Properties

Label 197.10.a.b.1.67
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $0$
Dimension $76$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(0\)
Dimension: \(76\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.67
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+37.7446 q^{2} -12.6356 q^{3} +912.651 q^{4} +2090.01 q^{5} -476.926 q^{6} +6297.82 q^{7} +15122.4 q^{8} -19523.3 q^{9} +78886.6 q^{10} -54815.7 q^{11} -11531.9 q^{12} +117280. q^{13} +237708. q^{14} -26408.7 q^{15} +103511. q^{16} +461690. q^{17} -736900. q^{18} +412792. q^{19} +1.90745e6 q^{20} -79577.0 q^{21} -2.06899e6 q^{22} +722499. q^{23} -191081. q^{24} +2.41503e6 q^{25} +4.42669e6 q^{26} +495397. q^{27} +5.74772e6 q^{28} -3.63767e6 q^{29} -996783. q^{30} +4.00992e6 q^{31} -3.83569e6 q^{32} +692631. q^{33} +1.74263e7 q^{34} +1.31625e7 q^{35} -1.78180e7 q^{36} +1.23268e7 q^{37} +1.55806e7 q^{38} -1.48191e6 q^{39} +3.16060e7 q^{40} -2.81025e7 q^{41} -3.00360e6 q^{42} +2.45488e7 q^{43} -5.00276e7 q^{44} -4.08041e7 q^{45} +2.72704e7 q^{46} +2.99944e7 q^{47} -1.30793e6 q^{48} -691047. q^{49} +9.11543e7 q^{50} -5.83375e6 q^{51} +1.07036e8 q^{52} +5.31424e7 q^{53} +1.86985e7 q^{54} -1.14565e8 q^{55} +9.52382e7 q^{56} -5.21589e6 q^{57} -1.37302e8 q^{58} -7.64651e7 q^{59} -2.41019e7 q^{60} +1.32844e8 q^{61} +1.51353e8 q^{62} -1.22955e8 q^{63} -1.97774e8 q^{64} +2.45117e8 q^{65} +2.61430e7 q^{66} -2.39094e8 q^{67} +4.21362e8 q^{68} -9.12923e6 q^{69} +4.96814e8 q^{70} -2.23327e8 q^{71} -2.95240e8 q^{72} -2.76322e8 q^{73} +4.65271e8 q^{74} -3.05155e7 q^{75} +3.76735e8 q^{76} -3.45219e8 q^{77} -5.59341e7 q^{78} -3.47595e8 q^{79} +2.16340e8 q^{80} +3.78018e8 q^{81} -1.06072e9 q^{82} -2.64163e7 q^{83} -7.26261e7 q^{84} +9.64938e8 q^{85} +9.26584e8 q^{86} +4.59643e7 q^{87} -8.28945e8 q^{88} +5.53802e8 q^{89} -1.54013e9 q^{90} +7.38611e8 q^{91} +6.59389e8 q^{92} -5.06679e7 q^{93} +1.13213e9 q^{94} +8.62741e8 q^{95} +4.84664e7 q^{96} +1.30594e9 q^{97} -2.60833e7 q^{98} +1.07018e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 48 q^{2} + 890 q^{3} + 20736 q^{4} + 5171 q^{5} + 2688 q^{6} + 38986 q^{7} + 36507 q^{8} + 518318 q^{9} + 121093 q^{10} + 120464 q^{11} + 415744 q^{12} + 480131 q^{13} + 330849 q^{14} + 544874 q^{15}+ \cdots + 8731109606 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 37.7446 1.66809 0.834045 0.551697i \(-0.186019\pi\)
0.834045 + 0.551697i \(0.186019\pi\)
\(3\) −12.6356 −0.0900641 −0.0450320 0.998986i \(-0.514339\pi\)
−0.0450320 + 0.998986i \(0.514339\pi\)
\(4\) 912.651 1.78252
\(5\) 2090.01 1.49549 0.747746 0.663985i \(-0.231136\pi\)
0.747746 + 0.663985i \(0.231136\pi\)
\(6\) −476.926 −0.150235
\(7\) 6297.82 0.991401 0.495700 0.868494i \(-0.334911\pi\)
0.495700 + 0.868494i \(0.334911\pi\)
\(8\) 15122.4 1.30532
\(9\) −19523.3 −0.991888
\(10\) 78886.6 2.49461
\(11\) −54815.7 −1.12885 −0.564427 0.825483i \(-0.690903\pi\)
−0.564427 + 0.825483i \(0.690903\pi\)
\(12\) −11531.9 −0.160541
\(13\) 117280. 1.13889 0.569443 0.822031i \(-0.307159\pi\)
0.569443 + 0.822031i \(0.307159\pi\)
\(14\) 237708. 1.65374
\(15\) −26408.7 −0.134690
\(16\) 103511. 0.394864
\(17\) 461690. 1.34070 0.670348 0.742047i \(-0.266145\pi\)
0.670348 + 0.742047i \(0.266145\pi\)
\(18\) −736900. −1.65456
\(19\) 412792. 0.726675 0.363337 0.931658i \(-0.381637\pi\)
0.363337 + 0.931658i \(0.381637\pi\)
\(20\) 1.90745e6 2.66575
\(21\) −79577.0 −0.0892896
\(22\) −2.06899e6 −1.88303
\(23\) 722499. 0.538346 0.269173 0.963092i \(-0.413250\pi\)
0.269173 + 0.963092i \(0.413250\pi\)
\(24\) −191081. −0.117562
\(25\) 2.41503e6 1.23650
\(26\) 4.42669e6 1.89976
\(27\) 495397. 0.179398
\(28\) 5.74772e6 1.76719
\(29\) −3.63767e6 −0.955064 −0.477532 0.878614i \(-0.658468\pi\)
−0.477532 + 0.878614i \(0.658468\pi\)
\(30\) −996783. −0.224675
\(31\) 4.00992e6 0.779845 0.389923 0.920848i \(-0.372502\pi\)
0.389923 + 0.920848i \(0.372502\pi\)
\(32\) −3.83569e6 −0.646649
\(33\) 692631. 0.101669
\(34\) 1.74263e7 2.23640
\(35\) 1.31625e7 1.48263
