Properties

Label 197.10.a.a.1.18
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $1$
Dimension $71$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(1\)
Dimension: \(71\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.2613 q^{2} -2.80973 q^{3} +231.177 q^{4} +1123.40 q^{5} +76.5969 q^{6} -8481.66 q^{7} +7655.60 q^{8} -19675.1 q^{9} -30625.2 q^{10} +79300.8 q^{11} -649.546 q^{12} -97256.2 q^{13} +231221. q^{14} -3156.44 q^{15} -327064. q^{16} -37665.0 q^{17} +536368. q^{18} +584746. q^{19} +259703. q^{20} +23831.2 q^{21} -2.16184e6 q^{22} +1.46262e6 q^{23} -21510.2 q^{24} -691109. q^{25} +2.65133e6 q^{26} +110586. q^{27} -1.96076e6 q^{28} -5.08723e6 q^{29} +86048.6 q^{30} -226476. q^{31} +4.99651e6 q^{32} -222814. q^{33} +1.02680e6 q^{34} -9.52825e6 q^{35} -4.54843e6 q^{36} +7.07236e6 q^{37} -1.59409e7 q^{38} +273264. q^{39} +8.60026e6 q^{40} -2.82852e7 q^{41} -649669. q^{42} +2.12893e7 q^{43} +1.83325e7 q^{44} -2.21029e7 q^{45} -3.98727e7 q^{46} +4.37126e6 q^{47} +918963. q^{48} +3.15849e7 q^{49} +1.88405e7 q^{50} +105829. q^{51} -2.24834e7 q^{52} +8.42582e7 q^{53} -3.01471e6 q^{54} +8.90861e7 q^{55} -6.49321e7 q^{56} -1.64298e6 q^{57} +1.38684e8 q^{58} -4.99543e7 q^{59} -729696. q^{60} +1.38172e8 q^{61} +6.17401e6 q^{62} +1.66878e8 q^{63} +3.12455e7 q^{64} -1.09257e8 q^{65} +6.07420e6 q^{66} -2.30776e7 q^{67} -8.70728e6 q^{68} -4.10956e6 q^{69} +2.59752e8 q^{70} +1.47748e8 q^{71} -1.50625e8 q^{72} +1.64941e8 q^{73} -1.92802e8 q^{74} +1.94183e6 q^{75} +1.35180e8 q^{76} -6.72602e8 q^{77} -7.44953e6 q^{78} +3.82858e8 q^{79} -3.67422e8 q^{80} +3.86954e8 q^{81} +7.71091e8 q^{82} -4.96417e7 q^{83} +5.50922e6 q^{84} -4.23127e7 q^{85} -5.80373e8 q^{86} +1.42938e7 q^{87} +6.07095e8 q^{88} -2.48081e8 q^{89} +6.02554e8 q^{90} +8.24894e8 q^{91} +3.38123e8 q^{92} +636336. q^{93} -1.19166e8 q^{94} +6.56901e8 q^{95} -1.40389e7 q^{96} -1.11825e9 q^{97} -8.61045e8 q^{98} -1.56025e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 71 q - 32 q^{2} - 892 q^{3} + 16896 q^{4} - 2329 q^{5} - 10272 q^{6} - 37846 q^{7} - 24933 q^{8} + 419903 q^{9} - 138907 q^{10} - 143074 q^{11} - 496640 q^{12} - 433821 q^{13} - 130143 q^{14} - 670126 q^{15}+ \cdots - 6380320552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −27.2613 −1.20479 −0.602395 0.798198i \(-0.705787\pi\)
−0.602395 + 0.798198i \(0.705787\pi\)
\(3\) −2.80973 −0.0200272 −0.0100136 0.999950i \(-0.503187\pi\)
−0.0100136 + 0.999950i \(0.503187\pi\)
\(4\) 231.177 0.451517
\(5\) 1123.40 0.803836 0.401918 0.915676i \(-0.368344\pi\)
0.401918 + 0.915676i \(0.368344\pi\)
\(6\) 76.5969 0.0241285
\(7\) −8481.66 −1.33518 −0.667590 0.744529i \(-0.732674\pi\)
−0.667590 + 0.744529i \(0.732674\pi\)
\(8\) 7655.60 0.660806
\(9\) −19675.1 −0.999599
\(10\) −30625.2 −0.968453
\(11\) 79300.8 1.63309 0.816546 0.577281i \(-0.195886\pi\)
0.816546 + 0.577281i \(0.195886\pi\)
\(12\) −649.546 −0.00904262
\(13\) −97256.2 −0.944435 −0.472218 0.881482i \(-0.656546\pi\)
−0.472218 + 0.881482i \(0.656546\pi\)
\(14\) 231221. 1.60861
\(15\) −3156.44 −0.0160986
\(16\) −327064. −1.24765
\(17\) −37665.0 −0.109375 −0.0546875 0.998504i \(-0.517416\pi\)
−0.0546875 + 0.998504i \(0.517416\pi\)
\(18\) 536368. 1.20431
\(19\) 584746. 1.02938 0.514691 0.857376i \(-0.327907\pi\)
0.514691 + 0.857376i \(0.327907\pi\)
\(20\) 259703. 0.362946
\(21\) 23831.2 0.0267399
\(22\) −2.16184e6 −1.96753
\(23\) 1.46262e6 1.08982 0.544910 0.838495i \(-0.316564\pi\)
0.544910 + 0.838495i \(0.316564\pi\)
\(24\) −21510.2 −0.0132341
\(25\) −691109. −0.353848
\(26\) 2.65133e6 1.13785
\(27\) 110586. 0.0400463
\(28\) −1.96076e6 −0.602857
\(29\) −5.08723e6 −1.33564 −0.667822 0.744321i \(-0.732773\pi\)
−0.667822 + 0.744321i \(0.732773\pi\)
\(30\) 86048.6 0.0193954
\(31\) −226476. −0.0440447 −0.0220224 0.999757i \(-0.507011\pi\)
−0.0220224 + 0.999757i \(0.507011\pi\)
\(32\) 4.99651e6 0.842349
\(33\) −222814. −0.0327062
\(34\) 1.02680e6 0.131774
\(35\) −9.52825e6 −1.07327
\(36\) −4.54843e6 −0.451336
\(37\) 7.07236e6 0.620378 0.310189 0.950675i \(-0.399608\pi\)
0.310189 + 0.950675i \(0.399608\pi\)
\(38\) −1.59409e7 −1.24019
\(39\) 273264. 0.0189144
\(40\) 8.60026e6 0.531180
\(41\) −2.82852e7 −1.56326 −0.781632 0.623740i \(-0.785613\pi\)
−0.781632 + 0.623740i \(0.785613\pi\)
\(42\) −649669. −0.0322159
\(43\) 2.12893e7 0.949627 0.474813 0.880087i \(-0.342516\pi\)
0.474813 + 0.880087i \(0.342516\pi\)
\(44\) 1.83325e7 0.737369
\(45\) −2.21029e7 −0.803514
\(46\) −3.98727e7 −1.31300
\(47\) 4.37126e6 0.130667 0.0653335 0.997863i \(-0.479189\pi\)
0.0653335 + 0.997863i \(0.479189\pi\)
\(48\) 918963. 0.0249869
\(49\) 3.15849e7 0.782704
\(50\) 1.88405e7 0.426312
\(51\) 105829. 0.00219047
\(52\) −2.24834e7 −0.426429
\(53\) 8.42582e7 1.46680 0.733400 0.679797i \(-0.237932\pi\)
0.733400 + 0.679797i \(0.237932\pi\)
\(54\) −3.01471e6 −0.0482474
\(55\) 8.90861e7 1.31274
\(56\) −6.49321e7 −0.882295
\(57\) −1.64298e6 −0.0206156
\(58\) 1.38684e8 1.60917
\(59\) −4.99543e7 −0.536709 −0.268354 0.963320i \(-0.586480\pi\)
−0.268354 + 0.963320i \(0.586480\pi\)
\(60\) −729696. −0.00726878
\(61\) 1.38172e8 1.27772 0.638860 0.769323i \(-0.279406\pi\)
0.638860 + 0.769323i \(0.279406\pi\)
\(62\) 6.17401e6 0.0530646
\(63\) 1.66878e8 1.33464
\(64\) 3.12455e7 0.232797
\(65\) −1.09257e8 −0.759171
\(66\) 6.07420e6 0.0394041
\(67\) −2.30776e7 −0.139912 −0.0699559 0.997550i \(-0.522286\pi\)
−0.0699559 + 0.997550i \(0.522286\pi\)
\(68\) −8.70728e6 −0.0493847
\(69\) −4.10956e6 −0.0218260
