957e13 1.07109
\(786\) −1.30345e13 −1.21813
\(787\) −6.36112e12 −0.591082 −0.295541 0.955330i \(-0.595500\pi\)
−0.295541 + 0.955330i \(0.595500\pi\)
\(788\) −7.53027e11 −0.0695733
\(789\) −6.48202e12 −0.595476
\(790\) −7.12594e11 −0.0650909
\(791\) 1.02793e13 0.933618
\(792\) 2.77170e11 0.0250313
\(793\) −3.72616e12 −0.334605
\(794\) −3.11592e13 −2.78224
\(795\) 5.62407e12 0.499343
\(796\) −2.19219e12 −0.193539
\(797\) 2.33981e12 0.205408 0.102704 0.994712i \(-0.467250\pi\)
0.102704 + 0.994712i \(0.467250\pi\)
\(798\) 4.21919e13 3.68312
\(799\) 3.25858e10 0.00282858
\(800\) 1.23083e12 0.106241
\(801\) −1.52957e13 −1.31288
\(802\) −1.63631e13 −1.39663
\(803\) −1.20459e12 −0.102239
\(804\) −2.61461e13 −2.20676
\(805\) −3.03436e12 −0.254674
\(806\) 2.96389e12 0.247374
\(807\) 2.99379e12 0.248479
\(808\) 4.08882e11 0.0337479
\(809\) 1.07144e13 0.879423 0.439712 0.898139i \(-0.355081\pi\)
0.439712 + 0.898139i \(0.355081\pi\)
\(810\) −2.67689e11 −0.0218499
\(811\) −1.85316e13 −1.50425 −0.752125 0.659021i \(-0.770971\pi\)
−0.752125 + 0.659021i \(0.770971\pi\)
\(812\) −2.39508e13 −1.93338
\(813\) 5.52447e12 0.443489
\(814\) 1.51174e13 1.20689
\(815\) 1.57917e13 1.25378
\(816\) 2.79318e12 0.220543
\(817\) 1.57739e12 0.123863
\(818\) 1.92453e13 1.50291
\(819\) −1.74405e13 −1.35451
\(820\) 7.76305e12 0.599612
\(821\) 3.45942e12 0.265741 0.132871 0.991133i \(-0.457581\pi\)
0.132871 + 0.991133i \(0.457581\pi\)
\(822\) −3.49707e13 −2.67166
\(823\) −7.96788e12 −0.605402 −0.302701 0.953086i \(-0.597888\pi\)
−0.302701 + 0.953086i \(0.597888\pi\)
\(824\) 3.98947e10 0.00301469
\(825\) 7.64683e11 0.0574696
\(826\) −3.19630e13 −2.38911
\(827\) 1.92430e13 1.43053 0.715266 0.698852i \(-0.246306\pi\)
0.715266 + 0.698852i \(0.246306\pi\)
\(828\) 3.36181e12 0.248563
\(829\) −2.11659e13 −1.55647 −0.778235 0.627973i \(-0.783885\pi\)
−0.778235 + 0.627973i \(0.783885\pi\)
\(830\) 4.94025e12 0.361324
\(831\) −2.93925e13 −2.13812
\(832\) 7.11925e12 0.515085
\(833\) −2.62588e12 −0.188961
\(834\) 5.01466e13 3.58917
\(835\) 1.34417e13 0.956895
\(836\) −6.76534e12 −0.479029
\(837\) 4.56391e12 0.321420
\(838\) −2.80635e13 −1.96582
\(839\) 4.74291e12 0.330458 0.165229 0.986255i \(-0.447164\pi\)
0.165229 + 0.986255i \(0.447164\pi\)
\(840\) −1.24156e12 −0.0860422
\(841\) 9.02777e12 0.622298
\(842\) 3.88127e13 2.66115
\(843\) −3.33422e13 −2.27389
\(844\) −1.00789e13 −0.683709
\(845\) 1.08753e13 0.733813
\(846\) 7.15568e11 0.0480269
\(847\) −1.81326e13 −1.21055
\(848\) 4.58958e12 0.304784
\(849\) −5.85466e12 −0.386738
\(850\) 2.15840e11 0.0141823
\(851\) −4.41121e12 −0.288320
\(852\) −2.24971e13 −1.46267
\(853\) −2.76410e13 −1.78766 −0.893828 0.448411i \(-0.851990\pi\)
−0.893828 + 0.448411i \(0.851990\pi\)
\(854\) −2.10181e13 −1.35217
\(855\) 2.72342e13 1.74288
\(856\) −4.27961e11 −0.0272441
\(857\) −2.86262e12 −0.181280 −0.0906399 0.995884i \(-0.528891\pi\)