\(36\) −1.78180e7 −1.76806
\(37\) 1.23268e7 1.08129 0.540647 0.841250i \(-0.318180\pi\)
0.540647 + 0.841250i \(0.318180\pi\)
\(38\) 1.55806e7 1.21216
\(39\) −1.48191e6 −0.102573
\(40\) 3.16060e7 1.95209
\(41\) −2.81025e7 −1.55316 −0.776582 0.630016i \(-0.783048\pi\)
−0.776582 + 0.630016i \(0.783048\pi\)
\(42\) −3.00360e6 −0.148943
\(43\) 2.45488e7 1.09502 0.547510 0.836799i \(-0.315576\pi\)
0.547510 + 0.836799i \(0.315576\pi\)
\(44\) −5.00276e7 −2.01221
\(45\) −4.08041e7 −1.48336
\(46\) 2.72704e7 0.898010
\(47\) 2.99944e7 0.896603 0.448301 0.893883i \(-0.352029\pi\)
0.448301 + 0.893883i \(0.352029\pi\)
\(48\) −1.30793e6 −0.0355630
\(49\) −691047. −0.0171248
\(50\) 9.11543e7 2.06259
\(51\) −5.83375e6 −0.120748
\(52\) 1.07036e8 2.03009
\(53\) 5.31424e7 0.925124 0.462562 0.886587i \(-0.346930\pi\)
0.462562 + 0.886587i \(0.346930\pi\)
\(54\) 1.86985e7 0.299251
\(55\) −1.14565e8 −1.68819
\(56\) 9.52382e7 1.29409
\(57\) −5.21589e6 −0.0654473
\(58\) −1.37302e8 −1.59313
\(59\) −7.64651e7 −0.821541 −0.410770 0.911739i \(-0.634740\pi\)
−0.410770 + 0.911739i \(0.634740\pi\)
\(60\) −2.41019e7 −0.240088
\(61\) 1.32844e8 1.22845 0.614225 0.789131i \(-0.289469\pi\)
0.614225 + 0.789131i \(0.289469\pi\)
\(62\) 1.51353e8 1.30085
\(63\) −1.22955e8 −0.983359
\(64\) −1.97774e8 −1.47353
\(65\) 2.45117e8 1.70319
\(66\) 2.61430e7 0.169593
\(67\) −2.39094e8 −1.44955 −0.724774 0.688987i \(-0.758056\pi\)
−0.724774 + 0.688987i \(0.758056\pi\)
\(68\) 4.21362e8 2.38982
\(69\) −9.12923e6 −0.0484857
\(70\) 4.96814e8 2.47316
\(71\) −2.23327e8 −1.04299 −0.521493 0.853256i \(-0.674625\pi\)
−0.521493 + 0.853256i \(0.674625\pi\)
\(72\) −2.95240e8 −1.29473
\(73\) −2.76322e8 −1.13884 −0.569420 0.822047i \(-0.692832\pi\)
−0.569420 + 0.822047i \(0.692832\pi\)
\(74\) 4.65271e8 1.80369
\(75\) −3.05155e7 −0.111364
\(76\) 3.76735e8 1.29531
\(77\) −3.45219e8 −1.11915
\(78\) −5.59341e7 −0.171100
\(79\) −3.47595e8 −1.00404 −0.502021 0.864855i \(-0.667410\pi\)
−0.502021 + 0.864855i \(0.667410\pi\)
\(80\) 2.16340e8 0.590515
\(81\) 3.78018e8 0.975731
\(82\) −1.06072e9 −2.59082
\(83\) −2.64163e7 −0.0610970 −0.0305485 0.999533i \(-0.509725\pi\)
−0.0305485 + 0.999533i \(0.509725\pi\)
\(84\) −7.26261e7 −0.159161
\(85\) 9.64938e8 2.00500
\(86\) 9.26584e8 1.82659
\(87\) 4.59643e7 0.0860169
\(88\) −8.28945e8 −1.47351
\(89\) 5.53802e8 0.935620 0.467810 0.883829i \(-0.345043\pi\)
0.467810 + 0.883829i \(0.345043\pi\)
\(90\) −1.54013e9 −2.47438
\(91\) 7.38611e8 1.12909
\(92\) 6.59389e8 0.959614
\(93\) −5.06679e7 −0.0702360
\(94\) 1.13213e9 1.49561
\(95\) 8.62741e8 1.08674
\(96\) 4.84664e7 0.0582399
\(97\) 1.30594e9 1.49779 0.748893 0.662691i \(-0.230586\pi\)
0.748893 + 0.662691i \(0.230586\pi\)
\(98\) −2.60833e7 −0.0285657
\(99\) 1.07018e9 1.11970
\(100\) 2.20408e9 2.20408
\(101\) −1.40262e9 −1.34120 −0.670601 0.741818i \(-0.733964\pi\)
−0.670601 + 0.741818i \(0.733964\pi\)
\(102\) −2.20192e8 −0.201419
\(103\) 1.46620e9 1.28359 0.641796 0.766875i \(-0.278190\pi\)
0.641796 + 0.766875i \(0.278190\pi\)
\(104\) 1.77356e9 1.48661
\(105\) −1.66317e8 −0.133532
\(106\) 2.00584e9 1.54319
\(107\) 1.32200e9 0.975003 0.487501 0.873122i \(-0.337908\pi\)
0.487501 + 0.873122i \(0.337908\pi\)
\(108\) 4.52125e8 0.319780
\(109\) 2.11858e8 0.143756 0.0718780 0.997413i \(-0.477101\pi\)
0.0718780 + 0.997413i \(0.477101\pi\)
\(110\) −4.32422e9 −2.81605
\(111\) −1.55757e8 −0.0973857
\(112\) 6.51895e8 0.391468
\(113\) −4.22674e8 −0.243867 −0.121933 0.992538i \(-0.538909\pi\)
−0.121933 + 0.992538i \(0.538909\pi\)
\(114\) −1.96871e8 −0.109172
\(115\) 1.51003e9 0.805093
\(116\) −3.31992e9 −1.70242
\(117\) −2.28970e9 −1.12965
\(118\) −2.88614e9 −1.37040
\(119\) 2.90764e9 1.32917
\(120\) −3.99363e8 −0.175813
\(121\) 6.46810e8 0.274310
\(122\) 5.01414e9 2.04917
\(123\) 3.55093e8 0.139884
\(124\) 3.65966e9 1.39009
\(125\) 9.65393e8 0.353679
\(126\) −4.64086e9 −1.64033
\(127\) 3.84861e9 1.31277 0.656383 0.754428i \(-0.272085\pi\)
0.656383 + 0.754428i \(0.272085\pi\)