\(70\) 2.59752e8 1.29306
\(71\) 1.47748e8 0.690018 0.345009 0.938599i \(-0.387876\pi\)
0.345009 + 0.938599i \(0.387876\pi\)
\(72\) −1.50625e8 −0.660541
\(73\) 1.64941e8 0.679791 0.339896 0.940463i \(-0.389608\pi\)
0.339896 + 0.940463i \(0.389608\pi\)
\(74\) −1.92802e8 −0.747425
\(75\) 1.94183e6 0.00708657
\(76\) 1.35180e8 0.464783
\(77\) −6.72602e8 −2.18047
\(78\) −7.44953e6 −0.0227878
\(79\) 3.82858e8 1.10590 0.552949 0.833215i \(-0.313502\pi\)
0.552949 + 0.833215i \(0.313502\pi\)
\(80\) −3.67422e8 −1.00291
\(81\) 3.86954e8 0.998797
\(82\) 7.71091e8 1.88340
\(83\) −4.96417e7 −0.114814 −0.0574070 0.998351i \(-0.518283\pi\)
−0.0574070 + 0.998351i \(0.518283\pi\)
\(84\) 5.50922e6 0.0120735
\(85\) −4.23127e7 −0.0879196
\(86\) −5.80373e8 −1.14410
\(87\) 1.42938e7 0.0267492
\(88\) 6.07095e8 1.07916
\(89\) −2.48081e8 −0.419120 −0.209560 0.977796i \(-0.567203\pi\)
−0.209560 + 0.977796i \(0.567203\pi\)
\(90\) 6.02554e8 0.968065
\(91\) 8.24894e8 1.26099
\(92\) 3.38123e8 0.492073
\(93\) 636336. 0.000882091 0
\(94\) −1.19166e8 −0.157426
\(95\) 6.56901e8 0.827454
\(96\) −1.40389e7 −0.0168699
\(97\) −1.11825e9 −1.28253 −0.641265 0.767319i \(-0.721590\pi\)
−0.641265 + 0.767319i \(0.721590\pi\)
\(98\) −8.61045e8 −0.942993
\(99\) −1.56025e9 −1.63244
\(100\) −1.59768e8 −0.159768
\(101\) −8.40721e7 −0.0803907 −0.0401953 0.999192i \(-0.512798\pi\)
−0.0401953 + 0.999192i \(0.512798\pi\)
\(102\) −2.88503e6 −0.00263906
\(103\) 1.40068e8 0.122623 0.0613113 0.998119i \(-0.480472\pi\)
0.0613113 + 0.998119i \(0.480472\pi\)
\(104\) −7.44554e8 −0.624089
\(105\) 2.67719e7 0.0214945
\(106\) −2.29699e9 −1.76719
\(107\) 1.22164e9 0.900985 0.450492 0.892780i \(-0.351248\pi\)
0.450492 + 0.892780i \(0.351248\pi\)
\(108\) 2.55649e7 0.0180816
\(109\) −2.76698e9 −1.87753 −0.938765 0.344559i \(-0.888028\pi\)
−0.938765 + 0.344559i \(0.888028\pi\)
\(110\) −2.42860e9 −1.58157
\(111\) −1.98715e7 −0.0124244
\(112\) 2.77404e9 1.66584
\(113\) 6.64574e8 0.383434 0.191717 0.981450i \(-0.438594\pi\)
0.191717 + 0.981450i \(0.438594\pi\)
\(114\) 4.47898e7 0.0248374
\(115\) 1.64309e9 0.876037
\(116\) −1.17605e9 −0.603066
\(117\) 1.91353e9 0.944057
\(118\) 1.36182e9 0.646621
\(119\) 3.19462e8 0.146035
\(120\) −2.41644e7 −0.0106380
\(121\) 3.93067e9 1.66699
\(122\) −3.76674e9 −1.53938
\(123\) 7.94740e7 0.0313078
\(124\) −5.23559e7 −0.0198870
\(125\) −2.97052e9 −1.08827
\(126\) −4.54929e9 −1.60796
\(127\) −1.43263e9 −0.488671 −0.244336 0.969691i \(-0.578570\pi\)
−0.244336 + 0.969691i \(0.578570\pi\)
\(128\) −3.41000e9 −1.12282
\(129\) −5.98172e7 −0.0190183
\(130\) 2.97849e9 0.914641
\(131\) 3.69105e9 1.09504 0.547519 0.836793i \(-0.315572\pi\)
0.547519 + 0.836793i \(0.315572\pi\)
\(132\) −5.15095e7 −0.0147674
\(133\) −4.95962e9 −1.37441
\(134\) 6.29125e8 0.168564
\(135\) 1.24232e8 0.0321907
\(136\) −2.88348e8 −0.0722757
\(137\) −3.13654e9 −0.760692 −0.380346 0.924844i \(-0.624195\pi\)
−0.380346 + 0.924844i \(0.624195\pi\)
\(138\) 1.12032e8 0.0262958
\(139\) −3.50593e9 −0.796594 −0.398297 0.917257i \(-0.630399\pi\)
−0.398297 + 0.917257i \(0.630399\pi\)
\(140\) −2.20271e9 −0.484598
\(141\) −1.22821e7 −0.00261689
\(142\) −4.02781e9 −0.831326
\(143\) −7.71250e9 −1.54235
\(144\) 6.43501e9 1.24715
\(145\) −5.71497e9 −1.07364
\(146\) −4.49650e9 −0.819005
\(147\) −8.87453e7 −0.0156753
\(148\) 1.63497e9 0.280112
\(149\) −3.48521e9 −0.579283 −0.289641 0.957135i \(-0.593536\pi\)
−0.289641 + 0.957135i \(0.593536\pi\)
\(150\) −5.29368e7 −0.00853782
\(151\) 9.00940e9 1.41026 0.705131 0.709077i \(-0.250888\pi\)
0.705131 + 0.709077i \(0.250888\pi\)
\(152\) 4.47658e9 0.680221
\(153\) 7.41063e8 0.109331
\(154\) 1.83360e10 2.62701
\(155\) −2.54422e8 −0.0354047
\(156\) 6.31724e7 0.00854017
\(157\) −1.39865e10 −1.83721 −0.918606 0.395174i \(-0.870684\pi\)
−0.918606 + 0.395174i \(0.870684\pi\)
\(158\) −1.04372e10 −1.33238
\(159\) −2.36743e8 −0.0293759
\(160\) 5.61305e9 0.677110
\(161\) −1.24054e10 −1.45511
\(162\) −1.05489e10 −1.20334
\(163\) −9.82245e8 −0.108987 −0.0544936 0.998514i \(-0.517354\pi\)
−0.0544936 + 0.998514i \(0.517354\pi\)
\(164\) −6.53889e9 −0.705841
\(165\) −2.50308e8 −0.0262904
\(166\) 1.35329e9 0.138327
\(167\) −1.90494e10 −1.89521 −0.947606 0.319441i \(-0.896505\pi\)
−0.947606 + 0.319441i \(0.896505\pi\)
\(168\) 1.82442e8 0.0176699
\(169\) −1.14573e9 −0.108042
\(170\) 1.15350e9 0.105925
\(171\) −1.15049e10 −1.02897
\(172\) 4.92159e9 0.428773
\(173\) −1.55325e10 −1.31836 −0.659180 0.751985i \(-0.729097\pi\)
−0.659180 + 0.751985i \(0.729097\pi\)
\(174\) −3.89666e8 −0.0322271
\(175\) 5.86175e9 0.472450
\(176\) −2.59364e10 −2.03753
\(177\) 1.40358e8 0.0107488
\(178\) 6.76301e9 0.504952
\(179\) −7.81980e9 −0.569321 −0.284660 0.958628i \(-0.591881\pi\)
−0.284660 + 0.958628i \(0.591881\pi\)
\(180\) −5.10968e9 −0.362800
\(181\) −2.49172e10 −1.72562 −0.862811 0.505527i \(-0.831298\pi\)
−0.862811 + 0.505527i \(0.831298\pi\)
\(182\) −2.24877e10 −1.51923
\(183\) −3.88227e8 −0.0255891
\(184\) 1.11972e10 0.720160
\(185\) 7.94505e9 0.498682
\(186\) −1.73473e7 −0.00106273
\(187\) −2.98687e9 −0.178619
\(188\) 1.01053e9 0.0589984
\(189\) −9.37951e8 −0.0534690
\(190\) −1.79080e10 −0.996907
\(191\) 1.77428e10 0.964655 0.482328 0.875991i \(-0.339792\pi\)
0.482328 + 0.875991i \(0.339792\pi\)
\(192\) −8.77915e7 −0.00466226
\(193\) −4.69301e9 −0.243469 −0.121735 0.992563i \(-0.538846\pi\)
−0.121735 + 0.992563i \(0.538846\pi\)
\(194\) 3.04850e10 1.54518
\(195\) 3.06984e8 0.0152041
\(196\) 7.30170e9 0.353404
\(197\) −1.50614e9 −0.0712470
