Properties

Label 197.10.a.a.1.5
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $1$
Dimension $71$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(1\)
Dimension: \(71\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-42.8620 q^{2} +210.134 q^{3} +1325.15 q^{4} +1176.05 q^{5} -9006.77 q^{6} +4058.46 q^{7} -34853.1 q^{8} +24473.5 q^{9} -50407.8 q^{10} -37710.7 q^{11} +278459. q^{12} -132580. q^{13} -173954. q^{14} +247128. q^{15} +815397. q^{16} -236606. q^{17} -1.04898e6 q^{18} +620418. q^{19} +1.55844e6 q^{20} +852822. q^{21} +1.61636e6 q^{22} +611280. q^{23} -7.32384e6 q^{24} -570034. q^{25} +5.68266e6 q^{26} +1.00664e6 q^{27} +5.37806e6 q^{28} +1.33524e6 q^{29} -1.05924e7 q^{30} -7.12238e6 q^{31} -1.71047e7 q^{32} -7.92432e6 q^{33} +1.01414e7 q^{34} +4.77295e6 q^{35} +3.24310e7 q^{36} -2.07938e7 q^{37} -2.65923e7 q^{38} -2.78597e7 q^{39} -4.09890e7 q^{40} -6.99487e6 q^{41} -3.65536e7 q^{42} -2.54778e6 q^{43} -4.99723e7 q^{44} +2.87820e7 q^{45} -2.62007e7 q^{46} -1.66405e7 q^{47} +1.71343e8 q^{48} -2.38825e7 q^{49} +2.44328e7 q^{50} -4.97190e7 q^{51} -1.75689e8 q^{52} +3.28649e7 q^{53} -4.31466e7 q^{54} -4.43497e7 q^{55} -1.41450e8 q^{56} +1.30371e8 q^{57} -5.72312e7 q^{58} +3.05490e7 q^{59} +3.27482e8 q^{60} -2.86018e7 q^{61} +3.05279e8 q^{62} +9.93245e7 q^{63} +3.15659e8 q^{64} -1.55921e8 q^{65} +3.39652e8 q^{66} -1.55918e8 q^{67} -3.13538e8 q^{68} +1.28451e8 q^{69} -2.04578e8 q^{70} +3.94439e7 q^{71} -8.52976e8 q^{72} -1.58793e8 q^{73} +8.91263e8 q^{74} -1.19784e8 q^{75} +8.22145e8 q^{76} -1.53047e8 q^{77} +1.19412e9 q^{78} +4.53571e8 q^{79} +9.58947e8 q^{80} -2.70181e8 q^{81} +2.99814e8 q^{82} -1.57803e8 q^{83} +1.13012e9 q^{84} -2.78260e8 q^{85} +1.09203e8 q^{86} +2.80581e8 q^{87} +1.31434e9 q^{88} +8.31272e7 q^{89} -1.23365e9 q^{90} -5.38073e8 q^{91} +8.10037e8 q^{92} -1.49666e9 q^{93} +7.13243e8 q^{94} +7.29642e8 q^{95} -3.59429e9 q^{96} -1.15900e9 q^{97} +1.02365e9 q^{98} -9.22912e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 71 q - 32 q^{2} - 892 q^{3} + 16896 q^{4} - 2329 q^{5} - 10272 q^{6} - 37846 q^{7} - 24933 q^{8} + 419903 q^{9} - 138907 q^{10} - 143074 q^{11} - 496640 q^{12} - 433821 q^{13} - 130143 q^{14} - 670126 q^{15}+ \cdots - 6380320552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −42.8620 −1.89425 −0.947125 0.320866i \(-0.896026\pi\)
−0.947125 + 0.320866i \(0.896026\pi\)
\(3\) 210.134 1.49779 0.748896 0.662688i \(-0.230584\pi\)
0.748896 + 0.662688i \(0.230584\pi\)
\(4\) 1325.15 2.58818
\(5\) 1176.05 0.841512 0.420756 0.907174i \(-0.361765\pi\)
0.420756 + 0.907174i \(0.361765\pi\)
\(6\) −9006.77 −2.83719
\(7\) 4058.46 0.638881 0.319441 0.947606i \(-0.396505\pi\)
0.319441 + 0.947606i \(0.396505\pi\)
\(8\) −34853.1 −3.00841
\(9\) 24473.5 1.24338
\(10\) −50407.8 −1.59403
\(11\) −37710.7 −0.776601 −0.388300 0.921533i \(-0.626938\pi\)
−0.388300 + 0.921533i \(0.626938\pi\)
\(12\) 278459. 3.87655
\(13\) −132580. −1.28746 −0.643731 0.765252i \(-0.722615\pi\)
−0.643731 + 0.765252i \(0.722615\pi\)
\(14\) −173954. −1.21020
\(15\) 247128. 1.26041
\(16\) 815397. 3.11049
\(17\) −236606. −0.687077 −0.343539 0.939139i \(-0.611626\pi\)
−0.343539 + 0.939139i \(0.611626\pi\)
\(18\) −1.04898e6 −2.35527
\(19\) 620418. 1.09218 0.546088 0.837728i \(-0.316116\pi\)
0.546088 + 0.837728i \(0.316116\pi\)
\(20\) 1.55844e6 2.17798
\(21\) 852822. 0.956911
\(22\) 1.61636e6 1.47108
\(23\) 611280. 0.455475 0.227738 0.973723i \(-0.426867\pi\)
0.227738 + 0.973723i \(0.426867\pi\)
\(24\) −7.32384e6 −4.50597
\(25\) −570034. −0.291857
\(26\) 5.68266e6 2.43877
\(27\) 1.00664e6 0.364533
\(28\) 5.37806e6 1.65354
\(29\) 1.33524e6 0.350566 0.175283 0.984518i \(-0.443916\pi\)
0.175283 + 0.984518i \(0.443916\pi\)
\(30\) −1.05924e7 −2.38753
\(31\) −7.12238e6 −1.38515 −0.692576 0.721345i \(-0.743524\pi\)
−0.692576 + 0.721345i \(0.743524\pi\)
\(32\) −1.71047e7 −2.88364
\(33\) −7.92432e6 −1.16319
\(34\) 1.01414e7 1.30150
\(35\) 4.77295e6 0.537626
\(36\) 3.24310e7 3.21809
\(37\) −2.07938e7 −1.82400 −0.912002 0.410185i \(-0.865464\pi\)
−0.912002 + 0.410185i \(0.865464\pi\)
\(38\) −2.65923e7 −2.06886
\(39\) −2.78597e7 −1.92835
\(40\) −4.09890e7 −2.53161
\(41\) −6.99487e6 −0.386591 −0.193296 0.981141i \(-0.561918\pi\)
−0.193296 + 0.981141i \(0.561918\pi\)
\(42\) −3.65536e7 −1.81263
\(43\) −2.54778e6 −0.113646 −0.0568230 0.998384i \(-0.518097\pi\)
−0.0568230 + 0.998384i \(0.518097\pi\)
\(44\) −4.99723e7 −2.00998
\(45\) 2.87820e7 1.04632
\(46\) −2.62007e7 −0.862784
\(47\) −1.66405e7 −0.497422 −0.248711 0.968578i \(-0.580007\pi\)
−0.248711 + 0.968578i \(0.580007\pi\)
\(48\) 1.71343e8 4.65887
\(49\) −2.38825e7 −0.591831
\(50\) 2.44328e7 0.552850
\(51\) −4.97190e7 −1.02910
\(52\) −1.75689e8 −3.33218
\(53\) 3.28649e7 0.572125 0.286063 0.958211i \(-0.407653\pi\)
0.286063 + 0.958211i \(0.407653\pi\)
\(54\) −4.31466e7 −0.690517
\(55\) −4.43497e7 −0.653519
\(56\) −1.41450e8 −1.92201
\(57\) 1.30371e8 1.63585
\(58\) −5.72312e7 −0.664059
\(59\) 3.05490e7 0.328218 0.164109 0.986442i \(-0.447525\pi\)
0.164109 + 0.986442i \(0.447525\pi\)
\(60\) 3.27482e8 3.26217
\(61\) −2.86018e7 −0.264490 −0.132245 0.991217i \(-0.542219\pi\)
−0.132245 + 0.991217i \(0.542219\pi\)
\(62\) 3.05279e8 2.62382
\(63\) 9.93245e7 0.794372
\(64\) 3.15659e8 2.35184
\(65\) −1.55921e8 −1.08342
\(66\) 3.39652e8 2.20337
\(67\) −1.55918e8 −0.945281 −0.472641 0.881255i \(-0.656699\pi\)
−0.472641 + 0.881255i \(0.656699\pi\)