\(128\) −5.50103e9 −1.81133
\(129\) −3.10190e8 −0.0986220
\(130\) 9.25185e9 2.84108
\(131\) 3.22370e9 0.956388 0.478194 0.878254i \(-0.341292\pi\)
0.478194 + 0.878254i \(0.341292\pi\)
\(132\) 6.32131e8 0.181227
\(133\) 2.59969e9 0.720426
\(134\) −9.02451e9 −2.41798
\(135\) 1.03539e9 0.268288
\(136\) 6.98186e9 1.75003
\(137\) 2.44880e8 0.0593895 0.0296948 0.999559i \(-0.490546\pi\)
0.0296948 + 0.999559i \(0.490546\pi\)
\(138\) −3.44579e8 −0.0808784
\(139\) −6.14746e9 −1.39678 −0.698392 0.715716i \(-0.746101\pi\)
−0.698392 + 0.715716i \(0.746101\pi\)
\(140\) 1.20128e10 2.64282
\(141\) −3.78998e8 −0.0807517
\(142\) −8.42937e9 −1.73979
\(143\) −6.42880e9 −1.28563
\(144\) −2.02088e9 −0.391661
\(145\) −7.60278e9 −1.42829
\(146\) −1.04296e10 −1.89969
\(147\) 8.73182e6 0.00154233
\(148\) 1.12501e10 1.92743
\(149\) −9.03290e9 −1.50138 −0.750688 0.660657i \(-0.770278\pi\)
−0.750688 + 0.660657i \(0.770278\pi\)
\(150\) −1.15179e9 −0.185765
\(151\) −1.16113e9 −0.181754 −0.0908768 0.995862i \(-0.528967\pi\)
−0.0908768 + 0.995862i \(0.528967\pi\)
\(152\) 6.24241e9 0.948541
\(153\) −9.01373e9 −1.32982
\(154\) −1.30301e10 −1.86684
\(155\) 8.38079e9 1.16625
\(156\) −1.35247e9 −0.182838
\(157\) 6.75243e9 0.886976 0.443488 0.896280i \(-0.353741\pi\)
0.443488 + 0.896280i \(0.353741\pi\)
\(158\) −1.31198e10 −1.67483
\(159\) −6.71489e8 −0.0833205
\(160\) −8.01665e9 −0.967059
\(161\) 4.55017e9 0.533717
\(162\) 1.42681e10 1.62761
\(163\) 1.17625e10 1.30513 0.652566 0.757732i \(-0.273693\pi\)
0.652566 + 0.757732i \(0.273693\pi\)
\(164\) −2.56478e10 −2.76855
\(165\) 1.44761e9 0.152045
\(166\) −9.97070e8 −0.101915
\(167\) −1.75316e10 −1.74421 −0.872104 0.489320i \(-0.837245\pi\)
−0.872104 + 0.489320i \(0.837245\pi\)
\(168\) −1.20340e9 −0.116551
\(169\) 3.15017e9 0.297060
\(170\) 3.64212e10 3.34452
\(171\) −8.05908e9 −0.720780
\(172\) 2.24045e10 1.95190
\(173\) −2.27827e10 −1.93373 −0.966867 0.255280i \(-0.917832\pi\)
−0.966867 + 0.255280i \(0.917832\pi\)
\(174\) 1.73490e9 0.143484
\(175\) 1.52094e10 1.22586
\(176\) −5.67403e9 −0.445743
\(177\) 9.66185e8 0.0739913
\(178\) 2.09030e10 1.56070
\(179\) −1.10734e10 −0.806200 −0.403100 0.915156i \(-0.632067\pi\)
−0.403100 + 0.915156i \(0.632067\pi\)
\(180\) −3.72399e10 −2.64412
\(181\) −1.25275e10 −0.867583 −0.433792 0.901013i \(-0.642825\pi\)
−0.433792 + 0.901013i \(0.642825\pi\)
\(182\) 2.78785e10 1.88343
\(183\) −1.67857e9 −0.110639
\(184\) 1.09259e10 0.702713
\(185\) 2.57632e10 1.61707
\(186\) −1.91244e9 −0.117160
\(187\) −2.53078e10 −1.51345
\(188\) 2.73744e10 1.59821
\(189\) 3.11992e9 0.177855
\(190\) 3.25638e10 1.81277
\(191\) −2.08512e10 −1.13365 −0.566827 0.823837i \(-0.691829\pi\)
−0.566827 + 0.823837i \(0.691829\pi\)
\(192\) 2.49900e9 0.132712
\(193\) 1.53909e9 0.0798464 0.0399232 0.999203i \(-0.487289\pi\)
0.0399232 + 0.999203i \(0.487289\pi\)
\(194\) 4.92920e10 2.49844
\(195\) −3.09722e9 −0.153397
\(196\) −6.30685e8 −0.0305253
\(197\) 1.50614e9 0.0712470
\(198\) 4.03937e10 1.86775
\(199\) 2.67718e10 1.21015 0.605074 0.796169i \(-0.293143\pi\)
0.605074 + 0.796169i \(0.293143\pi\)
\(200\) 3.65211e10 1.61402
\(201\) 3.02111e9 0.130552
\(202\) −5.29413e10 −2.23724
\(203\) −2.29094e10 −0.946851
\(204\) −5.32418e9 −0.215237
\(205\) −5.87346e10 −2.32274
\(206\) 5.53412e10 2.14115
\(207\) −1.41056e10 −0.533980
\(208\) 1.21398e10 0.449704
\(209\) −2.26275e10 −0.820309
\(210\) −6.27756e9 −0.222743
\(211\) 8.59049e9 0.298364 0.149182 0.988810i \(-0.452336\pi\)
0.149182 + 0.988810i \(0.452336\pi\)
\(212\) 4.85005e10 1.64905
\(213\) 2.82188e9 0.0939355
\(214\) 4.98985e10 1.62639
\(215\) 5.13074e10 1.63760
\(216\) 7.49160e9 0.234171
\(217\) 2.52538e10 0.773139
\(218\) 7.99649e9 0.239798
\(219\) 3.49150e9 0.102568
\(220\) −1.04558e11 −3.00924
\(221\) 5.41471e10 1.52690
\(222\) −5.87899e9 −0.162448
\(223\) 5.26722e10 1.42630 0.713148 0.701013i \(-0.247269\pi\)
0.713148 + 0.701013i \(0.247269\pi\)
\(224\) −2.41565e10 −0.641089
\(225\) −4.71495e10 −1.22647