\(198\) 4.25344e10 1.96674
\(199\) −1.32204e10 −0.597594 −0.298797 0.954317i \(-0.596585\pi\)
−0.298797 + 0.954317i \(0.596585\pi\)
\(200\) −5.29085e9 −0.233825
\(201\) 6.48420e7 0.00280204
\(202\) 2.29191e9 0.0968538
\(203\) 4.31482e10 1.78332
\(204\) 2.44652e7 0.000989036 0
\(205\) −3.17755e10 −1.25661
\(206\) −3.81842e9 −0.147734
\(207\) −2.87771e10 −1.08938
\(208\) 3.18090e10 1.17832
\(209\) 4.63708e10 1.68107
\(210\) −7.29835e8 −0.0258963
\(211\) 5.71933e10 1.98643 0.993216 0.116280i \(-0.0370970\pi\)
0.993216 + 0.116280i \(0.0370970\pi\)
\(212\) 1.94786e10 0.662286
\(213\) −4.15134e8 −0.0138191
\(214\) −3.33036e10 −1.08550
\(215\) 2.39163e10 0.763344
\(216\) 8.46600e8 0.0264629
\(217\) 1.92089e9 0.0588076
\(218\) 7.54314e10 2.26203
\(219\) −4.63440e8 −0.0136143
\(220\) 2.05947e10 0.592724
\(221\) 3.66316e9 0.103298
\(222\) 5.41721e8 0.0149688
\(223\) −5.71649e10 −1.54795 −0.773977 0.633214i \(-0.781735\pi\)
−0.773977 + 0.633214i \(0.781735\pi\)
\(224\) −4.23787e10 −1.12469
\(225\) 1.35976e10 0.353706
\(226\) −1.81171e10 −0.461957
\(227\) −1.80488e10 −0.451163 −0.225581 0.974224i \(-0.572428\pi\)
−0.225581 + 0.974224i \(0.572428\pi\)
\(228\) −3.79819e8 −0.00930830
\(229\) 5.57660e10 1.34002 0.670008 0.742354i \(-0.266291\pi\)
0.670008 + 0.742354i \(0.266291\pi\)
\(230\) −4.47928e10 −1.05544
\(231\) 1.88983e9 0.0436687
\(232\) −3.89458e10 −0.882601
\(233\) −5.29219e10 −1.17634 −0.588172 0.808736i \(-0.700152\pi\)
−0.588172 + 0.808736i \(0.700152\pi\)
\(234\) −5.21652e10 −1.13739
\(235\) 4.91065e9 0.105035
\(236\) −1.15483e10 −0.242333
\(237\) −1.07573e9 −0.0221480
\(238\) −8.70894e9 −0.175942
\(239\) 1.79804e9 0.0356458 0.0178229 0.999841i \(-0.494327\pi\)
0.0178229 + 0.999841i \(0.494327\pi\)
\(240\) 1.03236e9 0.0200854
\(241\) −6.95213e10 −1.32752 −0.663760 0.747945i \(-0.731041\pi\)
−0.663760 + 0.747945i \(0.731041\pi\)
\(242\) −1.07155e11 −2.00837
\(243\) −3.26390e9 −0.0600494
\(244\) 3.19422e10 0.576913
\(245\) 3.54824e10 0.629166
\(246\) −2.16656e9 −0.0377193
\(247\) −5.68702e10 −0.972184
\(248\) −1.73381e9 −0.0291050
\(249\) 1.39480e8 0.00229940
\(250\) 8.09801e10 1.31114
\(251\) 1.13858e11 1.81063 0.905317 0.424737i \(-0.139633\pi\)
0.905317 + 0.424737i \(0.139633\pi\)
\(252\) 3.85782e10 0.602615
\(253\) 1.15987e11 1.77978
\(254\) 3.90553e10 0.588746
\(255\) 1.18887e8 0.00176078
\(256\) 7.69634e10 1.11996
\(257\) −6.07005e9 −0.0867947 −0.0433974 0.999058i \(-0.513818\pi\)
−0.0433974 + 0.999058i \(0.513818\pi\)
\(258\) 1.63069e9 0.0229131
\(259\) −5.99853e10 −0.828316
\(260\) −2.52577e10 −0.342779
\(261\) 1.00092e11 1.33511
\(262\) −1.00623e11 −1.31929
\(263\) 8.09083e10 1.04278 0.521390 0.853319i \(-0.325414\pi\)
0.521390 + 0.853319i \(0.325414\pi\)
\(264\) −1.70578e9 −0.0216125
\(265\) 9.46553e10 1.17907
\(266\) 1.35205e11 1.65587
\(267\) 6.97042e8 0.00839380
\(268\) −5.33501e9 −0.0631726
\(269\) −7.12863e10 −0.830081 −0.415041 0.909803i \(-0.636233\pi\)
−0.415041 + 0.909803i \(0.636233\pi\)
\(270\) −3.38671e9 −0.0387830
\(271\) 1.47145e11 1.65723 0.828617 0.559816i \(-0.189128\pi\)
0.828617 + 0.559816i \(0.189128\pi\)
\(272\) 1.23189e10 0.136462
\(273\) −2.31773e9 −0.0252541
\(274\) 8.55062e10 0.916474
\(275\) −5.48055e10 −0.577866
\(276\) −9.50035e8 −0.00985482
\(277\) 2.60482e10 0.265839 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(278\) 9.55762e10 0.959728
\(279\) 4.45593e9 0.0440271
\(280\) −7.29445e10 −0.709220
\(281\) −6.02508e10 −0.576480 −0.288240 0.957558i \(-0.593070\pi\)
−0.288240 + 0.957558i \(0.593070\pi\)
\(282\) 3.34825e8 0.00315280
\(283\) −3.43541e10 −0.318376 −0.159188 0.987248i \(-0.550888\pi\)
−0.159188 + 0.987248i \(0.550888\pi\)
\(284\) 3.41560e10 0.311555
\(285\) −1.84572e9 −0.0165716
\(286\) 2.10252e11 1.85821
\(287\) 2.39906e11 2.08724
\(288\) −9.83069e10 −0.842011
\(289\) −1.17169e11 −0.988037
\(290\) 1.55797e11 1.29351
\(291\) 3.14200e9 0.0256855
\(292\) 3.81305e10 0.306937
\(293\) −7.28008e10 −0.577075 −0.288537 0.957469i \(-0.593169\pi\)
−0.288537 + 0.957469i \(0.593169\pi\)
\(294\) 2.41931e9 0.0188855
\(295\) −5.61184e10 −0.431426
\(296\) 5.41431e10 0.409950
\(297\) 8.76955e9 0.0653993
\(298\) 9.50112e10 0.697914
\(299\) −1.42248e11 −1.02926
\(300\) 4.48907e8 0.00319971
\(301\) −1.80568e11 −1.26792
\(302\) −2.45608e11 −1.69907
\(303\) 2.36220e8 0.00161000
\(304\) −1.91249e11 −1.28431
\(305\) 1.55222e11 1.02708
\(306\) −2.02023e10 −0.131721
\(307\) 6.54927e10 0.420795 0.210397 0.977616i \(-0.432524\pi\)
0.210397 + 0.977616i \(0.432524\pi\)
\(308\) −1.55490e11 −0.984520
\(309\) −3.93553e8 −0.00245578
\(310\) 6.93586e9 0.0426552
\(311\) −1.93043e11 −1.17013 −0.585064 0.810987i \(-0.698930\pi\)
−0.585064 + 0.810987i \(0.698930\pi\)
\(312\) 2.09200e9 0.0124987
\(313\) −2.03390e11 −1.19779 −0.598895 0.800828i \(-0.704393\pi\)
−0.598895 + 0.800828i \(0.704393\pi\)
\(314\) 3.81289e11 2.21345
\(315\) 1.87469e11 1.07283
\(316\) 8.85078e10 0.499332
\(317\) −3.09712e11 −1.72263 −0.861314 0.508073i \(-0.830358\pi\)
−0.861314 + 0.508073i \(0.830358\pi\)
\(318\) 6.45392e9 0.0353917
\(319\) −4.03422e11 −2.18123
\(320\) 3.51010e10 0.187130
\(321\) −3.43249e9 −0.0180442
\(322\) 3.38187e11 1.75310
\(323\) −2.20245e10 −0.112589
\(324\) 8.94549e10 0.450974
\(325\) 6.72146e10 0.334186
\(326\) 2.67772e10 0.131307
\(327\) 7.77448e9 0.0376016
\(328\) −2.16540e11 −1.03301
\(329\) −3.70755e10 −0.174464
\(330\) 6.82372e9 0.0316744
\(331\) −3.55412e11 −1.62744 −0.813722 0.581255i \(-0.802562\pi\)