\(68\) −3.13538e8 −1.77828
\(69\) 1.28451e8 0.682207
\(70\) −2.04578e8 −1.01840
\(71\) 3.94439e7 0.184212 0.0921059 0.995749i \(-0.470640\pi\)
0.0921059 + 0.995749i \(0.470640\pi\)
\(72\) −8.52976e8 −3.74060
\(73\) −1.58793e8 −0.654452 −0.327226 0.944946i \(-0.606114\pi\)
−0.327226 + 0.944946i \(0.606114\pi\)
\(74\) 8.91263e8 3.45512
\(75\) −1.19784e8 −0.437141
\(76\) 8.22145e8 2.82675
\(77\) −1.53047e8 −0.496156
\(78\) 1.19412e9 3.65278
\(79\) 4.53571e8 1.31016 0.655078 0.755561i \(-0.272636\pi\)
0.655078 + 0.755561i \(0.272636\pi\)
\(80\) 9.58947e8 2.61752
\(81\) −2.70181e8 −0.697385
\(82\) 2.99814e8 0.732300
\(83\) −1.57803e8 −0.364975 −0.182487 0.983208i \(-0.558415\pi\)
−0.182487 + 0.983208i \(0.558415\pi\)
\(84\) 1.13012e9 2.47666
\(85\) −2.78260e8 −0.578184
\(86\) 1.09203e8 0.215274
\(87\) 2.80581e8 0.525075
\(88\) 1.31434e9 2.33633
\(89\) 8.31272e7 0.140439 0.0702196 0.997532i \(-0.477630\pi\)
0.0702196 + 0.997532i \(0.477630\pi\)
\(90\) −1.23365e9 −1.98199
\(91\) −5.38073e8 −0.822535
\(92\) 8.10037e8 1.17885
\(93\) −1.49666e9 −2.07467
\(94\) 7.13243e8 0.942242
\(95\) 7.29642e8 0.919080
\(96\) −3.59429e9 −4.31910
\(97\) −1.15900e9 −1.32927 −0.664633 0.747170i \(-0.731412\pi\)
−0.664633 + 0.747170i \(0.731412\pi\)
\(98\) 1.02365e9 1.12108
\(99\) −9.22912e8 −0.965610
\(100\) −7.55379e8 −0.755379
\(101\) −8.56510e8 −0.819004 −0.409502 0.912309i \(-0.634298\pi\)
−0.409502 + 0.912309i \(0.634298\pi\)
\(102\) 2.13106e9 1.94937
\(103\) −3.58390e7 −0.0313754 −0.0156877 0.999877i \(-0.504994\pi\)
−0.0156877 + 0.999877i \(0.504994\pi\)
\(104\) 4.62084e9 3.87321
\(105\) 1.00296e9 0.805252
\(106\) −1.40866e9 −1.08375
\(107\) 2.34336e9 1.72827 0.864137 0.503257i \(-0.167865\pi\)
0.864137 + 0.503257i \(0.167865\pi\)
\(108\) 1.33395e9 0.943478
\(109\) 1.14960e9 0.780062 0.390031 0.920802i \(-0.372464\pi\)
0.390031 + 0.920802i \(0.372464\pi\)
\(110\) 1.90091e9 1.23793
\(111\) −4.36949e9 −2.73198
\(112\) 3.30926e9 1.98724
\(113\) −3.14117e9 −1.81234 −0.906168 0.422918i \(-0.861006\pi\)
−0.906168 + 0.422918i \(0.861006\pi\)
\(114\) −5.58796e9 −3.09871
\(115\) 7.18895e8 0.383288
\(116\) 1.76940e9 0.907327
\(117\) −3.24470e9 −1.60081
\(118\) −1.30939e9 −0.621727
\(119\) −9.60256e8 −0.438961
\(120\) −8.61319e9 −3.79183
\(121\) −9.35848e8 −0.396891
\(122\) 1.22593e9 0.501010
\(123\) −1.46986e9 −0.579033
\(124\) −9.43821e9 −3.58502
\(125\) −2.96736e9 −1.08711
\(126\) −4.25725e9 −1.50474
\(127\) −5.38024e9 −1.83520 −0.917602 0.397500i \(-0.869878\pi\)
−0.917602 + 0.397500i \(0.869878\pi\)
\(128\) −4.77215e9 −1.57134
\(129\) −5.35376e8 −0.170218
\(130\) 6.68309e9 2.05226
\(131\) 1.95534e9 0.580099 0.290050 0.957012i \(-0.406328\pi\)
0.290050 + 0.957012i \(0.406328\pi\)
\(132\) −1.05009e10 −3.01054
\(133\) 2.51794e9 0.697771
\(134\) 6.68297e9 1.79060
\(135\) 1.18386e9 0.306759
\(136\) 8.24646e9 2.06701
\(137\) 6.71394e9 1.62830 0.814151 0.580653i \(-0.197203\pi\)
0.814151 + 0.580653i \(0.197203\pi\)
\(138\) −5.50566e9 −1.29227
\(139\) 8.16969e9 1.85626 0.928130 0.372256i \(-0.121416\pi\)
0.928130 + 0.372256i \(0.121416\pi\)
\(140\) 6.32486e9 1.39147
\(141\) −3.49673e9 −0.745035
\(142\) −1.69064e9 −0.348943
\(143\) 4.99971e9 0.999844
\(144\) 1.99556e10 3.86753
\(145\) 1.57031e9 0.295005
\(146\) 6.80617e9 1.23970
\(147\) −5.01854e9 −0.886440
\(148\) −2.75548e10 −4.72085
\(149\) 7.06577e8 0.117441 0.0587207 0.998274i \(-0.481298\pi\)
0.0587207 + 0.998274i \(0.481298\pi\)
\(150\) 5.13416e9 0.828055
\(151\) 4.96371e9 0.776980 0.388490 0.921453i \(-0.372997\pi\)
0.388490 + 0.921453i \(0.372997\pi\)
\(152\) −2.16235e10 −3.28571
\(153\) −5.79057e9 −0.854298
\(154\) 6.55992e9 0.939842
\(155\) −8.37627e9 −1.16562
\(156\) −3.69183e10 −4.99092
\(157\) 7.30151e9 0.959101 0.479550 0.877514i \(-0.340800\pi\)
0.479550 + 0.877514i \(0.340800\pi\)
\(158\) −1.94409e10 −2.48176
\(159\) 6.90605e9 0.856925
\(160\) −2.01160e10 −2.42662
\(161\) 2.48086e9 0.290995
\(162\) 1.15805e10 1.32102
\(163\) −5.05122e9 −0.560469 −0.280235 0.959932i \(-0.590412\pi\)
−0.280235 + 0.959932i \(0.590412\pi\)
\(164\) −9.26923e9 −1.00057
\(165\) −9.31939e9 −0.978836
\(166\) 6.76373e9 0.691353
\(167\) 3.33034e8 0.0331333 0.0165667 0.999863i \(-0.494726\pi\)
0.0165667 + 0.999863i \(0.494726\pi\)
\(168\) −2.97235e10 −2.87878
\(169\) 6.97309e9 0.657559
\(170\) 1.19268e10 1.09522
\(171\) 1.51838e10 1.35799
\(172\) −3.37619e9 −0.294136
\(173\) −1.18746e10 −1.00788 −0.503941 0.863738i \(-0.668117\pi\)
−0.503941 + 0.863738i \(0.668117\pi\)
\(174\) −1.20262e10 −0.994622
\(175\) −2.31346e9 −0.186462
\(176\) −3.07492e10 −2.41561
\(177\) 6.41939e9 0.491603
\(178\) −3.56299e9 −0.266027
\(179\) 9.87288e9 0.718795 0.359398 0.933185i \(-0.382982\pi\)
0.359398 + 0.933185i \(0.382982\pi\)
\(180\) 3.81404e10 2.70806
\(181\) −1.82748e10 −1.26561 −0.632803 0.774313i \(-0.718096\pi\)
−0.632803 + 0.774313i \(0.718096\pi\)
\(182\) 2.30628e10 1.55809
\(183\) −6.01022e9 −0.396151
\(184\) −2.13050e10 −1.37026
\(185\) −2.44545e10 −1.53492
\(186\) 6.41497e10 3.92994
\(187\) 8.92258e9 0.533585
\(188\) −2.20511e10 −1.28742
\(189\) 4.08541e9 0.232894
\(190\) −3.12739e10 −1.74097
\(191\) −2.70670e10 −1.47160 −0.735800 0.677199i \(-0.763193\pi\)
−0.735800 + 0.677199i \(0.763193\pi\)
\(192\) 6.63309e10 3.52257
\(193\) 1.82511e10 0.946850 0.473425 0.880834i \(-0.343017\pi\)
0.473425 + 0.880834i \(0.343017\pi\)
\(194\) 4.96771e10 2.51796
\(195\) −3.27644e10 −1.62273