\(226\) −1.59537e10 −0.406792
\(227\) −6.70043e10 −1.67489 −0.837445 0.546521i \(-0.815952\pi\)
−0.837445 + 0.546521i \(0.815952\pi\)
\(228\) −4.76029e9 −0.116661
\(229\) −6.07620e10 −1.46007 −0.730033 0.683412i \(-0.760495\pi\)
−0.730033 + 0.683412i \(0.760495\pi\)
\(230\) 5.69955e10 1.34297
\(231\) 4.36207e9 0.100795
\(232\) −5.50103e10 −1.24666
\(233\) −2.16175e10 −0.480512 −0.240256 0.970710i \(-0.577231\pi\)
−0.240256 + 0.970710i \(0.577231\pi\)
\(234\) −8.64238e10 −1.88435
\(235\) 6.26887e10 1.34086
\(236\) −6.97860e10 −1.46441
\(237\) 4.39209e9 0.0904281
\(238\) 1.09748e11 2.21717
\(239\) −2.06119e10 −0.408628 −0.204314 0.978905i \(-0.565496\pi\)
−0.204314 + 0.978905i \(0.565496\pi\)
\(240\) −2.73359e9 −0.0531842
\(241\) −7.32722e10 −1.39914 −0.699572 0.714562i \(-0.746626\pi\)
−0.699572 + 0.714562i \(0.746626\pi\)
\(242\) 2.44135e10 0.457574
\(243\) −1.45274e10 −0.267276
\(244\) 1.21240e11 2.18974
\(245\) −1.44430e9 −0.0256100
\(246\) 1.34028e10 0.233339
\(247\) 4.84124e10 0.827599
\(248\) 6.06397e10 1.01795
\(249\) 3.33786e8 0.00550264
\(250\) 3.64383e10 0.589968
\(251\) 4.69506e10 0.746637 0.373318 0.927703i \(-0.378220\pi\)
0.373318 + 0.927703i \(0.378220\pi\)
\(252\) −1.12215e11 −1.75286
\(253\) −3.96042e10 −0.607714
\(254\) 1.45264e11 2.18981
\(255\) −1.21926e10 −0.180578
\(256\) −1.06373e11 −1.54794
\(257\) 1.51148e10 0.216125 0.108062 0.994144i \(-0.465535\pi\)
0.108062 + 0.994144i \(0.465535\pi\)
\(258\) −1.17080e10 −0.164510
\(259\) 7.76322e10 1.07199
\(260\) 2.23707e11 3.03598
\(261\) 7.10195e10 0.947317
\(262\) 1.21677e11 1.59534
\(263\) 2.98007e10 0.384083 0.192042 0.981387i \(-0.438489\pi\)
0.192042 + 0.981387i \(0.438489\pi\)
\(264\) 1.04742e10 0.132710
\(265\) 1.11068e11 1.38352
\(266\) 9.81241e10 1.20173
\(267\) −6.99764e9 −0.0842657
\(268\) −2.18210e11 −2.58385
\(269\) 3.91298e10 0.455640 0.227820 0.973703i \(-0.426840\pi\)
0.227820 + 0.973703i \(0.426840\pi\)
\(270\) 3.90802e10 0.447528
\(271\) −1.63268e11 −1.83883 −0.919413 0.393294i \(-0.871335\pi\)
−0.919413 + 0.393294i \(0.871335\pi\)
\(272\) 4.77900e10 0.529392
\(273\) −9.33281e9 −0.101691
\(274\) 9.24287e9 0.0990670
\(275\) −1.32382e11 −1.39582
\(276\) −8.33180e9 −0.0864268
\(277\) 5.84781e10 0.596808 0.298404 0.954440i \(-0.403546\pi\)
0.298404 + 0.954440i \(0.403546\pi\)
\(278\) −2.32033e11 −2.32996
\(279\) −7.82871e10 −0.773519
\(280\) 1.99049e11 1.93530
\(281\) −1.96178e11 −1.87703 −0.938516 0.345236i \(-0.887799\pi\)
−0.938516 + 0.345236i \(0.887799\pi\)
\(282\) −1.43051e10 −0.134701
\(283\) 4.54091e10 0.420827 0.210413 0.977612i \(-0.432519\pi\)
0.210413 + 0.977612i \(0.432519\pi\)
\(284\) −2.03819e11 −1.85914
\(285\) −1.09013e10 −0.0978759
\(286\) −2.42652e11 −2.14455
\(287\) −1.76984e11 −1.53981
\(288\) 7.48855e10 0.641404
\(289\) 9.45696e10 0.797465
\(290\) −2.86964e11 −2.38252
\(291\) −1.65014e10 −0.134897
\(292\) −2.52186e11 −2.03001
\(293\) −1.88944e11 −1.49771 −0.748856 0.662733i \(-0.769397\pi\)
−0.748856 + 0.662733i \(0.769397\pi\)
\(294\) 3.29579e8 0.00257274
\(295\) −1.59813e11 −1.22861
\(296\) 1.86411e11 1.41143
\(297\) −2.71555e10 −0.202514
\(298\) −3.40943e11 −2.50443
\(299\) 8.47349e10 0.613115
\(300\) −2.78500e10 −0.198509
\(301\) 1.54604e11 1.08560
\(302\) −4.38262e10 −0.303181
\(303\) 1.77230e10 0.120794
\(304\) 4.27286e10 0.286937
\(305\) 2.77646e11 1.83714
\(306\) −3.40219e11 −2.21826
\(307\) −8.54216e10 −0.548839 −0.274420 0.961610i \(-0.588486\pi\)
−0.274420 + 0.961610i \(0.588486\pi\)
\(308\) −3.15065e11 −1.99490
\(309\) −1.85264e10 −0.115606
\(310\) 3.16329e11 1.94541
\(311\) −1.01593e11 −0.615805 −0.307903 0.951418i \(-0.599627\pi\)
−0.307903 + 0.951418i \(0.599627\pi\)
\(312\) −2.24101e10 −0.133890
\(313\) −1.14373e11 −0.673554 −0.336777 0.941584i \(-0.609337\pi\)
−0.336777 + 0.941584i \(0.609337\pi\)
\(314\) 2.54868e11 1.47956
\(315\) −2.56977e11 −1.47061
\(316\) −3.17233e11 −1.78973
\(317\) 1.76694e10 0.0982779 0.0491389 0.998792i \(-0.484352\pi\)
0.0491389 + 0.998792i \(0.484352\pi\)