−0.0906399 + 0.995884i \(0.528891\pi\)
\(858\) 9.17322e12 0.577868
\(859\) −2.04273e13 −1.28009 −0.640046 0.768337i \(-0.721085\pi\)
−0.640046 + 0.768337i \(0.721085\pi\)
\(860\) 1.92942e12 0.120277
\(861\) −2.39821e13 −1.48721
\(862\) 3.51062e13 2.16571
\(863\) 3.13209e13 1.92214 0.961072 0.276297i \(-0.0891075\pi\)
0.961072 + 0.276297i \(0.0891075\pi\)
\(864\) 2.27360e13 1.38804
\(865\) −7.71129e12 −0.468333
\(866\) −1.87182e13 −1.13092
\(867\) −2.64068e13 −1.58719
\(868\) 8.25983e12 0.493893
\(869\) −3.52986e11 −0.0209976
\(870\) −5.07117e13 −3.00104
\(871\) 1.28456e13 0.756265
\(872\) −5.94344e10 −0.00348108
\(873\) 4.90251e13 2.85663
\(874\) 3.99569e12 0.231628
\(875\) 2.58402e13 1.49025
\(876\) −5.97814e12 −0.343003
\(877\) 1.00982e13 0.576430 0.288215 0.957566i \(-0.406938\pi\)
0.288215 + 0.957566i \(0.406938\pi\)
\(878\) −1.79088e13 −1.01705
\(879\) −3.92675e13 −2.21862
\(880\) 8.87719e12 0.499003
\(881\) −2.31441e13 −1.29434 −0.647170 0.762346i \(-0.724048\pi\)
−0.647170 + 0.762346i \(0.724048\pi\)
\(882\) −5.76630e13 −3.20840
\(883\) −2.09580e13 −1.16019 −0.580093 0.814550i \(-0.696984\pi\)
−0.580093 + 0.814550i \(0.696984\pi\)
\(884\) 1.27923e12 0.0704553
\(885\) −3.34359e13 −1.83218
\(886\) −1.26176e13 −0.687899
\(887\) −9.06620e12 −0.491778 −0.245889 0.969298i \(-0.579080\pi\)
−0.245889 + 0.969298i \(0.579080\pi\)
\(888\) −1.80493e12 −0.0974094
\(889\) −4.12126e11 −0.0221295
\(890\) −2.22370e13 −1.18801
\(891\) −1.32601e11 −0.00704851
\(892\) −2.02213e12 −0.106947
\(893\) 4.20192e11 0.0221114
\(894\) −2.70271e13 −1.41508
\(895\) 3.69600e13 1.92543
\(896\) −1.98039e12 −0.102651
\(897\) −2.67671e12 −0.138050
\(898\) 7.09775e12 0.364231
\(899\) −8.11641e12 −0.414425
\(900\) 2.34169e12 0.118970
\(901\) 7.86351e11 0.0397516
\(902\) 7.78343e12 0.391509
\(903\) −5.96048e12 −0.298323
\(904\) 3.98317e11 0.0198367
\(905\) 2.49088e13 1.23434
\(906\) 2.55412e13 1.25940
\(907\) 2.45443e12 0.120425 0.0602127 0.998186i \(-0.480822\pi\)
0.0602127 + 0.998186i \(0.480822\pi\)
\(908\) 3.48521e13 1.70154
\(909\) 3.38911e13 1.64645
\(910\) −2.53551e13 −1.22568
\(911\) −9.03552e12 −0.434631 −0.217315 0.976101i \(-0.569730\pi\)
−0.217315 + 0.976101i \(0.569730\pi\)
\(912\) 3.60178e13 1.72401
\(913\) 2.44717e12 0.116559
\(914\) −3.78153e13 −1.79230
\(915\) −2.19866e13 −1.03696
\(916\) 4.81303e12 0.225886
\(917\) 1.78465e13 0.833474
\(918\) 3.98700e12 0.185291
\(919\) 3.18443e13 1.47269 0.736346 0.676605i \(-0.236549\pi\)
0.736346 + 0.676605i \(0.236549\pi\)
\(920\) −1.17580e11 −0.00541111
\(921\) 7.34585e12 0.336414
\(922\) −9.86247e12 −0.449466
\(923\) 1.10529e13 0.501265
\(924\) 2.55641e13 1.15374
\(925\) −3.07266e12 −0.137999
\(926\) 3.33963e13 1.49262
\(927\) 3.30677e12 0.147077
\(928\) −4.04334e13 −1.78968
\(929\) 3.81113e13 1.67874 0.839368 0.543563i \(-0.182925\pi\)
0.839368 + 0.543563i \(0.182925\pi\)
\(930\) 1.74888e13 0.766631
\(931\) −3.38605e13 −1.47713