\(196\) −3.16479e10 −1.53176
\(197\) −1.50614e9 −0.0712470
\(198\) 3.95578e10 1.82911
\(199\) −4.08623e9 −0.184707 −0.0923536 0.995726i \(-0.529439\pi\)
−0.0923536 + 0.995726i \(0.529439\pi\)
\(200\) 1.98675e10 0.878026
\(201\) −3.27638e10 −1.41583
\(202\) 3.67117e10 1.55140
\(203\) 5.41903e9 0.223970
\(204\) −6.58851e10 −2.66349
\(205\) −8.22630e9 −0.325321
\(206\) 1.53613e9 0.0594328
\(207\) 1.49601e10 0.566329
\(208\) −1.08106e11 −4.00464
\(209\) −2.33964e10 −0.848186
\(210\) −4.29889e10 −1.52535
\(211\) 4.59144e10 1.59470 0.797348 0.603520i \(-0.206235\pi\)
0.797348 + 0.603520i \(0.206235\pi\)
\(212\) 4.35509e10 1.48076
\(213\) 8.28852e9 0.275911
\(214\) −1.00441e11 −3.27378
\(215\) −2.99632e9 −0.0956345
\(216\) −3.50846e10 −1.09667
\(217\) −2.89059e10 −0.884948
\(218\) −4.92743e10 −1.47763
\(219\) −3.33678e10 −0.980233
\(220\) −5.87699e10 −1.69142
\(221\) 3.13693e10 0.884586
\(222\) 1.87285e11 5.17505
\(223\) −1.01326e10 −0.274378 −0.137189 0.990545i \(-0.543807\pi\)
−0.137189 + 0.990545i \(0.543807\pi\)
\(224\) −6.94189e10 −1.84231
\(225\) −1.39507e10 −0.362890
\(226\) 1.34637e11 3.43302
\(227\) 4.31431e10 1.07844 0.539218 0.842166i \(-0.318720\pi\)
0.539218 + 0.842166i \(0.318720\pi\)
\(228\) 1.72761e11 4.23388
\(229\) 3.38627e10 0.813695 0.406847 0.913496i \(-0.366628\pi\)
0.406847 + 0.913496i \(0.366628\pi\)
\(230\) −3.08133e10 −0.726043
\(231\) −3.21605e10 −0.743138
\(232\) −4.65374e10 −1.05465
\(233\) −1.75319e10 −0.389697 −0.194849 0.980833i \(-0.562422\pi\)
−0.194849 + 0.980833i \(0.562422\pi\)
\(234\) 1.39074e11 3.03232
\(235\) −1.95700e10 −0.418587
\(236\) 4.04819e10 0.849488
\(237\) 9.53108e10 1.96234
\(238\) 4.11584e10 0.831501
\(239\) 3.10437e10 0.615435 0.307718 0.951478i \(-0.400435\pi\)
0.307718 + 0.951478i \(0.400435\pi\)
\(240\) 2.01508e11 3.92050
\(241\) −9.49864e10 −1.81378 −0.906891 0.421366i \(-0.861551\pi\)
−0.906891 + 0.421366i \(0.861551\pi\)
\(242\) 4.01123e10 0.751811
\(243\) −7.65881e10 −1.40907
\(244\) −3.79016e10 −0.684547
\(245\) −2.80870e10 −0.498033
\(246\) 6.30012e10 1.09683
\(247\) −8.22553e10 −1.40614
\(248\) 2.48237e11 4.16710
\(249\) −3.31597e10 −0.546656
\(250\) 1.27187e11 2.05926
\(251\) 7.02548e10 1.11723 0.558617 0.829426i \(-0.311332\pi\)
0.558617 + 0.829426i \(0.311332\pi\)
\(252\) 1.31620e11 2.05598
\(253\) −2.30518e10 −0.353723
\(254\) 2.30607e11 3.47633
\(255\) −5.84720e10 −0.865999
\(256\) 4.29261e10 0.624657
\(257\) 5.32221e10 0.761015 0.380507 0.924778i \(-0.375749\pi\)
0.380507 + 0.924778i \(0.375749\pi\)
\(258\) 2.29473e10 0.322435
\(259\) −8.43908e10 −1.16532
\(260\) −2.06619e11 −2.80407
\(261\) 3.26780e10 0.435887
\(262\) −8.38099e10 −1.09885
\(263\) 1.14592e11 1.47691 0.738456 0.674301i \(-0.235555\pi\)
0.738456 + 0.674301i \(0.235555\pi\)
\(264\) 2.76187e11 3.49934
\(265\) 3.86508e10 0.481450
\(266\) −1.07924e11 −1.32175
\(267\) 1.74679e10 0.210349
\(268\) −2.06615e11 −2.44656
\(269\) 1.12972e11 1.31549 0.657743 0.753243i \(-0.271511\pi\)
0.657743 + 0.753243i \(0.271511\pi\)
\(270\) −5.07425e10 −0.581079
\(271\) −1.12335e11 −1.26519 −0.632593 0.774484i \(-0.718010\pi\)
−0.632593 + 0.774484i \(0.718010\pi\)
\(272\) −1.92928e11 −2.13715
\(273\) −1.13068e11 −1.23199
\(274\) −2.87773e11 −3.08441
\(275\) 2.14964e10 0.226657
\(276\) 1.70217e11 1.76568
\(277\) 1.09513e11 1.11765 0.558825 0.829286i \(-0.311252\pi\)
0.558825 + 0.829286i \(0.311252\pi\)
\(278\) −3.50169e11 −3.51622
\(279\) −1.74309e11 −1.72227
\(280\) −1.66352e11 −1.61740
\(281\) −1.68285e11 −1.61015 −0.805075 0.593173i \(-0.797875\pi\)
−0.805075 + 0.593173i \(0.797875\pi\)
\(282\) 1.49877e11 1.41128
\(283\) −1.08799e11 −1.00829 −0.504146 0.863619i \(-0.668193\pi\)
−0.504146 + 0.863619i \(0.668193\pi\)
\(284\) 5.22690e10 0.476773
\(285\) 1.53323e11 1.37659
\(286\) −2.14297e11 −1.89395
\(287\) −2.83884e10 −0.246986
\(288\) −4.18612e11 −3.58547
\(289\) −6.26055e10 −0.527925
\(290\) −6.73067e10 −0.558814
\(291\) −2.43546e11 −1.99096
\(292\) −2.10424e11 −1.69384
\(293\) 1.91945e11 1.52150 0.760750 0.649045i \(-0.224831\pi\)
0.760750 + 0.649045i \(0.224831\pi\)
\(294\) 2.15104e11 1.67914
\(295\) 3.59271e10 0.276200
\(296\) 7.24728e11 5.48735
\(297\) −3.79611e10 −0.283097
\(298\) −3.02853e10 −0.222463
\(299\) −8.10438e10 −0.586408
\(300\) −1.58731e11 −1.13140
\(301\) −1.03401e10 −0.0726063
\(302\) −2.12754e11 −1.47179
\(303\) −1.79982e11 −1.22670
\(304\) 5.05887e11 3.39721
\(305\) −3.36371e10 −0.222571
\(306\) 2.48195e11 1.61825
\(307\) 1.20158e11 0.772024 0.386012 0.922494i \(-0.373852\pi\)
0.386012 + 0.922494i \(0.373852\pi\)
\(308\) −2.02811e11 −1.28414
\(309\) −7.53102e9 −0.0469938
\(310\) 3.59023e11 2.20798
\(311\) −1.32220e11 −0.801451 −0.400725 0.916198i \(-0.631242\pi\)
−0.400725 + 0.916198i \(0.631242\pi\)
\(312\) 9.70998e11 5.80127
\(313\) −2.63480e11 −1.55167 −0.775834 0.630937i \(-0.782670\pi\)
−0.775834 + 0.630937i \(0.782670\pi\)
\(314\) −3.12957e11 −1.81678
\(315\) 1.16811e11 0.668474
\(316\) 6.01049e11 3.39092
\(317\) −2.04075e11 −1.13507 −0.567536 0.823349i \(-0.692103\pi\)
−0.567536 + 0.823349i \(0.692103\pi\)
\(318\) −2.96007e11 −1.62323
\(319\) −5.03530e10 −0.272250
\(320\) 3.71231e11 1.97911
\(321\) 4.92421e11 2.58859
\(322\) −1.06334e11 −0.551216
\(323\) −1.46795e11 −0.750410
\(324\) −3.58030e11 −1.80496
\(325\) 7.55754e10 0.375755
\(326\) 2.16505e11 1.06167
\(327\) 2.41571e11 1.16837
\(328\) 2.43793e11 1.16302