\(318\) −2.53450e10 −0.138986
\(319\) 1.99401e11 1.07813
\(320\) −4.13351e11 −2.20366
\(321\) −1.67044e10 −0.0878127
\(322\) 1.71744e11 0.890287
\(323\) 1.90582e11 0.974249
\(324\) 3.44999e11 1.73926
\(325\) 2.83236e11 1.40823
\(326\) 4.43969e11 2.17708
\(327\) −2.67696e9 −0.0129472
\(328\) −4.24977e11 −2.02737
\(329\) 1.88899e11 0.888892
\(330\) 5.46393e10 0.253625
\(331\) 1.98398e11 0.908474 0.454237 0.890881i \(-0.349912\pi\)
0.454237 + 0.890881i \(0.349912\pi\)
\(332\) −2.41088e10 −0.108907
\(333\) −2.40661e11 −1.07252
\(334\) −6.61724e11 −2.90950
\(335\) −4.99710e11 −2.16779
\(336\) −8.23710e9 −0.0352572
\(337\) 2.37269e11 1.00209 0.501044 0.865422i \(-0.332950\pi\)
0.501044 + 0.865422i \(0.332950\pi\)
\(338\) 1.18902e11 0.495523
\(339\) 5.34076e9 0.0219636
\(340\) 8.80652e11 3.57396
\(341\) −2.19807e11 −0.880331
\(342\) −3.04186e11 −1.20233
\(343\) −2.58492e11 −1.00838
\(344\) 3.71237e11 1.42935
\(345\) −1.90802e10 −0.0725099
\(346\) −8.59921e11 −3.22564
\(347\) 1.21002e11 0.448033 0.224017 0.974585i \(-0.428083\pi\)
0.224017 + 0.974585i \(0.428083\pi\)
\(348\) 4.19494e10 0.153327
\(349\) −2.76202e11 −0.996582 −0.498291 0.867010i \(-0.666039\pi\)
−0.498291 + 0.867010i \(0.666039\pi\)
\(350\) 5.74074e11 2.04485
\(351\) 5.81003e10 0.204313
\(352\) 2.10256e11 0.729973
\(353\) −1.20335e11 −0.412483 −0.206241 0.978501i \(-0.566123\pi\)
−0.206241 + 0.978501i \(0.566123\pi\)
\(354\) 3.64682e10 0.123424
\(355\) −4.66756e11 −1.55978
\(356\) 5.05428e11 1.66776
\(357\) −3.67399e10 −0.119710
\(358\) −4.17961e11 −1.34481
\(359\) −4.13453e10 −0.131371 −0.0656857 0.997840i \(-0.520923\pi\)
−0.0656857 + 0.997840i \(0.520923\pi\)
\(360\) −6.17056e11 −1.93626
\(361\) −1.52291e11 −0.471944
\(362\) −4.72845e11 −1.44721
\(363\) −8.17285e9 −0.0247055
\(364\) 6.74094e11 2.01263
\(365\) −5.77517e11 −1.70312
\(366\) −6.33568e10 −0.184556
\(367\) 3.01595e11 0.867814 0.433907 0.900958i \(-0.357135\pi\)
0.433907 + 0.900958i \(0.357135\pi\)
\(368\) 7.47866e10 0.212573
\(369\) 5.48654e11 1.54057
\(370\) 9.72422e11 2.69741
\(371\) 3.34682e11 0.917169
\(372\) −4.62422e10 −0.125197
\(373\) −5.18919e10 −0.138806 −0.0694032 0.997589i \(-0.522110\pi\)
−0.0694032 + 0.997589i \(0.522110\pi\)
\(374\) −9.55233e11 −2.52457
\(375\) −1.21984e10 −0.0318537
\(376\) 4.53588e11 1.17035
\(377\) −4.26627e11 −1.08771
\(378\) 1.17760e11 0.296678
\(379\) 2.36437e11 0.588624 0.294312 0.955709i \(-0.404909\pi\)
0.294312 + 0.955709i \(0.404909\pi\)
\(380\) 7.87382e11 1.93713
\(381\) −4.86297e10 −0.118233
\(382\) −7.87019e11 −1.89104
\(383\) −1.09688e11 −0.260474 −0.130237 0.991483i \(-0.541574\pi\)
−0.130237 + 0.991483i \(0.541574\pi\)
\(384\) 6.95090e10 0.163136
\(385\) −7.21513e11 −1.67367
\(386\) 5.80921e10 0.133191
\(387\) −4.79275e11 −1.08614
\(388\) 1.19187e12 2.66984
\(389\) 3.78253e11 0.837547 0.418774 0.908091i \(-0.362460\pi\)
0.418774 + 0.908091i \(0.362460\pi\)
\(390\) −1.16903e11 −0.255879
\(391\) 3.33570e11 0.721759
\(392\) −1.04503e10 −0.0223533
\(393\) −4.07335e10 −0.0861361
\(394\) 5.68485e10 0.118846
\(395\) −7.26479e11 −1.50154
\(396\) 9.76706e11 1.99588
\(397\) 2.27028e11 0.458693 0.229347 0.973345i \(-0.426341\pi\)
0.229347 + 0.973345i \(0.426341\pi\)
\(398\) 1.01049e12 2.01864
\(399\) −3.28487e10 −0.0648845
\(400\) 2.49983e11 0.488248
\(401\) 6.76102e10 0.130576 0.0652878 0.997866i \(-0.479203\pi\)
0.0652878 + 0.997866i \(0.479203\pi\)
\(402\) 1.14030e11 0.217773
\(403\) 4.70285e11 0.888154
\(404\) −1.28010e12 −2.39072
\(405\) 7.90063e11 1.45920
\(406\) −8.64705e11 −1.57943
\(407\) −6.75703e11 −1.22062
\(408\) −8.82203e10 −0.157615
\(409\) −6.26708e11 −1.10742 −0.553708 0.832711i \(-0.686788\pi\)
−0.553708 + 0.832711i \(0.686788\pi\)
\(410\) −2.21691e12 −3.87455
\(411\) −3.09421e9 −0.00534886
\(412\) 1.33813e12 2.28803
\(413\) −4.81564e11 −0.814476
\(414\) −5.32409e11 −0.890726
\(415\) −5.52104e10 −0.0913701
\(416\) −4.49851e11 −0.736460
\(417\) 7.76771e10 0.125800
\(418\) −8.54064e11 −1.36835