−0.813722 + 0.581255i \(0.802562\pi\)
\(332\) −1.14760e10 −0.0518405
\(333\) −1.39149e11 −0.620129
\(334\) 5.19312e11 2.28333
\(335\) −2.59253e10 −0.112466
\(336\) −7.79433e9 −0.0333620
\(337\) −3.56501e10 −0.150566 −0.0752829 0.997162i \(-0.523986\pi\)
−0.0752829 + 0.997162i \(0.523986\pi\)
\(338\) 3.12340e10 0.130168
\(339\) −1.86728e9 −0.00767910
\(340\) −9.78172e9 −0.0396972
\(341\) −1.79597e10 −0.0719291
\(342\) 3.13639e11 1.23969
\(343\) 7.43729e10 0.290129
\(344\) 1.62982e11 0.627519
\(345\) −4.61666e9 −0.0175445
\(346\) 4.23436e11 1.58835
\(347\) −2.35582e11 −0.872288 −0.436144 0.899877i \(-0.643656\pi\)
−0.436144 + 0.899877i \(0.643656\pi\)
\(348\) 3.30439e9 0.0120777
\(349\) −1.61378e11 −0.582276 −0.291138 0.956681i \(-0.594034\pi\)
−0.291138 + 0.956681i \(0.594034\pi\)
\(350\) −1.59799e11 −0.569203
\(351\) −1.07552e10 −0.0378212
\(352\) 3.96227e11 1.37563
\(353\) −3.84760e11 −1.31888 −0.659438 0.751759i \(-0.729206\pi\)
−0.659438 + 0.751759i \(0.729206\pi\)
\(354\) −3.82634e9 −0.0129500
\(355\) 1.65980e11 0.554661
\(356\) −5.73506e10 −0.189240
\(357\) −8.97603e8 −0.00292467
\(358\) 2.13178e11 0.685912
\(359\) −2.52817e11 −0.803308 −0.401654 0.915792i \(-0.631565\pi\)
−0.401654 + 0.915792i \(0.631565\pi\)
\(360\) −1.69211e11 −0.530967
\(361\) 1.92403e10 0.0596253
\(362\) 6.79274e11 2.07901
\(363\) −1.10441e10 −0.0333851
\(364\) 1.90696e11 0.569359
\(365\) 1.85294e11 0.546441
\(366\) 1.05836e10 0.0308295
\(367\) −1.71582e11 −0.493713 −0.246856 0.969052i \(-0.579398\pi\)
−0.246856 + 0.969052i \(0.579398\pi\)
\(368\) −4.78368e11 −1.35971
\(369\) 5.56515e11 1.56264
\(370\) −2.16592e11 −0.600807
\(371\) −7.14650e11 −1.95844
\(372\) 1.47106e8 0.000398279 0
\(373\) −5.28558e10 −0.141385 −0.0706924 0.997498i \(-0.522521\pi\)
−0.0706924 + 0.997498i \(0.522521\pi\)
\(374\) 8.14258e10 0.215199
\(375\) 8.34637e9 0.0217950
\(376\) 3.34646e10 0.0863455
\(377\) 4.94765e11 1.26143
\(378\) 2.55697e10 0.0644189
\(379\) −4.80261e11 −1.19564 −0.597821 0.801630i \(-0.703967\pi\)
−0.597821 + 0.801630i \(0.703967\pi\)
\(380\) 1.51860e11 0.373610
\(381\) 4.02531e9 0.00978670
\(382\) −4.83691e11 −1.16221
\(383\) −4.19884e11 −0.997092 −0.498546 0.866863i \(-0.666133\pi\)
−0.498546 + 0.866863i \(0.666133\pi\)
\(384\) 9.58121e9 0.0224869
\(385\) −7.55598e11 −1.75274
\(386\) 1.27937e11 0.293329
\(387\) −4.18869e11 −0.949246
\(388\) −2.58515e11 −0.579085
\(389\) 8.83759e11 1.95686 0.978432 0.206569i \(-0.0662297\pi\)
0.978432 + 0.206569i \(0.0662297\pi\)
\(390\) −8.36876e9 −0.0183177
\(391\) −5.50894e10 −0.119199
\(392\) 2.41801e11 0.517216
\(393\) −1.03709e10 −0.0219305
\(394\) 4.10592e10 0.0858377
\(395\) 4.30100e11 0.888961
\(396\) −3.60694e11 −0.737073
\(397\) 5.53182e11 1.11766 0.558832 0.829281i \(-0.311250\pi\)
0.558832 + 0.829281i \(0.311250\pi\)
\(398\) 3.60405e11 0.719975
\(399\) 1.39352e10 0.0275255
\(400\) 2.26037e11 0.441478
\(401\) 3.82922e11 0.739538 0.369769 0.929124i \(-0.379437\pi\)
0.369769 + 0.929124i \(0.379437\pi\)
\(402\) −1.76767e9 −0.00337587
\(403\) 2.20262e10 0.0415974
\(404\) −1.94355e10 −0.0362978
\(405\) 4.34703e11 0.802869
\(406\) −1.17627e12 −2.14853
\(407\) 5.60844e11 1.01313
\(408\) 8.10182e8 0.00144748
\(409\) 7.80488e11 1.37915 0.689575 0.724214i \(-0.257797\pi\)
0.689575 + 0.724214i \(0.257797\pi\)
\(410\) 8.66240e11 1.51395
\(411\) 8.81286e9 0.0152345
\(412\) 3.23804e10 0.0553662
\(413\) 4.23695e11 0.716602
\(414\) 7.84501e11 1.31248
\(415\) −5.57672e10 −0.0922916
\(416\) −4.85942e11 −0.795544
\(417\) 9.85074e9 0.0159535
\(418\) −1.26413e12 −2.02534
\(419\) −2.67523e11 −0.424032 −0.212016 0.977266i \(-0.568003\pi\)
−0.212016 + 0.977266i \(0.568003\pi\)
\(420\) 6.18904e9 0.00970513
\(421\) −1.20251e11 −0.186560 −0.0932801 0.995640i \(-0.529735\pi\)
−0.0932801 + 0.995640i \(0.529735\pi\)
\(422\) −1.55916e12 −2.39323
\(423\) −8.60049e10 −0.130615
\(424\) 6.45047e11 0.969271
\(425\) 2.60306e10 0.0387021
\(426\) 1.13171e10 0.0166491
\(427\) −1.17193e12 −1.70599
\(428\) 2.82416e11 0.406810
\(429\) 2.16701e10 0.0308889
\(430\) −6.51988e11 −0.919669
\(431\) 5.43676e10 0.0758914 0.0379457 0.999280i \(-0.487919\pi\)
0.0379457 + 0.999280i \(0.487919\pi\)
\(432\) −3.61686e10 −0.0499638
\(433\) 7.13709e11 0.975721 0.487860 0.872922i \(-0.337777\pi\)
0.487860 + 0.872922i \(0.337777\pi\)
\(434\) −5.23659e10 −0.0708508
\(435\) 1.60576e10 0.0215019
\(436\) −6.39662e11 −0.847737
\(437\) 8.55259e11 1.12184
\(438\) 1.26340e10 0.0164024
\(439\) −3.91017e10 −0.0502464 −0.0251232 0.999684i \(-0.507998\pi\)
−0.0251232 + 0.999684i \(0.507998\pi\)
\(440\) 6.82007e11 0.867465
\(441\) −6.21437e11 −0.782390
\(442\) −9.98623e10 −0.124452
\(443\) 9.76650e10 0.120482 0.0602410 0.998184i \(-0.480813\pi\)
0.0602410 + 0.998184i \(0.480813\pi\)
\(444\) −4.59382e9 −0.00560984
\(445\) −2.78693e11 −0.336904
\(446\) 1.55839e12 1.86496
\(447\) 9.79251e9 0.0116014
\(448\) −2.65013e11 −0.310826
\(449\) −4.90259e11 −0.569268 −0.284634 0.958636i \(-0.591872\pi\)
−0.284634 + 0.958636i \(0.591872\pi\)
\(450\) −3.70689e11 −0.426141
\(451\) −2.24304e12 −2.55295
\(452\) 1.53634e11 0.173127
\(453\) −2.53140e10 −0.0282436
\(454\) 4.92035e11 0.543556
\(455\) 9.26682e11 1.01363
\(456\) −1.25780e10 −0.0136229
\(457\) 1.12239e12 1.20371 0.601855 0.798606i \(-0.294429\pi\)
0.601855 + 0.798606i \(0.294429\pi\)
\(458\) −1.52025e12 −1.61444
\(459\) −4.16522e9 −0.00438007
\(460\) 3.79845e11 0.395546
\(461\) −5.53487e11 −0.570759 −0.285380 0.958415i \(-0.592120\pi\)