\(329\) −6.75347e10 −0.317794
\(330\) 3.99447e11 1.85416
\(331\) 8.46985e10 0.387838 0.193919 0.981018i \(-0.437880\pi\)
0.193919 + 0.981018i \(0.437880\pi\)
\(332\) −2.09112e11 −0.944620
\(333\) −5.08896e11 −2.26793
\(334\) −1.42745e10 −0.0627628
\(335\) −1.83368e11 −0.795465
\(336\) 6.95389e11 2.97647
\(337\) −2.29023e11 −0.967262 −0.483631 0.875272i \(-0.660682\pi\)
−0.483631 + 0.875272i \(0.660682\pi\)
\(338\) −2.98880e11 −1.24558
\(339\) −6.60068e11 −2.71450
\(340\) −3.68736e11 −1.49644
\(341\) 2.68590e11 1.07571
\(342\) −6.50806e11 −2.57237
\(343\) −2.60700e11 −1.01699
\(344\) 8.87981e10 0.341893
\(345\) 1.51065e11 0.574086
\(346\) 5.08967e11 1.90918
\(347\) −4.29574e10 −0.159058 −0.0795290 0.996833i \(-0.525342\pi\)
−0.0795290 + 0.996833i \(0.525342\pi\)
\(348\) 3.71811e11 1.35899
\(349\) −4.32584e11 −1.56083 −0.780416 0.625261i \(-0.784993\pi\)
−0.780416 + 0.625261i \(0.784993\pi\)
\(350\) 9.91594e10 0.353206
\(351\) −1.33461e11 −0.469323
\(352\) 6.45032e11 2.23944
\(353\) 1.36580e11 0.468167 0.234084 0.972216i \(-0.424791\pi\)
0.234084 + 0.972216i \(0.424791\pi\)
\(354\) −2.75148e11 −0.931218
\(355\) 4.63880e10 0.155016
\(356\) 1.10156e11 0.363482
\(357\) −2.01783e11 −0.657472
\(358\) −4.23171e11 −1.36158
\(359\) −5.04925e9 −0.0160436 −0.00802181 0.999968i \(-0.502553\pi\)
−0.00802181 + 0.999968i \(0.502553\pi\)
\(360\) −1.00314e12 −3.14776
\(361\) 6.22305e10 0.192850
\(362\) 7.83293e11 2.39737
\(363\) −1.96654e11 −0.594460
\(364\) −7.13026e11 −2.12887
\(365\) −1.86748e11 −0.550730
\(366\) 2.57610e11 0.750408
\(367\) 3.69321e11 1.06269 0.531346 0.847155i \(-0.321687\pi\)
0.531346 + 0.847155i \(0.321687\pi\)
\(368\) 4.98436e11 1.41675
\(369\) −1.71189e11 −0.480680
\(370\) 1.04817e12 2.90752
\(371\) 1.33381e11 0.365520
\(372\) −1.98329e12 −5.36962
\(373\) 2.93916e11 0.786202 0.393101 0.919495i \(-0.371402\pi\)
0.393101 + 0.919495i \(0.371402\pi\)
\(374\) −3.82439e11 −1.01074
\(375\) −6.23544e11 −1.62827
\(376\) 5.79972e11 1.49645
\(377\) −1.77027e11 −0.451340
\(378\) −1.75109e11 −0.441158
\(379\) −4.68869e11 −1.16728 −0.583641 0.812012i \(-0.698372\pi\)
−0.583641 + 0.812012i \(0.698372\pi\)
\(380\) 9.66883e11 2.37874
\(381\) −1.13057e12 −2.74875
\(382\) 1.16014e12 2.78758
\(383\) −4.91407e11 −1.16693 −0.583467 0.812137i \(-0.698304\pi\)
−0.583467 + 0.812137i \(0.698304\pi\)
\(384\) −1.00279e12 −2.35353
\(385\) −1.79991e11 −0.417521
\(386\) −7.82278e11 −1.79357
\(387\) −6.23530e10 −0.141305
\(388\) −1.53585e12 −3.44038
\(389\) 2.88880e11 0.639653 0.319827 0.947476i \(-0.396375\pi\)
0.319827 + 0.947476i \(0.396375\pi\)
\(390\) 1.40435e12 3.07386
\(391\) −1.44633e11 −0.312947
\(392\) 8.32380e11 1.78047
\(393\) 4.10885e11 0.868868
\(394\) 6.45561e10 0.134960
\(395\) 5.33422e11 1.10251
\(396\) −1.22300e12 −2.49917
\(397\) 1.64983e11 0.333336 0.166668 0.986013i \(-0.446699\pi\)
0.166668 + 0.986013i \(0.446699\pi\)
\(398\) 1.75144e11 0.349881
\(399\) 5.29106e11 1.04512
\(400\) −4.64804e11 −0.907820
\(401\) −2.16368e11 −0.417872 −0.208936 0.977929i \(-0.567000\pi\)
−0.208936 + 0.977929i \(0.567000\pi\)
\(402\) 1.40432e12 2.68194
\(403\) 9.44289e11 1.78333
\(404\) −1.13500e12 −2.11973
\(405\) −3.17747e11 −0.586858
\(406\) −2.32270e11 −0.424255
\(407\) 7.84149e11 1.41652
\(408\) 1.73286e12 3.09595
\(409\) 1.07249e11 0.189512 0.0947561 0.995501i \(-0.469793\pi\)
0.0947561 + 0.995501i \(0.469793\pi\)
\(410\) 3.52596e11 0.616239
\(411\) 1.41083e12 2.43886
\(412\) −4.74920e10 −0.0812051
\(413\) 1.23982e11 0.209693
\(414\) −6.41221e11 −1.07277
\(415\) −1.85584e11 −0.307131
\(416\) 2.26775e12 3.71258
\(417\) 1.71673e12 2.78029
\(418\) 1.00282e12 1.60667
\(419\) −8.41829e11 −1.33432 −0.667161 0.744914i \(-0.732491\pi\)
−0.667161 + 0.744914i \(0.732491\pi\)
\(420\) 1.32907e12 2.08414
\(421\) 4.95646e11 0.768958 0.384479 0.923134i \(-0.374381\pi\)
0.384479 + 0.923134i \(0.374381\pi\)
\(422\) −1.96798e12 −3.02075
\(423\) −4.07250e11 −0.618485
\(424\) −1.14545e12 −1.72119
\(425\) 1.34873e11 0.200528
\(426\) −3.55262e11 −0.522644
\(427\) −1.16079e11 −0.168978
\(428\) 3.10530e12 4.47308
\(429\) 1.05061e12 1.49756
\(430\) 1.28428e11 0.181155
\(431\) −8.92090e11 −1.24526 −0.622631 0.782515i \(-0.713936\pi\)
−0.622631 + 0.782515i \(0.713936\pi\)
\(432\) 8.20812e11 1.13388
\(433\) −1.09828e12 −1.50147 −0.750734 0.660605i \(-0.770300\pi\)
−0.750734 + 0.660605i \(0.770300\pi\)
\(434\) 1.23896e12 1.67631
\(435\) 3.29977e11 0.441857
\(436\) 1.52339e12 2.01894
\(437\) 3.79249e11 0.497460
\(438\) 1.43021e12 1.85681
\(439\) 1.00187e12 1.28742 0.643710 0.765269i \(-0.277394\pi\)
0.643710 + 0.765269i \(0.277394\pi\)
\(440\) 1.54572e12 1.96605
\(441\) −5.84488e11 −0.735871
\(442\) −1.34455e12 −1.67563
\(443\) 1.15080e12 1.41965 0.709825 0.704378i \(-0.248774\pi\)
0.709825 + 0.704378i \(0.248774\pi\)
\(444\) −5.79022e12 −7.07085
\(445\) 9.77616e10 0.118181
\(446\) 4.34304e11 0.519741
\(447\) 1.48476e11 0.175903
\(448\) 1.28109e12 1.50255
\(449\) 1.25582e12 1.45821 0.729105 0.684402i \(-0.239936\pi\)
0.729105 + 0.684402i \(0.239936\pi\)
\(450\) 5.97954e11 0.687403
\(451\) 2.63782e11 0.300227
\(452\) −4.16252e12 −4.69065
\(453\) 1.04305e12 1.16375
\(454\) −1.84920e12 −2.04283
\(455\) −6.32800e11 −0.692174
\(456\) −4.54384e12 −4.92132
\(457\) −1.68839e12 −1.81072 −0.905360 0.424646i \(-0.860399\pi\)
−0.905360 + 0.424646i \(0.860399\pi\)
\(458\) −1.45142e12 −1.54134
\(459\) −2.38177e11 −0.250463
\(460\) 9.52643e11 0.992019