\(419\) 3.01445e11 0.477798 0.238899 0.971044i \(-0.423213\pi\)
0.238899 + 0.971044i \(0.423213\pi\)
\(420\) −1.51789e11 −0.238023
\(421\) 1.19046e12 1.84691 0.923456 0.383705i \(-0.125352\pi\)
0.923456 + 0.383705i \(0.125352\pi\)
\(422\) 3.24244e11 0.497698
\(423\) −5.85591e11 −0.889330
\(424\) 8.03642e11 1.20758
\(425\) 1.11500e12 1.65777
\(426\) 1.06510e11 0.156693
\(427\) 8.36628e11 1.21789
\(428\) 1.20653e12 1.73796
\(429\) 8.12320e10 0.115789
\(430\) 1.93657e12 2.73166
\(431\) 8.84672e11 1.23491 0.617454 0.786607i \(-0.288164\pi\)
0.617454 + 0.786607i \(0.288164\pi\)
\(432\) 5.12791e10 0.0708376
\(433\) 3.46888e11 0.474235 0.237118 0.971481i \(-0.423797\pi\)
0.237118 + 0.971481i \(0.423797\pi\)
\(434\) 9.53193e11 1.28967
\(435\) 9.60660e10 0.128638
\(436\) 1.93353e11 0.256248
\(437\) 2.98242e11 0.391203
\(438\) 1.31785e11 0.171093
\(439\) 2.93904e11 0.377673 0.188836 0.982009i \(-0.439528\pi\)
0.188836 + 0.982009i \(0.439528\pi\)
\(440\) −1.73251e12 −2.20363
\(441\) 1.34916e10 0.0169859
\(442\) 2.04376e12 2.54700
\(443\) −8.19078e11 −1.01044 −0.505218 0.862992i \(-0.668588\pi\)
−0.505218 + 0.862992i \(0.668588\pi\)
\(444\) −1.42152e11 −0.173592
\(445\) 1.15745e12 1.39921
\(446\) 1.98809e12 2.37919
\(447\) 1.14136e11 0.135220
\(448\) −1.24555e12 −1.46086
\(449\) 1.12447e12 1.30568 0.652841 0.757495i \(-0.273577\pi\)
0.652841 + 0.757495i \(0.273577\pi\)
\(450\) −1.77964e12 −2.04586
\(451\) 1.54046e12 1.75329
\(452\) −3.85754e11 −0.434698
\(453\) 1.46716e10 0.0163695
\(454\) −2.52905e12 −2.79387
\(455\) 1.54371e12 1.68855
\(456\) −7.88768e10 −0.0854294
\(457\) −2.25481e11 −0.241818 −0.120909 0.992664i \(-0.538581\pi\)
−0.120909 + 0.992664i \(0.538581\pi\)
\(458\) −2.29343e12 −2.43552
\(459\) 2.28720e11 0.240517
\(460\) 1.37813e12 1.43510
\(461\) 1.15063e12 1.18654 0.593269 0.805004i \(-0.297837\pi\)
0.593269 + 0.805004i \(0.297837\pi\)
\(462\) 1.64644e11 0.168135
\(463\) −1.14452e12 −1.15747 −0.578734 0.815516i \(-0.696453\pi\)
−0.578734 + 0.815516i \(0.696453\pi\)
\(464\) −3.76539e11 −0.377120
\(465\) −1.05897e11 −0.105037
\(466\) −8.15943e11 −0.801537
\(467\) 1.10959e12 1.07954 0.539769 0.841813i \(-0.318511\pi\)
0.539769 + 0.841813i \(0.318511\pi\)
\(468\) −2.08970e12 −2.01362
\(469\) −1.50577e12 −1.43708
\(470\) 2.36616e12 2.23668
\(471\) −8.53213e10 −0.0798846
\(472\) −1.15634e12 −1.07237
\(473\) −1.34566e12 −1.23612
\(474\) 1.65777e11 0.150842
\(475\) 9.96906e11 0.898531
\(476\) 2.65366e12 2.36927
\(477\) −1.03752e12 −0.917620
\(478\) −7.77988e11 −0.681628
\(479\) −1.29638e12 −1.12518 −0.562591 0.826735i \(-0.690196\pi\)
−0.562591 + 0.826735i \(0.690196\pi\)
\(480\) 1.01295e11 0.0870973
\(481\) 1.44569e12 1.23147
\(482\) −2.76563e12 −2.33390
\(483\) −5.74943e10 −0.0480687
\(484\) 5.90312e11 0.488965
\(485\) 2.72943e12 2.23993
\(486\) −5.48330e11 −0.445840
\(487\) −1.18971e12 −0.958429 −0.479215 0.877698i \(-0.659078\pi\)
−0.479215 + 0.877698i \(0.659078\pi\)
\(488\) 2.00892e12 1.60352
\(489\) −1.48626e11 −0.117545
\(490\) −5.45144e10 −0.0427198
\(491\) 9.50708e11 0.738211 0.369105 0.929388i \(-0.379664\pi\)
0.369105 + 0.929388i \(0.379664\pi\)
\(492\) 3.24076e11 0.249347
\(493\) −1.67948e12 −1.28045
\(494\) 1.82730e12 1.38051
\(495\) 2.23670e12 1.67450
\(496\) 4.15072e11 0.307932
\(497\) −1.40647e12 −1.03402
\(498\) 1.25986e10 0.00917890
\(499\) 1.26939e12 0.916524 0.458262 0.888817i \(-0.348472\pi\)
0.458262 + 0.888817i \(0.348472\pi\)
\(500\) 8.81067e11 0.630440
\(501\) 2.21523e11 0.157091
\(502\) 1.77213e12 1.24546
\(503\) −1.78501e12 −1.24332 −0.621662 0.783286i \(-0.713542\pi\)
−0.621662 + 0.783286i \(0.713542\pi\)
\(504\) −1.85937e12 −1.28360
\(505\) −2.93150e12 −2.00576
\(506\) −1.49484e12 −1.01372
\(507\) −3.98045e10 −0.0267544
\(508\) 3.51244e12 2.34004
\(509\) 2.17337e11 0.143517 0.0717584 0.997422i \(-0.477139\pi\)
0.0717584 + 0.997422i \(0.477139\pi\)
\(510\) −4.60205e11 −0.301221
\(511\) −1.74023e12 −1.12905
\(512\) −1.19849e12 −0.770761