−0.285380 + 0.958415i \(0.592120\pi\)
\(462\) −5.15193e10 −0.0526115
\(463\) −1.15064e12 −1.16366 −0.581829 0.813311i \(-0.697663\pi\)
−0.581829 + 0.813311i \(0.697663\pi\)
\(464\) 1.66385e12 1.66641
\(465\) 7.14857e8 0.000709057 0
\(466\) 1.44272e12 1.41725
\(467\) −1.20682e12 −1.17413 −0.587067 0.809538i \(-0.699718\pi\)
−0.587067 + 0.809538i \(0.699718\pi\)
\(468\) 4.42363e11 0.426258
\(469\) 1.95736e11 0.186807
\(470\) −1.33870e11 −0.126545
\(471\) 3.92982e10 0.0367942
\(472\) −3.82430e11 −0.354660
\(473\) 1.68826e12 1.55083
\(474\) 2.93257e10 0.0266837
\(475\) −4.04123e11 −0.364244
\(476\) 7.38522e10 0.0659375
\(477\) −1.65779e12 −1.46621
\(478\) −4.90167e10 −0.0429456
\(479\) −5.88600e11 −0.510870 −0.255435 0.966826i \(-0.582219\pi\)
−0.255435 + 0.966826i \(0.582219\pi\)
\(480\) −1.57712e10 −0.0135606
\(481\) −6.87831e11 −0.585907
\(482\) 1.89524e12 1.59938
\(483\) 3.48559e10 0.0291416
\(484\) 9.08680e11 0.752674
\(485\) −1.25624e12 −1.03094
\(486\) 8.89781e10 0.0723469
\(487\) 8.90630e11 0.717492 0.358746 0.933435i \(-0.383204\pi\)
0.358746 + 0.933435i \(0.383204\pi\)
\(488\) 1.05779e12 0.844325
\(489\) 2.75985e9 0.00218271
\(490\) −9.67294e11 −0.758012
\(491\) −1.75078e11 −0.135946 −0.0679729 0.997687i \(-0.521653\pi\)
−0.0679729 + 0.997687i \(0.521653\pi\)
\(492\) 1.83726e10 0.0141360
\(493\) 1.91611e11 0.146086
\(494\) 1.55035e12 1.17128
\(495\) −1.75278e12 −1.31221
\(496\) 7.40720e10 0.0549524
\(497\) −1.25315e12 −0.921298
\(498\) −3.80240e9 −0.00277029
\(499\) 2.13513e12 1.54160 0.770801 0.637076i \(-0.219856\pi\)
0.770801 + 0.637076i \(0.219856\pi\)
\(500\) −6.86715e11 −0.491373
\(501\) 5.35239e10 0.0379558
\(502\) −3.10391e12 −2.18143
\(503\) −1.85502e12 −1.29209 −0.646044 0.763300i \(-0.723578\pi\)
−0.646044 + 0.763300i \(0.723578\pi\)
\(504\) 1.27755e12 0.881941
\(505\) −9.44462e10 −0.0646209
\(506\) −3.16194e12 −2.14425
\(507\) 3.21919e9 0.00216377
\(508\) −3.31191e11 −0.220644
\(509\) −6.25773e11 −0.413225 −0.206613 0.978423i \(-0.566244\pi\)
−0.206613 + 0.978423i \(0.566244\pi\)
\(510\) −3.24102e9 −0.00212137
\(511\) −1.39897e12 −0.907643
\(512\) −3.52197e11 −0.226501
\(513\) 6.46646e10 0.0412229
\(514\) 1.65477e11 0.104569
\(515\) 1.57351e11 0.0985685
\(516\) −1.38284e10 −0.00858711
\(517\) 3.46644e11 0.213391
\(518\) 1.63528e12 0.997947
\(519\) 4.36422e10 0.0264030
\(520\) −8.36429e11 −0.501665
\(521\) −7.06921e11 −0.420341 −0.210170 0.977665i \(-0.567402\pi\)
−0.210170 + 0.977665i \(0.567402\pi\)
\(522\) −2.72863e12 −1.60852
\(523\) 8.82998e11 0.516062 0.258031 0.966137i \(-0.416926\pi\)
0.258031 + 0.966137i \(0.416926\pi\)
\(524\) 8.53286e11 0.494429
\(525\) −1.64700e10 −0.00946184
\(526\) −2.20566e12 −1.25633
\(527\) 8.53021e9 0.00481739
\(528\) 7.28745e10 0.0408059
\(529\) 3.38090e11 0.187708
\(530\) −2.58042e12 −1.42053
\(531\) 9.82856e11 0.536493
\(532\) −1.14655e12 −0.620569
\(533\) 2.75092e12 1.47640
\(534\) −1.90023e10 −0.0101128
\(535\) 1.37239e12 0.724244
\(536\) −1.76673e11 −0.0924546
\(537\) 2.19716e10 0.0114019
\(538\) 1.94335e12 1.00007
\(539\) 2.50471e12 1.27823
\(540\) 2.87195e10 0.0145346
\(541\) 1.66056e12 0.833427 0.416713 0.909038i \(-0.363182\pi\)
0.416713 + 0.909038i \(0.363182\pi\)
\(542\) −4.01136e12 −1.99662
\(543\) 7.00107e10 0.0345593
\(544\) −1.88194e11 −0.0921319
\(545\) −3.10841e12 −1.50923
\(546\) 6.31844e10 0.0304258
\(547\) −2.25202e12 −1.07555 −0.537773 0.843090i \(-0.680734\pi\)
−0.537773 + 0.843090i \(0.680734\pi\)
\(548\) −7.25096e11 −0.343466
\(549\) −2.71855e12 −1.27721
\(550\) 1.49407e12 0.696206
\(551\) −2.97474e12 −1.37489
\(552\) −3.14611e10 −0.0144228
\(553\) −3.24727e12 −1.47657
\(554\) −7.10106e11 −0.320279
\(555\) −2.23235e10 −0.00998720
\(556\) −8.10491e11 −0.359676
\(557\) 2.43310e12 1.07105 0.535527 0.844518i \(-0.320113\pi\)
0.535527 + 0.844518i \(0.320113\pi\)
\(558\) −1.21474e11 −0.0530433
\(559\) −2.07051e12 −0.896861
\(560\) 3.11635e12 1.33906
\(561\) 8.39230e9 0.00357724
\(562\) 1.64251e12 0.694537
\(563\) −1.87650e12 −0.787154 −0.393577 0.919292i \(-0.628763\pi\)
−0.393577 + 0.919292i \(0.628763\pi\)
\(564\) −2.83933e9 −0.00118157
\(565\) 7.46579e11 0.308218
\(566\) 9.36536e11 0.383575
\(567\) −3.28202e12 −1.33357
\(568\) 1.13110e12 0.455968
\(569\) 6.80557e11 0.272182 0.136091 0.990696i \(-0.456546\pi\)
0.136091 + 0.990696i \(0.456546\pi\)
\(570\) 5.03166e10 0.0199652
\(571\) −1.66287e12 −0.654628 −0.327314 0.944916i \(-0.606143\pi\)
−0.327314 + 0.944916i \(0.606143\pi\)
\(572\) −1.78295e12 −0.696397
\(573\) −4.98526e10 −0.0193193
\(574\) −6.54013e12 −2.51468
\(575\) −1.01083e12 −0.385630
\(576\) −6.14758e11 −0.232703
\(577\) 2.72131e12 1.02208 0.511042 0.859556i \(-0.329260\pi\)
0.511042 + 0.859556i \(0.329260\pi\)
\(578\) 3.19418e12 1.19038
\(579\) 1.31861e10 0.00487600
\(580\) −1.32117e12 −0.484766
\(581\) 4.21044e11 0.153297
\(582\) −8.56549e10 −0.0309456
\(583\) 6.68175e12 2.39542
\(584\) 1.26272e12 0.449210
\(585\) 2.14965e12 0.758867
\(586\) 1.98464e12 0.695253
\(587\) 4.16725e12 1.44870 0.724349 0.689433i \(-0.242140\pi\)
0.724349 + 0.689433i \(0.242140\pi\)
\(588\) −2.05159e10 −0.00707769
\(589\) −1.32431e11 −0.0453388
\(590\) 1.52986e12 0.519777
\(591\) 4.23185e9 0.00142688
\(592\) −2.31311e12 −0.774015
\(593\) −3.32259e11 −0.110339 −0.0551696 0.998477i \(-0.517570\pi\)
−0.0551696 + 0.998477i \(0.517570\pi\)
\(594\) −2.39069e11 −0.0787924
\(595\) 3.58882e11 0.117388
\(596\) −8.05700e11 −0.261556
\(597\) 3.71459e10 0.0119681
\(598\) 3.87787e12 1.24005