\(461\) −1.16403e12 −1.20035 −0.600176 0.799868i \(-0.704903\pi\)
−0.600176 + 0.799868i \(0.704903\pi\)
\(462\) 1.37846e12 1.40769
\(463\) 5.46829e11 0.553015 0.276508 0.961012i \(-0.410823\pi\)
0.276508 + 0.961012i \(0.410823\pi\)
\(464\) 1.08875e12 1.09043
\(465\) −1.76014e12 −1.74586
\(466\) 7.51452e11 0.738184
\(467\) 7.83554e11 0.762330 0.381165 0.924507i \(-0.375523\pi\)
0.381165 + 0.924507i \(0.375523\pi\)
\(468\) −4.29971e12 −4.14317
\(469\) −6.32789e11 −0.603922
\(470\) 8.38809e11 0.792908
\(471\) 1.53430e12 1.43653
\(472\) −1.06473e12 −0.987415
\(473\) 9.60787e10 0.0882576
\(474\) −4.08521e12 −3.71716
\(475\) −3.53659e11 −0.318760
\(476\) −1.27248e12 −1.13611
\(477\) 8.04318e11 0.711369
\(478\) −1.33059e12 −1.16579
\(479\) 1.46747e12 1.27368 0.636840 0.770996i \(-0.280241\pi\)
0.636840 + 0.770996i \(0.280241\pi\)
\(480\) −4.22707e12 −3.63457
\(481\) 2.75685e12 2.34834
\(482\) 4.07131e12 3.43575
\(483\) 5.21313e11 0.435849
\(484\) −1.24014e12 −1.02723
\(485\) −1.36304e12 −1.11859
\(486\) 3.28272e12 2.66913
\(487\) −3.35144e11 −0.269992 −0.134996 0.990846i \(-0.543102\pi\)
−0.134996 + 0.990846i \(0.543102\pi\)
\(488\) 9.96862e11 0.795693
\(489\) −1.06143e12 −0.839466
\(490\) 1.20386e12 0.943398
\(491\) −5.58180e11 −0.433419 −0.216709 0.976236i \(-0.569532\pi\)
−0.216709 + 0.976236i \(0.569532\pi\)
\(492\) −1.94778e12 −1.49864
\(493\) −3.15927e11 −0.240866
\(494\) 3.52562e12 2.66357
\(495\) −1.08539e12 −0.812573
\(496\) −5.80757e12 −4.30851
\(497\) 1.60081e11 0.117689
\(498\) 1.42129e12 1.03550
\(499\) −6.42247e10 −0.0463713 −0.0231857 0.999731i \(-0.507381\pi\)
−0.0231857 + 0.999731i \(0.507381\pi\)
\(500\) −3.93219e12 −2.81365
\(501\) 6.99820e10 0.0496268
\(502\) −3.01126e12 −2.11632
\(503\) 1.57337e12 1.09591 0.547955 0.836508i \(-0.315406\pi\)
0.547955 + 0.836508i \(0.315406\pi\)
\(504\) −3.46177e12 −2.38980
\(505\) −1.00730e12 −0.689202
\(506\) 9.88046e11 0.670039
\(507\) 1.46529e12 0.984887
\(508\) −7.12961e12 −4.74984
\(509\) −7.06302e11 −0.466402 −0.233201 0.972429i \(-0.574920\pi\)
−0.233201 + 0.972429i \(0.574920\pi\)
\(510\) 2.50623e12 1.64042
\(511\) −6.44454e11 −0.418117
\(512\) 6.03442e11 0.388080
\(513\) 6.24538e11 0.398135
\(514\) −2.28120e12 −1.44155
\(515\) −4.21485e10 −0.0264028
\(516\) −7.09453e11 −0.440555
\(517\) 6.27524e11 0.386299
\(518\) 3.61715e12 2.20741
\(519\) −2.49525e12 −1.50960
\(520\) 5.43434e12 3.25936
\(521\) −2.07529e12 −1.23398 −0.616991 0.786970i \(-0.711649\pi\)
−0.616991 + 0.786970i \(0.711649\pi\)
\(522\) −1.40064e12 −0.825678
\(523\) −2.14305e12 −1.25249 −0.626246 0.779625i \(-0.715410\pi\)
−0.626246 + 0.779625i \(0.715410\pi\)
\(524\) 2.59112e12 1.50140
\(525\) −4.86137e11 −0.279281
\(526\) −4.91165e12 −2.79764
\(527\) 1.68520e12 0.951707
\(528\) −6.46147e12 −3.61809
\(529\) −1.42749e12 −0.792542
\(530\) −1.65665e12 −0.911987
\(531\) 7.47640e11 0.408100
\(532\) 3.33664e12 1.80596
\(533\) 9.27383e11 0.497722
\(534\) −7.48708e11 −0.398453
\(535\) 2.75591e12 1.45436
\(536\) 5.43425e12 2.84379
\(537\) 2.07463e12 1.07661
\(538\) −4.84221e12 −2.49186
\(539\) 9.00627e11 0.459616
\(540\) 1.56879e12 0.793948
\(541\) −1.22119e12 −0.612906 −0.306453 0.951886i \(-0.599142\pi\)
−0.306453 + 0.951886i \(0.599142\pi\)
\(542\) 4.81491e12 2.39658
\(543\) −3.84016e12 −1.89561
\(544\) 4.04708e12 1.98129
\(545\) 1.35199e12 0.656431
\(546\) 4.84630e12 2.33369
\(547\) 1.11947e12 0.534652 0.267326 0.963606i \(-0.413860\pi\)
0.267326 + 0.963606i \(0.413860\pi\)
\(548\) 8.89697e12 4.21434
\(549\) −6.99985e11 −0.328862
\(550\) −9.21378e11 −0.429344
\(551\) 8.28409e11 0.382880
\(552\) −4.47692e12 −2.05236
\(553\) 1.84080e12 0.837034
\(554\) −4.69393e12 −2.11711
\(555\) −5.13873e12 −2.29899
\(556\) 1.08260e13 4.80434
\(557\) −3.36103e12 −1.47953 −0.739766 0.672864i \(-0.765064\pi\)
−0.739766 + 0.672864i \(0.765064\pi\)
\(558\) 7.47124e12 3.26241
\(559\) 3.37786e11 0.146315
\(560\) 3.89185e12 1.67228
\(561\) 1.87494e12 0.799199
\(562\) 7.21302e12 3.05003
\(563\) −9.42206e11 −0.395237 −0.197619 0.980279i \(-0.563321\pi\)
−0.197619 + 0.980279i \(0.563321\pi\)
\(564\) −4.63369e12 −1.92828
\(565\) −3.69417e12 −1.52510
\(566\) 4.66334e12 1.90996
\(567\) −1.09652e12 −0.445546
\(568\) −1.37474e12 −0.554184
\(569\) −4.68472e12 −1.87360 −0.936802 0.349859i \(-0.886230\pi\)
−0.936802 + 0.349859i \(0.886230\pi\)
\(570\) −6.57172e12 −2.60761
\(571\) 3.39870e12 1.33798 0.668992 0.743270i \(-0.266726\pi\)
0.668992 + 0.743270i \(0.266726\pi\)
\(572\) 6.62535e12 2.58778
\(573\) −5.68770e12 −2.20415
\(574\) 1.21678e12 0.467853
\(575\) −3.48450e11 −0.132934
\(576\) 7.72527e12 2.92424
\(577\) −8.02032e11 −0.301232 −0.150616 0.988592i \(-0.548126\pi\)
−0.150616 + 0.988592i \(0.548126\pi\)
\(578\) 2.68339e12 1.00002
\(579\) 3.83519e12 1.41818
\(580\) 2.08090e12 0.763527
\(581\) −6.40435e11 −0.233175
\(582\) 1.04389e13 3.77138
\(583\) −1.23936e12 −0.444313
\(584\) 5.53443e12 1.96886
\(585\) −3.81593e12 −1.34710
\(586\) −8.22713e12 −2.88210
\(587\) −6.46378e11 −0.224706 −0.112353 0.993668i \(-0.535839\pi\)
−0.112353 + 0.993668i \(0.535839\pi\)
\(588\) −6.65030e12 −2.29426
\(589\) −4.41885e12 −1.51283
\(590\) −1.53991e12 −0.523191
\(591\) −3.16491e11 −0.106713
\(592\) −1.69552e13 −5.67356
\(593\) 2.83699e12 0.942133 0.471066 0.882098i \(-0.343869\pi\)
0.471066 + 0.882098i \(0.343869\pi\)
\(594\) 1.62709e12 0.536256
\(595\) −1.12931e12 −0.369391
\(596\) 9.36319e11 0.303959