\(932\) −2.15624e13 −0.936107
\(933\) −3.57778e13 −1.54578
\(934\) 6.37054e12 0.273915
\(935\) 1.52096e12 0.0650828
\(936\) −6.75809e11 −0.0287795
\(937\) −1.23336e13 −0.522709 −0.261355 0.965243i \(-0.584169\pi\)
−0.261355 + 0.965243i \(0.584169\pi\)
\(938\) 7.24583e13 3.05615
\(939\) 5.48888e13 2.30403
\(940\) 5.13965e11 0.0214713
\(941\) 7.37410e12 0.306588 0.153294 0.988181i \(-0.451012\pi\)
0.153294 + 0.988181i \(0.451012\pi\)
\(942\) 5.67032e13 2.34627
\(943\) −2.27118e12 −0.0935294
\(944\) −2.72857e13 −1.11831
\(945\) −3.90427e13 −1.59256
\(946\) 1.93449e12 0.0785336
\(947\) −9.64986e12 −0.389894 −0.194947 0.980814i \(-0.562453\pi\)
−0.194947 + 0.980814i \(0.562453\pi\)
\(948\) −1.75181e12 −0.0704447
\(949\) 2.93708e12 0.117549
\(950\) 2.78323e12 0.110865
\(951\) 3.54917e13 1.40707
\(952\) −1.73594e11 −0.00684964
\(953\) 1.04239e13 0.409365 0.204683 0.978828i \(-0.434384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(954\) 1.72678e13 0.674948
\(955\) −4.69243e13 −1.82550
\(956\) 2.65260e13 1.02710
\(957\) −2.51202e13 −0.968100
\(958\) −6.48764e11 −0.0248853
\(959\) 4.78810e13 1.82801
\(960\) 4.20080e13 1.59629
\(961\) −2.36405e13 −0.894133
\(962\) −3.68600e13 −1.38761
\(963\) −3.54725e13 −1.32915
\(964\) 9.20771e12 0.343404
\(965\) 3.59407e13 1.33418
\(966\) −1.50985e13 −0.557874
\(967\) −2.86459e13 −1.05352 −0.526761 0.850014i \(-0.676594\pi\)
−0.526761 + 0.850014i \(0.676594\pi\)
\(968\) −7.02626e11 −0.0257208
\(969\) 6.17106e12 0.224855
\(970\) 7.12729e13 2.58495
\(971\) −4.99282e13 −1.80243 −0.901217 0.433367i \(-0.857325\pi\)
−0.901217 + 0.433367i \(0.857325\pi\)
\(972\) −2.75032e13 −0.988293
\(973\) −6.86595e13 −2.45580
\(974\) −7.41734e13 −2.64078
\(975\) −1.86448e12 −0.0660751
\(976\) −1.79424e13 −0.632932
\(977\) −4.35658e13 −1.52975 −0.764874 0.644180i \(-0.777199\pi\)
−0.764874 + 0.644180i \(0.777199\pi\)
\(978\) 7.85770e13 2.74644
\(979\) −1.10152e13 −0.383239
\(980\) −4.14171e13 −1.43437
\(981\) −4.92635e12 −0.169830
\(982\) −5.45695e13 −1.87262
\(983\) −1.86560e13 −0.637275 −0.318638 0.947877i \(-0.603225\pi\)
−0.318638 + 0.947877i \(0.603225\pi\)
\(984\) −9.29293e11 −0.0315991
\(985\) 2.18302e12 0.0738915
\(986\) −7.09045e12 −0.238906
\(987\) −1.58777e12 −0.0532551
\(988\) 1.64956e13 0.550758
\(989\) −5.64475e11 −0.0187612
\(990\) 3.33995e13 1.10505
\(991\) 4.65500e13 1.53316 0.766582 0.642147i \(-0.221956\pi\)
0.766582 + 0.642147i \(0.221956\pi\)
\(992\) 1.39442e13 0.457183
\(993\) −1.25441e13 −0.409418
\(994\) 6.23458e13 2.02567
\(995\) 6.35513e12 0.205551
\(996\) 1.21449e13 0.391044
\(997\) 5.55137e12 0.177939 0.0889697 0.996034i \(-0.471643\pi\)
0.0889697 + 0.996034i \(0.471643\pi\)
\(998\) −1.03503e13 −0.330266
\(999\) −5.67585e13 −1.80296
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.a.1.11 71
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.a.1.11 71 1.1 even 1 trivial