\(599\) 3.49811e12 1.11023 0.555115 0.831773i \(-0.312674\pi\)
0.555115 + 0.831773i \(0.312674\pi\)
\(600\) 1.48659e10 0.00468285
\(601\) 4.68251e12 1.46401 0.732004 0.681301i \(-0.238585\pi\)
0.732004 + 0.681301i \(0.238585\pi\)
\(602\) 4.92252e12 1.52758
\(603\) 4.54054e11 0.139856
\(604\) 2.08277e12 0.636758
\(605\) 4.41570e12 1.33998
\(606\) −6.43967e9 −0.00193971
\(607\) −3.49070e12 −1.04367 −0.521836 0.853046i \(-0.674753\pi\)
−0.521836 + 0.853046i \(0.674753\pi\)
\(608\) 2.92169e12 0.867098
\(609\) −1.21235e11 −0.0357149
\(610\) −4.23154e12 −1.23741
\(611\) −4.25132e11 −0.123407
\(612\) 1.71317e11 0.0493649
\(613\) 3.63680e12 1.04027 0.520136 0.854084i \(-0.325881\pi\)
0.520136 + 0.854084i \(0.325881\pi\)
\(614\) −1.78542e12 −0.506969
\(615\) 8.92807e10 0.0251663
\(616\) −5.14917e12 −1.44087
\(617\) 6.36043e11 0.176686 0.0883432 0.996090i \(-0.471843\pi\)
0.0883432 + 0.996090i \(0.471843\pi\)
\(618\) 1.07288e10 0.00295870
\(619\) 1.92995e12 0.528369 0.264185 0.964472i \(-0.414897\pi\)
0.264185 + 0.964472i \(0.414897\pi\)
\(620\) −5.88164e10 −0.0159858
\(621\) 1.61745e11 0.0436433
\(622\) 5.26261e12 1.40976
\(623\) 2.10414e12 0.559601
\(624\) −8.93748e10 −0.0235985
\(625\) −1.98724e12 −0.520944
\(626\) 5.54468e12 1.44308
\(627\) −1.30290e11 −0.0336671
\(628\) −3.23335e12 −0.829533
\(629\) −2.66381e11 −0.0678539
\(630\) −5.11065e12 −1.29254
\(631\) −3.98525e11 −0.100075 −0.0500373 0.998747i \(-0.515934\pi\)
−0.0500373 + 0.998747i \(0.515934\pi\)
\(632\) 2.93100e12 0.730785
\(633\) −1.60698e11 −0.0397826
\(634\) 8.44315e12 2.07540
\(635\) −1.60941e12 −0.392812
\(636\) −5.47296e10 −0.0132637
\(637\) −3.07183e12 −0.739213
\(638\) 1.09978e13 2.62792
\(639\) −2.90697e12 −0.689741
\(640\) −3.83078e12 −0.902563
\(641\) −5.02329e12 −1.17524 −0.587621 0.809136i \(-0.699935\pi\)
−0.587621 + 0.809136i \(0.699935\pi\)
\(642\) 9.35742e10 0.0217394
\(643\) 5.97878e10 0.0137931 0.00689657 0.999976i \(-0.497805\pi\)
0.00689657 + 0.999976i \(0.497805\pi\)
\(644\) −2.86784e12 −0.657005
\(645\) −6.71984e10 −0.0152876
\(646\) 6.00415e11 0.135646
\(647\) −7.37249e12 −1.65404 −0.827018 0.562176i \(-0.809964\pi\)
−0.827018 + 0.562176i \(0.809964\pi\)
\(648\) 2.96237e12 0.660011
\(649\) −3.96141e12 −0.876494
\(650\) −1.83236e12 −0.402624
\(651\) −5.39719e9 −0.00117775
\(652\) −2.27072e11 −0.0492096
\(653\) 8.15737e12 1.75566 0.877831 0.478971i \(-0.158990\pi\)
0.877831 + 0.478971i \(0.158990\pi\)
\(654\) −2.11942e11 −0.0453020
\(655\) 4.14651e12 0.880232
\(656\) 9.25108e12 1.95041
\(657\) −3.24523e12 −0.679519
\(658\) 1.01073e12 0.210192
\(659\) 6.17339e12 1.27508 0.637542 0.770415i \(-0.279951\pi\)
0.637542 + 0.770415i \(0.279951\pi\)
\(660\) −5.78655e10 −0.0118706
\(661\) −1.02154e12 −0.208136 −0.104068 0.994570i \(-0.533186\pi\)
−0.104068 + 0.994570i \(0.533186\pi\)
\(662\) 9.68898e12 1.96073
\(663\) −1.02925e10 −0.00206876
\(664\) −3.80036e11 −0.0758698
\(665\) −5.57161e12 −1.10480
\(666\) 3.79339e12 0.747125
\(667\) −7.44066e12 −1.45561
\(668\) −4.40379e12 −0.855721
\(669\) 1.60618e11 0.0310011
\(670\) 7.06756e11 0.135498
\(671\) 1.09572e13 2.08663
\(672\) 1.19073e11 0.0225243
\(673\) −8.94337e12 −1.68048 −0.840241 0.542214i \(-0.817586\pi\)
−0.840241 + 0.542214i \(0.817586\pi\)
\(674\) 9.71867e11 0.181400
\(675\) −7.64268e10 −0.0141703
\(676\) −2.64866e11 −0.0487827
\(677\) −6.62513e12 −1.21212 −0.606060 0.795419i \(-0.707251\pi\)
−0.606060 + 0.795419i \(0.707251\pi\)
\(678\) 5.09044e10 0.00925169
\(679\) 9.48465e12 1.71241
\(680\) −3.23929e11 −0.0580978
\(681\) 5.07125e10 0.00903551
\(682\) 4.89604e11 0.0866594
\(683\) −4.28043e11 −0.0752653 −0.0376326 0.999292i \(-0.511982\pi\)
−0.0376326 + 0.999292i \(0.511982\pi\)
\(684\) −2.65968e12 −0.464597
\(685\) −3.52358e12 −0.611472
\(686\) −2.02750e12 −0.349545
\(687\) −1.56688e11 −0.0268367
\(688\) −6.96295e12 −1.18480
\(689\) −8.19464e12 −1.38530
\(690\) 1.25856e11 0.0211375
\(691\) 2.03772e12 0.340012 0.170006 0.985443i \(-0.445621\pi\)
0.170006 + 0.985443i \(0.445621\pi\)
\(692\) −3.59076e12 −0.595263
\(693\) 1.32335e13 2.17960
\(694\) 6.42227e12 1.05092
\(695\) −3.93855e12 −0.640331
\(696\) 1.09427e11 0.0176760
\(697\) 1.06536e12 0.170982
\(698\) 4.39936e12 0.701520
\(699\) 1.48697e11 0.0235588
\(700\) 1.35510e12 0.213319
\(701\) 9.06293e12 1.41755 0.708774 0.705436i \(-0.249249\pi\)
0.708774 + 0.705436i \(0.249249\pi\)
\(702\) 2.93199e11 0.0455665
\(703\) 4.13553e12 0.638606
\(704\) 2.47779e12 0.380179
\(705\) −1.37976e10 −0.00210355
\(706\) 1.04891e13 1.58897
\(707\) 7.13071e11 0.107336
\(708\) 3.24476e10 0.00485325
\(709\) −1.97637e12 −0.293738 −0.146869 0.989156i \(-0.546920\pi\)
−0.146869 + 0.989156i \(0.546920\pi\)
\(710\) −4.52482e12 −0.668250
\(711\) −7.53276e12 −1.10546
\(712\) −1.89921e12 −0.276957
\(713\) −3.31247e11 −0.0480008
\(714\) 2.44698e10 0.00352362
\(715\) −8.66418e12 −1.23980
\(716\) −1.80776e12 −0.257058
\(717\) −5.05200e9 −0.000713884 0
\(718\) 6.89213e12 0.967817
\(719\) −1.30533e12 −0.182154 −0.0910771 0.995844i \(-0.529031\pi\)
−0.0910771 + 0.995844i \(0.529031\pi\)
\(720\) 7.22906e12 1.00250
\(721\) −1.18801e12 −0.163723
\(722\) −5.24516e11 −0.0718359
\(723\) 1.95336e11 0.0265865
\(724\) −5.76028e12 −0.779148
\(725\) 3.51583e12 0.472614
\(726\) 3.01077e11 0.0402220
\(727\) 1.26168e13 1.67511 0.837557 0.546350i \(-0.183983\pi\)
0.837557 + 0.546350i \(0.183983\pi\)
\(728\) 6.31505e12 0.833270
\(729\) −7.60725e12 −0.997594
\(730\) −5.05134e12 −0.658346
\(731\) −8.01861e11 −0.103865