\(597\) −8.58657e11 −0.276653
\(598\) 3.47370e12 1.11080
\(599\) 3.03613e12 0.963607 0.481803 0.876279i \(-0.339982\pi\)
0.481803 + 0.876279i \(0.339982\pi\)
\(600\) 4.17484e12 1.31510
\(601\) 4.06753e12 1.27173 0.635866 0.771800i \(-0.280643\pi\)
0.635866 + 0.771800i \(0.280643\pi\)
\(602\) 4.43196e11 0.137534
\(603\) −3.81586e12 −1.17534
\(604\) 6.57764e12 2.01096
\(605\) −1.10060e12 −0.333989
\(606\) 7.71439e12 2.32367
\(607\) −3.69028e12 −1.10334 −0.551670 0.834062i \(-0.686009\pi\)
−0.551670 + 0.834062i \(0.686009\pi\)
\(608\) −1.06121e13 −3.14945
\(609\) 1.13873e12 0.335460
\(610\) 1.44175e12 0.421606
\(611\) 2.20620e12 0.640412
\(612\) −7.67336e12 −2.21108
\(613\) −3.91404e12 −1.11957 −0.559787 0.828636i \(-0.689117\pi\)
−0.559787 + 0.828636i \(0.689117\pi\)
\(614\) −5.15022e12 −1.46241
\(615\) −1.72863e12 −0.487264
\(616\) 5.33418e12 1.49264
\(617\) 3.12063e12 0.866881 0.433441 0.901182i \(-0.357299\pi\)
0.433441 + 0.901182i \(0.357299\pi\)
\(618\) 3.22794e11 0.0890179
\(619\) 5.11729e12 1.40098 0.700490 0.713662i \(-0.252965\pi\)
0.700490 + 0.713662i \(0.252965\pi\)
\(620\) −1.10998e13 −3.01684
\(621\) 6.15339e11 0.166036
\(622\) 5.66723e12 1.51815
\(623\) 3.37368e11 0.0897239
\(624\) −2.27167e13 −5.99812
\(625\) −2.37641e12 −0.622962
\(626\) 1.12933e13 2.93924
\(627\) −4.91639e12 −1.27041
\(628\) 9.67558e12 2.48233
\(629\) 4.91993e12 1.25323
\(630\) −5.00673e12 −1.26626
\(631\) 5.52039e12 1.38624 0.693119 0.720823i \(-0.256236\pi\)
0.693119 + 0.720823i \(0.256236\pi\)
\(632\) −1.58084e13 −3.94149
\(633\) 9.64820e12 2.38852
\(634\) 8.74706e12 2.15011
\(635\) −6.32742e12 −1.54435
\(636\) 9.15154e12 2.21787
\(637\) 3.16636e12 0.761960
\(638\) 2.15823e12 0.515709
\(639\) 9.65329e11 0.229045
\(640\) −5.61228e12 −1.32230
\(641\) 1.08626e12 0.254139 0.127070 0.991894i \(-0.459443\pi\)
0.127070 + 0.991894i \(0.459443\pi\)
\(642\) −2.11061e13 −4.90344
\(643\) −1.05176e12 −0.242642 −0.121321 0.992613i \(-0.538713\pi\)
−0.121321 + 0.992613i \(0.538713\pi\)
\(644\) 3.28750e12 0.753146
\(645\) −6.29629e11 −0.143241
\(646\) 6.29190e12 1.42146
\(647\) 1.60350e12 0.359749 0.179874 0.983690i \(-0.442431\pi\)
0.179874 + 0.983690i \(0.442431\pi\)
\(648\) 9.41666e12 2.09802
\(649\) −1.15202e12 −0.254895
\(650\) −3.23931e12 −0.711774
\(651\) −6.07412e12 −1.32547
\(652\) −6.69361e12 −1.45060
\(653\) 7.22552e11 0.155510 0.0777552 0.996972i \(-0.475225\pi\)
0.0777552 + 0.996972i \(0.475225\pi\)
\(654\) −1.03542e13 −2.21318
\(655\) 2.29958e12 0.488161
\(656\) −5.70360e12 −1.20249
\(657\) −3.88621e12 −0.813733
\(658\) 2.89467e12 0.601980
\(659\) 8.32885e12 1.72029 0.860143 0.510052i \(-0.170374\pi\)
0.860143 + 0.510052i \(0.170374\pi\)
\(660\) −1.23496e13 −2.53340
\(661\) −5.03785e12 −1.02645 −0.513226 0.858254i \(-0.671550\pi\)
−0.513226 + 0.858254i \(0.671550\pi\)
\(662\) −3.63035e12 −0.734661
\(663\) 6.59178e12 1.32493
\(664\) 5.49991e12 1.09799
\(665\) 2.96122e12 0.587183
\(666\) 2.18123e13 4.29603
\(667\) 8.16208e11 0.159674
\(668\) 4.41320e11 0.0857550
\(669\) −2.12921e12 −0.410962
\(670\) 7.85950e12 1.50681
\(671\) 1.07859e12 0.205403
\(672\) −1.45873e13 −2.75939
\(673\) −6.57915e12 −1.23624 −0.618119 0.786084i \(-0.712105\pi\)
−0.618119 + 0.786084i \(0.712105\pi\)
\(674\) 9.81636e12 1.83223
\(675\) −5.73819e11 −0.106392
\(676\) 9.24037e12 1.70188
\(677\) −6.11203e11 −0.111824 −0.0559122 0.998436i \(-0.517807\pi\)
−0.0559122 + 0.998436i \(0.517807\pi\)
\(678\) 2.82918e13 5.14194
\(679\) −4.70377e12 −0.849243
\(680\) 9.69824e12 1.73941
\(681\) 9.06584e12 1.61527
\(682\) −1.15123e13 −2.03766
\(683\) −2.03258e12 −0.357400 −0.178700 0.983904i \(-0.557189\pi\)
−0.178700 + 0.983904i \(0.557189\pi\)
\(684\) 2.01207e13 3.51473
\(685\) 7.89593e12 1.37024
\(686\) 1.11741e13 1.92643
\(687\) 7.11571e12 1.21875
\(688\) −2.07745e12 −0.353495
\(689\) −4.35725e12 −0.736590
\(690\) −6.47493e12 −1.08746
\(691\) −3.00753e12 −0.501832 −0.250916 0.968009i \(-0.580732\pi\)
−0.250916 + 0.968009i \(0.580732\pi\)
\(692\) −1.57355e13 −2.60858
\(693\) −3.74560e12 −0.616910
\(694\) 1.84124e12 0.301295
\(695\) 9.60795e12 1.56207
\(696\) −9.77911e12 −1.57964
\(697\) 1.65503e12 0.265618
\(698\) 1.85414e13 2.95660
\(699\) −3.68406e12 −0.583686
\(700\) −3.06568e12 −0.482597
\(701\) −5.12180e12 −0.801109 −0.400555 0.916273i \(-0.631183\pi\)
−0.400555 + 0.916273i \(0.631183\pi\)
\(702\) 5.72040e12 0.889015
\(703\) −1.29008e13 −1.99214
\(704\) −1.19037e13 −1.82644
\(705\) −4.11233e12 −0.626956
\(706\) −5.85409e12 −0.886825
\(707\) −3.47611e12 −0.523246
\(708\) 8.50665e12 1.27236
\(709\) 1.08755e13 1.61637 0.808187 0.588925i \(-0.200449\pi\)
0.808187 + 0.588925i \(0.200449\pi\)
\(710\) −1.98828e12 −0.293640
\(711\) 1.11004e13 1.62902
\(712\) −2.89724e12 −0.422498
\(713\) −4.35377e12 −0.630903
\(714\) 8.64880e12 1.24542
\(715\) 5.87990e12 0.841381
\(716\) 1.30830e13 1.86037
\(717\) 6.52334e12 0.921794
\(718\) 2.16421e11 0.0303906
\(719\) −6.46425e11 −0.0902065 −0.0451033 0.998982i \(-0.514362\pi\)
−0.0451033 + 0.998982i \(0.514362\pi\)
\(720\) 2.34688e13 3.25457
\(721\) −1.45451e11 −0.0200451
\(722\) −2.66732e12 −0.365307
\(723\) −1.99599e13 −2.71667
\(724\) −2.42168e13 −3.27562
\(725\) −7.61134e11 −0.102315
\(726\) 8.42897e12 1.12606
\(727\) −8.79480e12 −1.16767 −0.583836 0.811872i \(-0.698449\pi\)
−0.583836 + 0.811872i \(0.698449\pi\)
\(728\) 1.87535e13 2.47452
\(729\) −1.07758e13 −1.41311