\(513\) 2.04496e11 0.130364
\(514\) 5.70503e11 0.360516
\(515\) 3.06439e12 1.91960
\(516\) −2.83095e11 −0.175796
\(517\) −1.64416e12 −1.01213
\(518\) 2.93019e12 1.78818
\(519\) 2.87873e11 0.174160
\(520\) 3.70677e12 2.22321
\(521\) 2.02228e11 0.120247 0.0601233 0.998191i \(-0.480851\pi\)
0.0601233 + 0.998191i \(0.480851\pi\)
\(522\) 2.68060e12 1.58021
\(523\) −1.02904e12 −0.601416 −0.300708 0.953716i \(-0.597223\pi\)
−0.300708 + 0.953716i \(0.597223\pi\)
\(524\) 2.94212e12 1.70478
\(525\) −1.92181e11 −0.110406
\(526\) 1.12481e12 0.640685
\(527\) 1.85134e12 1.04554
\(528\) 7.16950e10 0.0401454
\(529\) −1.27915e12 −0.710183
\(530\) 4.19223e12 2.30783
\(531\) 1.49285e12 0.814877
\(532\) 2.37261e12 1.28417
\(533\) −3.29587e12 −1.76888
\(534\) −2.64123e11 −0.140563
\(535\) 2.76301e12 1.45811
\(536\) −3.61568e12 −1.89212
\(537\) 1.39920e11 0.0726096
\(538\) 1.47694e12 0.760049
\(539\) 3.78802e10 0.0193314
\(540\) 9.44947e11 0.478229
\(541\) 1.41641e12 0.710888 0.355444 0.934698i \(-0.384330\pi\)
0.355444 + 0.934698i \(0.384330\pi\)
\(542\) −6.16249e12 −3.06732
\(543\) 1.58293e11 0.0781381
\(544\) −1.77090e12 −0.866960
\(545\) 4.42787e11 0.214986
\(546\) −3.52263e11 −0.169629
\(547\) −2.94469e12 −1.40636 −0.703180 0.711012i \(-0.748237\pi\)
−0.703180 + 0.711012i \(0.748237\pi\)
\(548\) 2.23490e11 0.105863
\(549\) −2.59356e12 −1.21849
\(550\) −4.99669e12 −2.32836
\(551\) −1.50160e12 −0.694020
\(552\) −1.38056e11 −0.0632892
\(553\) −2.18909e12 −0.995408
\(554\) 2.20723e12 0.995529
\(555\) −3.25535e11 −0.145639
\(556\) −5.61049e12 −2.48980
\(557\) −1.25037e11 −0.0550413 −0.0275207 0.999621i \(-0.508761\pi\)
−0.0275207 + 0.999621i \(0.508761\pi\)
\(558\) −2.95491e12 −1.29030
\(559\) 2.87909e12 1.24710
\(560\) 1.36247e12 0.585437
\(561\) 3.19781e11 0.136307
\(562\) −7.40465e12 −3.13106
\(563\) −2.65624e12 −1.11424 −0.557121 0.830431i \(-0.688094\pi\)
−0.557121 + 0.830431i \(0.688094\pi\)
\(564\) −3.45894e11 −0.143942
\(565\) −8.83395e11 −0.364701
\(566\) 1.71394e12 0.701977
\(567\) 2.38069e12 0.967341
\(568\) −3.37724e12 −1.36143
\(569\) 2.28987e12 0.915809 0.457904 0.889001i \(-0.348600\pi\)
0.457904 + 0.889001i \(0.348600\pi\)
\(570\) −4.11464e11 −0.163266
\(571\) −1.03100e12 −0.405878 −0.202939 0.979191i \(-0.565049\pi\)
−0.202939 + 0.979191i \(0.565049\pi\)
\(572\) −5.86725e12 −2.29167
\(573\) 2.63468e11 0.102102
\(574\) −6.68020e12 −2.56854
\(575\) 1.74486e12 0.665663
\(576\) 3.86121e12 1.46158
\(577\) 2.39754e12 0.900482 0.450241 0.892907i \(-0.351338\pi\)
0.450241 + 0.892907i \(0.351338\pi\)
\(578\) 3.56949e12 1.33024
\(579\) −1.94473e10 −0.00719129
\(580\) −6.93869e12 −2.54596
\(581\) −1.66365e11 −0.0605716
\(582\) −6.22836e11 −0.225020
\(583\) −2.91304e12 −1.04433
\(584\) −4.17865e12 −1.48655
\(585\) −4.78551e12 −1.68938
\(586\) −7.13160e12 −2.49832
\(587\) 1.65092e12 0.573925 0.286962 0.957942i \(-0.407355\pi\)
0.286962 + 0.957942i \(0.407355\pi\)
\(588\) 7.96911e9 0.00274924
\(589\) 1.65526e12 0.566694
\(590\) −6.03207e12 −2.04943
\(591\) −1.90310e10 −0.00641680
\(592\) 1.27596e12 0.426963
\(593\) 2.06402e12 0.685438 0.342719 0.939438i \(-0.388652\pi\)
0.342719 + 0.939438i \(0.388652\pi\)
\(594\) −1.02497e12 −0.337811
\(595\) 6.07701e12 1.98776
\(596\) −8.24389e12 −2.67623
\(597\) −3.38279e11 −0.108991
\(598\) 3.19828e12 1.02273
\(599\) 8.93661e11 0.283630 0.141815 0.989893i \(-0.454706\pi\)
0.141815 + 0.989893i \(0.454706\pi\)
\(600\) −4.61468e11 −0.145365
\(601\) −5.36661e12 −1.67789 −0.838947 0.544213i \(-0.816828\pi\)
−0.838947 + 0.544213i \(0.816828\pi\)
\(602\) 5.83546e12 1.81089
\(603\) 4.66792e12 1.43779
\(604\) −1.05970e12 −0.323980
\(605\) 1.35184e12 0.410229
\(606\) 6.68947e11 0.201495
\(607\) 6.31098e12 1.88690 0.943448 0.331521i \(-0.107562\pi\)
0.943448 + 0.331521i \(0.107562\pi\)
\(608\) −1.58334e12 −0.469904
\(609\) 2.89475e11 0.0852772
\(610\) 1.04796e13 3.06451
\(611\) 3.51775e12 1.02113
\(612\) −8.22639e12 −2.37043
\(613\) −4.30294e12 −1.23082 −0.615408 0.788209i \(-0.711009\pi\)