\(732\) −8.97490e10 −0.0115539
\(733\) −1.05610e13 −1.35125 −0.675627 0.737243i \(-0.736127\pi\)
−0.675627 + 0.737243i \(0.736127\pi\)
\(734\) 4.67754e12 0.594820
\(735\) −9.96960e10 −0.0126004
\(736\) 7.30797e12 0.918008
\(737\) −1.83007e12 −0.228489
\(738\) −1.51713e13 −1.88265
\(739\) 3.02384e12 0.372957 0.186479 0.982459i \(-0.440293\pi\)
0.186479 + 0.982459i \(0.440293\pi\)
\(740\) 1.83671e12 0.225164
\(741\) 1.59790e11 0.0194701
\(742\) 1.94823e13 2.35951
\(743\) 1.45200e13 1.74790 0.873952 0.486012i \(-0.161549\pi\)
0.873952 + 0.486012i \(0.161549\pi\)
\(744\) 4.87153e9 0.000582891 0
\(745\) −3.91527e12 −0.465648
\(746\) 1.44091e12 0.170339
\(747\) 9.76705e11 0.114768
\(748\) −6.90495e11 −0.0806498
\(749\) −1.03616e13 −1.20298
\(750\) −2.27533e11 −0.0262584
\(751\) 4.67153e12 0.535895 0.267948 0.963434i \(-0.413655\pi\)
0.267948 + 0.963434i \(0.413655\pi\)
\(752\) −1.42968e12 −0.163027
\(753\) −3.19910e11 −0.0362619
\(754\) −1.34879e13 −1.51976
\(755\) 1.01211e13 1.13362
\(756\) −2.16833e11 −0.0241422
\(757\) 5.33315e12 0.590272 0.295136 0.955455i \(-0.404635\pi\)
0.295136 + 0.955455i \(0.404635\pi\)
\(758\) 1.30925e13 1.44050
\(759\) −3.25891e11 −0.0356439
\(760\) 5.02897e12 0.546786
\(761\) −2.66730e12 −0.288298 −0.144149 0.989556i \(-0.546044\pi\)
−0.144149 + 0.989556i \(0.546044\pi\)
\(762\) −1.09735e11 −0.0117909
\(763\) 2.34686e13 2.50684
\(764\) 4.10173e12 0.435558
\(765\) 8.32507e11 0.0878843
\(766\) 1.14466e13 1.20129
\(767\) 4.85836e12 0.506887
\(768\) −2.16247e11 −0.0224297
\(769\) −1.16350e13 −1.19977 −0.599883 0.800087i \(-0.704786\pi\)
−0.599883 + 0.800087i \(0.704786\pi\)
\(770\) 2.05986e13 2.11168
\(771\) 1.70552e10 0.00173825
\(772\) −1.08492e12 −0.109930
\(773\) −5.34961e12 −0.538908 −0.269454 0.963013i \(-0.586843\pi\)
−0.269454 + 0.963013i \(0.586843\pi\)
\(774\) 1.14189e13 1.14364
\(775\) 1.56519e11 0.0155851
\(776\) −8.56090e12 −0.847504
\(777\) 1.68543e11 0.0165888
\(778\) −2.40924e13 −2.35761
\(779\) −1.65397e13 −1.60919
\(780\) 7.09675e10 0.00686489
\(781\) 1.17166e13 1.12686
\(782\) 1.50181e12 0.143610
\(783\) −5.62576e11 −0.0534876
\(784\) −1.03303e13 −0.976540
\(785\) −1.57123e13 −1.47682
\(786\) 2.82723e11 0.0264217
\(787\) −1.16579e13 −1.08326 −0.541632 0.840615i \(-0.682194\pi\)
−0.541632 + 0.840615i \(0.682194\pi\)
\(788\) −3.48184e11 −0.0321693
\(789\) −2.27331e11 −0.0208839
\(790\) −1.17251e13 −1.07101
\(791\) −5.63669e12 −0.511953
\(792\) −1.19447e13 −1.07872
\(793\) −1.34381e13 −1.20672
\(794\) −1.50805e13 −1.34655
\(795\) −2.65956e11 −0.0236134
\(796\) −3.05625e12 −0.269824
\(797\) −1.16078e13 −1.01903 −0.509514 0.860463i \(-0.670175\pi\)
−0.509514 + 0.860463i \(0.670175\pi\)
\(798\) −3.79891e11 −0.0331624
\(799\) −1.64643e11 −0.0142917
\(800\) −3.45313e12 −0.298063
\(801\) 4.88102e12 0.418952
\(802\) −1.04389e13 −0.890988
\(803\) 1.30799e13 1.11016
\(804\) 1.49900e10 0.00126517
\(805\) −1.39362e13 −1.16967
\(806\) −6.00461e11 −0.0501161
\(807\) 2.00296e11 0.0166242
\(808\) −6.43622e11 −0.0531227
\(809\) 3.30393e12 0.271183 0.135591 0.990765i \(-0.456707\pi\)
0.135591 + 0.990765i \(0.456707\pi\)
\(810\) −1.18505e13 −0.967288
\(811\) −3.66102e12 −0.297172 −0.148586 0.988899i \(-0.547472\pi\)
−0.148586 + 0.988899i \(0.547472\pi\)
\(812\) 9.97486e12 0.805201
\(813\) −4.13438e11 −0.0331897
\(814\) −1.52893e13 −1.22061
\(815\) −1.10345e12 −0.0876078
\(816\) −3.46128e10 −0.00273294
\(817\) 1.24488e13 0.977528
\(818\) −2.12771e13 −1.66159
\(819\) −1.62299e13 −1.26048
\(820\) −7.34576e12 −0.567380
\(821\) 1.09783e13 0.843321 0.421660 0.906754i \(-0.361447\pi\)
0.421660 + 0.906754i \(0.361447\pi\)
\(822\) −2.40250e11 −0.0183544
\(823\) −1.81105e13 −1.37604 −0.688019 0.725693i \(-0.741519\pi\)
−0.688019 + 0.725693i \(0.741519\pi\)
\(824\) 1.07230e12 0.0810298
\(825\) 1.53989e11 0.0115730
\(826\) −1.15505e13 −0.863355
\(827\) −5.02389e12 −0.373478 −0.186739 0.982410i \(-0.559792\pi\)
−0.186739 + 0.982410i \(0.559792\pi\)
\(828\) −6.65260e12 −0.491875
\(829\) 2.49772e13 1.83674 0.918371 0.395721i \(-0.129505\pi\)
0.918371 + 0.395721i \(0.129505\pi\)
\(830\) 1.52028e12 0.111192
\(831\) −7.31884e10 −0.00532400
\(832\) −3.03882e12 −0.219862
\(833\) −1.18965e12 −0.0856083
\(834\) −2.68544e11 −0.0192206
\(835\) −2.14000e13 −1.52344
\(836\) 1.07199e13 0.759034
\(837\) −2.50450e10 −0.00176383
\(838\) 7.29302e12 0.510869
\(839\) −1.68612e13 −1.17479 −0.587393 0.809302i \(-0.699846\pi\)
−0.587393 + 0.809302i \(0.699846\pi\)
\(840\) 2.04955e11 0.0142037
\(841\) 1.13728e13 0.783944
\(842\) 3.27819e12 0.224766
\(843\) 1.69289e11 0.0115453
\(844\) 1.32218e13 0.896909
\(845\) −1.28711e12 −0.0868479
\(846\) 2.34460e12 0.157363
\(847\) −3.33386e13 −2.22573
\(848\) −2.75578e13 −1.83005
\(849\) 9.65259e10 0.00637616
\(850\) −7.09628e11 −0.0466279
\(851\) 1.03441e13 0.676101
\(852\) −9.59694e10 −0.00623957
\(853\) −2.96077e12 −0.191485 −0.0957424 0.995406i \(-0.530523\pi\)
−0.0957424 + 0.995406i \(0.530523\pi\)
\(854\) 3.19482e13 2.05535
\(855\) −1.29246e13 −0.827122
\(856\) 9.35241e12 0.595376
\(857\) −2.12923e13 −1.34837 −0.674186 0.738562i \(-0.735505\pi\)
−0.674186 + 0.738562i \(0.735505\pi\)
\(858\) −5.90754e11 −0.0372146
\(859\) 1.10479e13 0.692325 0.346163 0.938174i \(-0.387485\pi\)
0.346163 + 0.938174i \(0.387485\pi\)
\(860\) 5.52889e12 0.344663
\(861\) −6.74071e11 −0.0418015
\(862\) −1.48213e12 −0.0914332
\(863\) −5.45410e12 −0.334714 −0.167357 0.985896i \(-0.553523\pi\)
−0.167357 + 0.985896i \(0.553523\pi\)