\(730\) 8.00439e12 1.04322
\(731\) 6.02820e11 0.0780835
\(732\) −7.96443e12 −1.02531
\(733\) 4.66135e10 0.00596409 0.00298205 0.999996i \(-0.499051\pi\)
0.00298205 + 0.999996i \(0.499051\pi\)
\(734\) −1.58298e13 −2.01300
\(735\) −5.90205e12 −0.745950
\(736\) −1.04558e13 −1.31343
\(737\) 5.87980e12 0.734106
\(738\) 7.33748e12 0.910528
\(739\) 7.19559e12 0.887496 0.443748 0.896152i \(-0.353649\pi\)
0.443748 + 0.896152i \(0.353649\pi\)
\(740\) −3.24059e13 −3.97265
\(741\) −1.72847e13 −2.10610
\(742\) −5.71697e12 −0.692386
\(743\) −1.09459e13 −1.31766 −0.658828 0.752294i \(-0.728947\pi\)
−0.658828 + 0.752294i \(0.728947\pi\)
\(744\) 5.21632e13 6.24146
\(745\) 8.30969e11 0.0988284
\(746\) −1.25978e13 −1.48926
\(747\) −3.86197e12 −0.453802
\(748\) 1.18237e13 1.38101
\(749\) 9.51044e12 1.10416
\(750\) 2.67263e13 3.08435
\(751\) −4.71876e12 −0.541312 −0.270656 0.962676i \(-0.587241\pi\)
−0.270656 + 0.962676i \(0.587241\pi\)
\(752\) −1.35686e13 −1.54723
\(753\) 1.47629e13 1.67338
\(754\) 7.58774e12 0.854951
\(755\) 5.83756e12 0.653838
\(756\) 5.41377e12 0.602770
\(757\) −6.64187e11 −0.0735121 −0.0367561 0.999324i \(-0.511702\pi\)
−0.0367561 + 0.999324i \(0.511702\pi\)
\(758\) 2.00967e13 2.21112
\(759\) −4.84398e12 −0.529803
\(760\) −2.54303e13 −2.76497
\(761\) 1.27341e12 0.137638 0.0688190 0.997629i \(-0.478077\pi\)
0.0688190 + 0.997629i \(0.478077\pi\)
\(762\) 4.84586e13 5.20683
\(763\) 4.66562e12 0.498367
\(764\) −3.58677e13 −3.80876
\(765\) −6.80999e12 −0.718902
\(766\) 2.10627e13 2.21046
\(767\) −4.05020e12 −0.422569
\(768\) 9.02025e12 0.935606
\(769\) 1.76518e13 1.82020 0.910102 0.414385i \(-0.136003\pi\)
0.910102 + 0.414385i \(0.136003\pi\)
\(770\) 7.71478e12 0.790889
\(771\) 1.11838e13 1.13984
\(772\) 2.41854e13 2.45062
\(773\) 3.37474e12 0.339964 0.169982 0.985447i \(-0.445629\pi\)
0.169982 + 0.985447i \(0.445629\pi\)
\(774\) 2.67257e12 0.267667
\(775\) 4.06000e12 0.404267
\(776\) 4.03949e13 3.99897
\(777\) −1.77334e13 −1.74541
\(778\) −1.23820e13 −1.21166
\(779\) −4.33974e12 −0.422226
\(780\) −4.34177e13 −4.19992
\(781\) −1.48746e12 −0.143059
\(782\) 6.19923e12 0.592799
\(783\) 1.34411e12 0.127793
\(784\) −1.94737e13 −1.84089
\(785\) 8.58693e12 0.807095
\(786\) −1.76113e13 −1.64585
\(787\) −1.26669e13 −1.17702 −0.588512 0.808489i \(-0.700286\pi\)
−0.588512 + 0.808489i \(0.700286\pi\)
\(788\) −1.99586e12 −0.184400
\(789\) 2.40798e13 2.21211
\(790\) −2.28635e13 −2.08843
\(791\) −1.27483e13 −1.15787
\(792\) 3.21664e13 2.90495
\(793\) 3.79204e12 0.340521
\(794\) −7.07149e12 −0.631421
\(795\) 8.12185e12 0.721113
\(796\) −5.41486e12 −0.478055
\(797\) 1.22477e13 1.07521 0.537604 0.843198i \(-0.319330\pi\)
0.537604 + 0.843198i \(0.319330\pi\)
\(798\) −2.26785e13 −1.97971
\(799\) 3.93723e12 0.341767
\(800\) 9.75028e12 0.841612
\(801\) 2.03441e12 0.174619
\(802\) 9.27396e12 0.791554
\(803\) 5.98819e12 0.508248
\(804\) −4.34169e13 −3.66443
\(805\) 2.91761e12 0.244876
\(806\) −4.04741e13 −3.37808
\(807\) 2.37393e13 1.97032
\(808\) 2.98520e13 2.46390
\(809\) −6.41241e12 −0.526324 −0.263162 0.964752i \(-0.584765\pi\)
−0.263162 + 0.964752i \(0.584765\pi\)
\(810\) 1.36192e13 1.11166
\(811\) 4.41622e12 0.358473 0.179237 0.983806i \(-0.442637\pi\)
0.179237 + 0.983806i \(0.442637\pi\)
\(812\) 7.18102e12 0.579674
\(813\) −2.36055e13 −1.89499
\(814\) −3.36102e13 −2.68325
\(815\) −5.94048e12 −0.471642
\(816\) −4.05408e13 −3.20101
\(817\) −1.58069e12 −0.124121
\(818\) −4.59689e12 −0.358983
\(819\) −1.31685e13 −1.02272
\(820\) −1.09011e13 −0.841990
\(821\) −2.08361e13 −1.60056 −0.800281 0.599625i \(-0.795317\pi\)
−0.800281 + 0.599625i \(0.795317\pi\)
\(822\) −6.04710e13 −4.61981
\(823\) 4.54651e12 0.345445 0.172723 0.984971i \(-0.444744\pi\)
0.172723 + 0.984971i \(0.444744\pi\)
\(824\) 1.24910e12 0.0943899
\(825\) 4.51713e12 0.339484
\(826\) −5.31411e12 −0.397210
\(827\) 7.31038e12 0.543457 0.271729 0.962374i \(-0.412405\pi\)
0.271729 + 0.962374i \(0.412405\pi\)
\(828\) 1.98244e13 1.46576
\(829\) −1.17691e13 −0.865463 −0.432731 0.901523i \(-0.642450\pi\)
−0.432731 + 0.901523i \(0.642450\pi\)
\(830\) 7.95447e12 0.581782
\(831\) 2.30124e13 1.67401
\(832\) −4.18503e13 −3.02791
\(833\) 5.65074e12 0.406634
\(834\) −7.35825e13 −5.26656
\(835\) 3.91665e11 0.0278821
\(836\) −3.10037e13 −2.19526
\(837\) −7.16968e12 −0.504935
\(838\) 3.60824e13 2.52754
\(839\) 8.08551e12 0.563350 0.281675 0.959510i \(-0.409110\pi\)
0.281675 + 0.959510i \(0.409110\pi\)
\(840\) −3.49563e13 −2.42253
\(841\) −1.27243e13 −0.877104
\(842\) −2.12444e13 −1.45660
\(843\) −3.53624e13 −2.41167
\(844\) 6.08434e13 4.12736
\(845\) 8.20069e12 0.553344
\(846\) 1.74555e13 1.17156
\(847\) −3.79810e12 −0.253566
\(848\) 2.67980e13 1.77959
\(849\) −2.28624e13 −1.51021
\(850\) −5.78094e12 −0.379851
\(851\) −1.27108e13 −0.830789
\(852\) 1.09835e13 0.714107
\(853\) −2.08016e13 −1.34532 −0.672660 0.739952i \(-0.734848\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(854\) 4.97538e12 0.320086
\(855\) 1.78569e13 1.14277
\(856\) −8.16735e13 −5.19935
\(857\) 1.87346e13 1.18640 0.593199 0.805056i \(-0.297865\pi\)
0.593199 + 0.805056i \(0.297865\pi\)
\(858\) −4.50312e13 −2.83675
\(859\) 1.33061e13 0.833837 0.416918 0.908944i \(-0.363110\pi\)
0.416918 + 0.908944i \(0.363110\pi\)
\(860\) −3.97056e12 −0.247519
\(861\) −5.96537e12 −0.369933
\(862\) 3.82367e13 2.35884
\(863\) −3.57603e12 −0.219459 −0.109729 0.993962i \(-0.534998\pi\)
−0.109729 + 0.993962i \(0.534998\pi\)
\(864\) −1.72183e13 −1.05118
\(865\) −1.39651e13 −0.848145
\(866\) 4.70743e13 2.84415
\(867\) −1.31556e13 −0.790722
\(868\) −3.83046e13 −2.29040
\(869\) −1.71045e13 −1.01747
\(870\) −1.41434e13 −0.836987
\(871\) 2.06717e13 1.21701
\(872\) −4.00673e13 −2.34674
\(873\) −2.83648e13 −1.65278
\(874\) −1.62554e13 −0.942313
\(875\) −1.20429e13 −0.694536
\(876\) −4.42173e13 −2.53702
\(877\) −1.59922e13 −0.912873 −0.456437 0.889756i \(-0.650875\pi\)
−0.456437 + 0.889756i \(0.650875\pi\)
\(878\) −4.29420e13 −2.43869
\(879\) 4.03342e13 2.27889
\(880\) −3.61626e13 −2.03277
\(881\) 6.06432e12 0.339149 0.169574 0.985517i \(-0.445761\pi\)
0.169574 + 0.985517i \(0.445761\pi\)
\(882\) 2.50523e13 1.39392
\(883\) 3.18246e13 1.76173 0.880866 0.473365i \(-0.156961\pi\)
0.880866 + 0.473365i \(0.156961\pi\)
\(884\) 4.15690e13 2.28947
\(885\) 7.54952e12 0.413690
\(886\) −4.93254e13 −2.68917
\(887\) 2.25577e13 1.22360 0.611799 0.791013i \(-0.290446\pi\)
0.611799 + 0.791013i \(0.290446\pi\)
\(888\) 1.52290e14 8.21891
\(889\) −2.18355e13 −1.17248
\(890\) −4.19026e12 −0.223865
\(891\) 1.01887e13 0.541590
\(892\) −1.34272e13 −0.710141
\(893\) −1.03240e13 −0.543273
\(894\) −6.36398e12 −0.333204
\(895\) 1.16110e13 0.604875
\(896\) −1.93676e13 −1.00390
\(897\) −1.70301e13 −0.878316
\(898\) −5.38271e13 −2.76221
\(899\) −9.51012e12 −0.485587
\(900\) −1.84867e13 −0.939224
\(901\) −7.77604e12 −0.393094
\(902\) −1.13062e13 −0.568705
\(903\) −2.17280e12 −0.108749
\(904\) 1.09480e14 5.45225
\(905\) −2.14920e13 −1.06502
\(906\) −4.47070e13 −2.20444
\(907\) 2.22307e13 1.09074 0.545368 0.838196i \(-0.316390\pi\)
0.545368 + 0.838196i \(0.316390\pi\)
\(908\) 5.71710e13 2.79119
\(909\) −2.09618e13 −1.01833
\(910\) 2.71230e13 1.31115
\(911\) 1.87529e12 0.0902060 0.0451030 0.998982i \(-0.485638\pi\)
0.0451030 + 0.998982i \(0.485638\pi\)
\(912\) 1.06304e14 5.08831
\(913\) 5.95085e12 0.283440
\(914\) 7.23679e13 3.42995
\(915\) −7.06831e12 −0.333366
\(916\) 4.48731e13 2.10599
\(917\) 7.93569e12 0.370615
\(918\) 1.02087e13 0.474439
\(919\) 4.85870e12 0.224699 0.112349 0.993669i \(-0.464162\pi\)
0.112349 + 0.993669i \(0.464162\pi\)
\(920\) −2.50557e13 −1.15309
\(921\) 2.52494e13 1.15633
\(922\) 4.98925e13 2.27377
\(923\) −5.22949e12 −0.237166
\(924\) −4.26175e13 −1.92337
\(925\) 1.18532e13 0.532349
\(926\) −2.34382e13 −1.04755
\(927\) −8.77106e11 −0.0390115
\(928\) −2.28390e13 −1.01091
\(929\) 3.37503e13 1.48664 0.743321 0.668935i \(-0.233250\pi\)
0.743321 + 0.668935i \(0.233250\pi\)
\(930\) 7.54432e13 3.30709
\(931\) −1.48171e13 −0.646384
\(932\) −2.32324e13 −1.00861
\(933\) −2.77841e13 −1.20041
\(934\) −3.35847e13 −1.44404
\(935\) 1.04934e13 0.449018
\(936\) 1.13088e14 4.81588
\(937\) 3.71320e12 0.157369 0.0786846 0.996900i \(-0.474928\pi\)
0.0786846 + 0.996900i \(0.474928\pi\)
\(938\) 2.71226e13 1.14398
\(939\) −5.53663e13 −2.32407
\(940\) −2.59332e13 −1.08338
\(941\) −1.83373e13 −0.762397 −0.381199 0.924493i \(-0.624489\pi\)
−0.381199 + 0.924493i \(0.624489\pi\)
\(942\) −6.57630e13 −2.72115
\(943\) −4.27582e12 −0.176083
\(944\) 2.49096e13 1.02092
\(945\) 4.80464e12 0.195983
\(946\) −4.11812e12 −0.167182
\(947\) −1.15407e13 −0.466290 −0.233145 0.972442i \(-0.574902\pi\)
−0.233145 + 0.972442i \(0.574902\pi\)
\(948\) 1.26301e14 5.07889
\(949\) 2.10528e13 0.842583
\(950\) 1.51585e13 0.603810
\(951\) −4.28832e13 −1.70010
\(952\) 3.34679e13 1.32057
\(953\) −4.79972e13 −1.88494 −0.942471 0.334287i \(-0.891505\pi\)
−0.942471 + 0.334287i \(0.891505\pi\)
\(954\) −3.44747e13 −1.34751
\(955\) −3.18321e13 −1.23837
\(956\) 4.11374e13 1.59286
\(957\) −1.05809e13 −0.407773
\(958\) −6.28988e13 −2.41267
\(959\) 2.72483e13 1.04029
\(960\) 7.80083e13 2.96429
\(961\) 2.42887e13 0.918648
\(962\) −1.18164e14 −4.44834
\(963\) 5.73502e13 2.14890
\(964\) −1.25871e14 −4.69439
\(965\) 2.14642e13 0.796786
\(966\) −2.23445e13 −0.825607
\(967\) 2.87883e13 1.05876 0.529379 0.848386i \(-0.322425\pi\)
0.529379 + 0.848386i \(0.322425\pi\)
\(968\) 3.26172e13 1.19401
\(969\) −3.08466e13 −1.12396
\(970\) 5.84228e13 2.11889
\(971\) 9.17107e12 0.331080 0.165540 0.986203i \(-0.447063\pi\)
0.165540 + 0.986203i \(0.447063\pi\)
\(972\) −1.01491e14 −3.64693
\(973\) 3.31563e13 1.18593
\(974\) 1.43649e13 0.511432
\(975\) 1.58810e13 0.562803
\(976\) −2.33218e13 −0.822694
\(977\) 1.82037e13 0.639196 0.319598 0.947553i \(-0.396452\pi\)
0.319598 + 0.947553i \(0.396452\pi\)
\(978\) 4.54952e13 1.59016
\(979\) −3.13479e12 −0.109065
\(980\) −3.72194e13 −1.28900
\(981\) 2.81348e13 0.969913
\(982\) 2.39247e13 0.821003
\(983\) 9.42089e12 0.321811 0.160906 0.986970i \(-0.448559\pi\)
0.160906 + 0.986970i \(0.448559\pi\)
\(984\) 5.12293e13 1.74197
\(985\) −1.77129e12 −0.0599553
\(986\) 1.35412e13 0.456260
\(987\) −1.41914e13 −0.475989
\(988\) −1.09000e14 −3.63933
\(989\) −1.55741e12 −0.0517629
\(990\) 4.65219e13 1.53922
\(991\) 2.10682e13 0.693898 0.346949 0.937884i \(-0.387218\pi\)
0.346949 + 0.937884i \(0.387218\pi\)
\(992\) 1.21827e14 3.99429
\(993\) 1.77981e13 0.580900
\(994\) −6.86141e12 −0.222933
\(995\) −4.80560e12 −0.155433
\(996\) −4.39416e13 −1.41484
\(997\) −9.00550e12 −0.288655 −0.144328 0.989530i \(-0.546102\pi\)
−0.144328 + 0.989530i \(0.546102\pi\)
\(998\) 2.75280e12 0.0878388
\(999\) −2.09319e13 −0.664911
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.a.1.5 71
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.a.1.5 71 1.1 even 1 trivial