\(864\) 5.52543e11 0.0337330
\(865\) −1.74491e13 −1.05975
\(866\) −1.94566e13 −1.17554
\(867\) 3.29214e11 0.0197876
\(868\) 4.44065e11 0.0265526
\(869\) 3.03609e13 1.80603
\(870\) −4.37749e11 −0.0259053
\(871\) 2.24444e12 0.132138
\(872\) −2.11829e13 −1.24068
\(873\) 2.20018e13 1.28202
\(874\) −2.33154e13 −1.35158
\(875\) 2.51949e13 1.45304
\(876\) −1.07137e11 −0.00614709
\(877\) −6.93874e12 −0.396079 −0.198040 0.980194i \(-0.563458\pi\)
−0.198040 + 0.980194i \(0.563458\pi\)
\(878\) 1.06596e12 0.0605363
\(879\) 2.04551e11 0.0115572
\(880\) −2.91368e13 −1.63784
\(881\) −1.10273e13 −0.616705 −0.308352 0.951272i \(-0.599778\pi\)
−0.308352 + 0.951272i \(0.599778\pi\)
\(882\) 1.69412e13 0.942615
\(883\) −1.09368e13 −0.605434 −0.302717 0.953081i \(-0.597894\pi\)
−0.302717 + 0.953081i \(0.597894\pi\)
\(884\) 8.46837e11 0.0466407
\(885\) 1.57678e11 0.00864024
\(886\) −2.66247e12 −0.145155
\(887\) −2.59031e13 −1.40506 −0.702532 0.711653i \(-0.747947\pi\)
−0.702532 + 0.711653i \(0.747947\pi\)
\(888\) −1.52128e11 −0.00821014
\(889\) 1.21511e13 0.652464
\(890\) 7.59753e12 0.405898
\(891\) 3.06858e13 1.63113
\(892\) −1.32152e13 −0.698928
\(893\) 2.55608e12 0.134506
\(894\) −2.66956e11 −0.0139772
\(895\) −8.78473e12 −0.457641
\(896\) 2.89225e13 1.49917
\(897\) 3.99680e11 0.0206133
\(898\) 1.33651e13 0.685848
\(899\) 1.15213e12 0.0588280
\(900\) 3.14346e12 0.159704
\(901\) −3.17359e12 −0.160431
\(902\) 6.11482e13 3.07577
\(903\) 5.07349e11 0.0253929
\(904\) 5.08771e12 0.253375
\(905\) −2.79919e13 −1.38712
\(906\) 6.90093e11 0.0340275
\(907\) −1.56389e12 −0.0767316 −0.0383658 0.999264i \(-0.512215\pi\)
−0.0383658 + 0.999264i \(0.512215\pi\)
\(908\) −4.17248e12 −0.203708
\(909\) 1.65413e12 0.0803585
\(910\) −2.52625e13 −1.22121
\(911\) 2.44644e13 1.17680 0.588398 0.808571i \(-0.299759\pi\)
0.588398 + 0.808571i \(0.299759\pi\)
\(912\) 5.37360e11 0.0257210
\(913\) −3.93662e12 −0.187502
\(914\) −3.05978e13 −1.45022
\(915\) −4.36132e11 −0.0205695
\(916\) 1.28918e13 0.605040
\(917\) −3.13063e13 −1.46207
\(918\) 1.13549e11 0.00527706
\(919\) −9.29278e12 −0.429760 −0.214880 0.976640i \(-0.568936\pi\)
−0.214880 + 0.976640i \(0.568936\pi\)
\(920\) 1.25789e13 0.578890
\(921\) −1.84017e11 −0.00842733
\(922\) 1.50888e13 0.687645
\(923\) −1.43695e13 −0.651678
\(924\) 4.36886e11 0.0197172
\(925\) −4.88777e12 −0.219519
\(926\) 3.13679e13 1.40196
\(927\) −2.75585e12 −0.122573
\(928\) −2.54184e13 −1.12508
\(929\) 3.95256e12 0.174104 0.0870518 0.996204i \(-0.472255\pi\)
0.0870518 + 0.996204i \(0.472255\pi\)
\(930\) −1.94879e10 −0.000854264 0
\(931\) 1.84692e13 0.805701
\(932\) −1.22343e13 −0.531139
\(933\) 5.42401e11 0.0234343
\(934\) 3.28996e13 1.41459
\(935\) −3.35543e12 −0.143581
\(936\) 1.46492e13 0.623838
\(937\) 3.11102e12 0.131848 0.0659242 0.997825i \(-0.479000\pi\)
0.0659242 + 0.997825i \(0.479000\pi\)
\(938\) −5.33602e12 −0.225063
\(939\) 5.71473e11 0.0239884
\(940\) 1.13523e12 0.0474250
\(941\) −2.78496e13 −1.15789 −0.578943 0.815368i \(-0.696534\pi\)
−0.578943 + 0.815368i \(0.696534\pi\)
\(942\) −1.07132e12 −0.0443292
\(943\) −4.13704e13 −1.70368
\(944\) 1.63382e13 0.669624
\(945\) −1.05369e12 −0.0429803
\(946\) −4.60240e13 −1.86842
\(947\) 4.90336e12 0.198116 0.0990578 0.995082i \(-0.468417\pi\)
0.0990578 + 0.995082i \(0.468417\pi\)
\(948\) −2.48684e11 −0.0100002
\(949\) −1.60415e13 −0.642019
\(950\) 1.10169e13 0.438837
\(951\) 8.70209e11 0.0344994
\(952\) 2.44567e12 0.0965010
\(953\) 3.31980e13 1.30375 0.651875 0.758327i \(-0.273983\pi\)
0.651875 + 0.758327i \(0.273983\pi\)
\(954\) 4.51935e13 1.76648
\(955\) 1.99322e13 0.775425
\(956\) 4.15664e11 0.0160947
\(957\) 1.13351e12 0.0436838
\(958\) 1.60460e13 0.615490
\(959\) 2.66031e13 1.01566
\(960\) −9.86245e10 −0.00374769
\(961\) −2.63883e13 −0.998060
\(962\) 1.87511e13 0.705895
\(963\) −2.40360e13 −0.900624
\(964\) −1.60717e13 −0.599399
\(965\) −5.27211e12 −0.195709
\(966\) −9.50216e11 −0.0351095
\(967\) −4.01878e13 −1.47800 −0.739001 0.673704i \(-0.764702\pi\)
−0.739001 + 0.673704i \(0.764702\pi\)
\(968\) 3.00916e13 1.10156
\(969\) 6.18829e10 0.00225483
\(970\) 3.42467e13 1.24207
\(971\) 8.15723e12 0.294480 0.147240 0.989101i \(-0.452961\pi\)
0.147240 + 0.989101i \(0.452961\pi\)
\(972\) −7.54538e11 −0.0271133
\(973\) 2.97361e13 1.06360
\(974\) −2.42797e13 −0.864427
\(975\) −1.88855e11 −0.00669281
\(976\) −4.51911e13 −1.59415
\(977\) 9.16012e12 0.321644 0.160822 0.986983i \(-0.448585\pi\)
0.160822 + 0.986983i \(0.448585\pi\)
\(978\) −7.52369e10 −0.00262970
\(979\) −1.96730e13 −0.684462
\(980\) 8.20270e12 0.284079
\(981\) 5.44406e13 1.87678
\(982\) 4.77286e12 0.163786
\(983\) −3.83289e13 −1.30929 −0.654645 0.755937i \(-0.727182\pi\)
−0.654645 + 0.755937i \(0.727182\pi\)
\(984\) 6.08421e11 0.0206884
\(985\) −1.69199e12 −0.0572709
\(986\) −5.22355e12 −0.176003
\(987\) 1.04172e11 0.00349402
\(988\) −1.31471e13 −0.438958
\(989\) 3.11380e13 1.03492
\(990\) 4.77830e13 1.58094
\(991\) 5.86162e13 1.93057 0.965287 0.261191i \(-0.0841152\pi\)
0.965287 + 0.261191i \(0.0841152\pi\)
\(992\) −1.13159e12 −0.0371010
\(993\) 9.98613e11 0.0325931
\(994\) 3.41625e13 1.10997
\(995\) −1.48518e13 −0.480368
\(996\) 3.22445e10 0.00103822
\(997\) 2.00858e13 0.643814 0.321907 0.946771i \(-0.395676\pi\)
0.321907 + 0.946771i \(0.395676\pi\)
\(998\) −5.82064e13 −1.85730
\(999\) 7.82103e11 0.0248439
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.a.1.18 71
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.a.1.18 71 1.1 even 1 trivial