−0.615408 + 0.788209i \(0.711009\pi\)
\(614\) −3.22420e12 −0.915513
\(615\) 7.42149e11 0.209196
\(616\) −5.22055e12 −1.46084
\(617\) −3.56214e12 −0.989527 −0.494764 0.869028i \(-0.664745\pi\)
−0.494764 + 0.869028i \(0.664745\pi\)
\(618\) −6.99272e11 −0.192840
\(619\) 1.20507e12 0.329918 0.164959 0.986300i \(-0.447251\pi\)
0.164959 + 0.986300i \(0.447251\pi\)
\(620\) 7.64874e12 2.07887
\(621\) 3.57924e11 0.0965780
\(622\) −3.83459e12 −1.02722
\(623\) 3.48774e12 0.927574
\(624\) −1.53394e11 −0.0405022
\(625\) −2.69918e12 −0.707573
\(626\) −4.31694e12 −1.12355
\(627\) 2.85912e11 0.0738804
\(628\) 6.16262e12 1.58105
\(629\) 5.69117e12 1.44969
\(630\) −9.69947e12 −2.45310
\(631\) −6.09945e11 −0.153165 −0.0765823 0.997063i \(-0.524401\pi\)
−0.0765823 + 0.997063i \(0.524401\pi\)
\(632\) −5.25648e12 −1.31059
\(633\) −1.08546e11 −0.0268719
\(634\) 6.66925e11 0.163936
\(635\) 8.04365e12 1.96323
\(636\) −6.12835e11 −0.148521
\(637\) −8.10462e10 −0.0195032
\(638\) 7.52631e12 1.79841
\(639\) 4.36008e12 1.03452
\(640\) −1.14972e13 −2.70884
\(641\) 3.83813e12 0.897964 0.448982 0.893541i \(-0.351787\pi\)
0.448982 + 0.893541i \(0.351787\pi\)
\(642\) −6.30499e11 −0.146479
\(643\) −1.40801e12 −0.324830 −0.162415 0.986723i \(-0.551928\pi\)
−0.162415 + 0.986723i \(0.551928\pi\)
\(644\) 4.15272e12 0.951362
\(645\) −6.48301e11 −0.147488
\(646\) 7.19343e12 1.62514
\(647\) 6.97386e12 1.56460 0.782301 0.622900i \(-0.214046\pi\)
0.782301 + 0.622900i \(0.214046\pi\)
\(648\) 5.71655e12 1.27364
\(649\) 4.19148e12 0.927399
\(650\) 1.06906e13 2.34905
\(651\) −3.19098e11 −0.0696320
\(652\) 1.07350e13 2.32643
\(653\) −6.98633e11 −0.150363 −0.0751813 0.997170i \(-0.523954\pi\)
−0.0751813 + 0.997170i \(0.523954\pi\)
\(654\) −1.01041e11 −0.0215972
\(655\) 6.73758e12 1.43027
\(656\) −2.90892e12 −0.613288
\(657\) 5.39473e12 1.12960
\(658\) 7.12993e12 1.48275
\(659\) −3.69601e12 −0.763395 −0.381697 0.924287i \(-0.624660\pi\)
−0.381697 + 0.924287i \(0.624660\pi\)
\(660\) 1.32116e12 0.271024
\(661\) 4.47465e11 0.0911702 0.0455851 0.998960i \(-0.485485\pi\)
0.0455851 + 0.998960i \(0.485485\pi\)
\(662\) 7.48846e12 1.51542
\(663\) −6.84183e11 −0.137519
\(664\) −3.99478e11 −0.0797510
\(665\) 5.43339e12 1.07739
\(666\) −9.08364e12 −1.78906
\(667\) −2.62821e12 −0.514155
\(668\) −1.60003e13 −3.10909
\(669\) −6.65547e11 −0.128458
\(670\) −1.88613e13 −3.61606
\(671\) −7.28193e12 −1.38674
\(672\) 3.05233e11 0.0577390
\(673\) −3.81682e11 −0.0717189 −0.0358595 0.999357i \(-0.511417\pi\)
−0.0358595 + 0.999357i \(0.511417\pi\)
\(674\) 8.95560e12 1.67157
\(675\) 1.19640e12 0.221824
\(676\) 2.87501e12 0.529516
\(677\) 8.70178e12 1.59206 0.796030 0.605257i \(-0.206930\pi\)
0.796030 + 0.605257i \(0.206930\pi\)
\(678\) 2.01585e11 0.0366373
\(679\) 8.22456e12 1.48491
\(680\) 1.45922e13 2.61716
\(681\) 8.46642e11 0.150847
\(682\) −8.29650e12 −1.46847
\(683\) 7.76587e12 1.36552 0.682758 0.730644i \(-0.260780\pi\)
0.682758 + 0.730644i \(0.260780\pi\)
\(684\) −7.35513e12 −1.28481
\(685\) 5.11802e11 0.0888166
\(686\) −9.75666e12 −1.68206
\(687\) 7.67766e11 0.131499
\(688\) 2.54108e12 0.432384
\(689\) 6.23256e12 1.05361
\(690\) −7.20174e11 −0.120953
\(691\) −9.69765e12 −1.61814 −0.809068 0.587715i \(-0.800028\pi\)
−0.809068 + 0.587715i \(0.800028\pi\)
\(692\) −2.07926e13 −3.44692
\(693\) 6.73983e12 1.11007
\(694\) 4.56717e12 0.747360
\(695\) −1.28483e13 −2.08888
\(696\) 6.95091e11 0.112279
\(697\) −1.29746e13 −2.08232
\(698\) −1.04251e13 −1.66239
\(699\) 2.73151e11 0.0432768
\(700\) 1.38809e13 2.18513
\(701\) −4.37598e12 −0.684454 −0.342227 0.939617i \(-0.611181\pi\)
−0.342227 + 0.939617i \(0.611181\pi\)
\(702\) 2.19297e12 0.340813
\(703\) 5.08842e12 0.785749
\(704\) 1.08411e13 1.66340
\(705\) −7.92112e11 −0.120763
\(706\) −4.54199e12 −0.688058
\(707\) −8.83346e12 −1.32967
\(708\) 8.81790e11 0.131891
\(709\) 1.25705e13 1.86829 0.934144 0.356895i \(-0.116165\pi\)
0.934144 + 0.356895i \(0.116165\pi\)
\(710\) −1.76175e13 −2.60185
\(711\) 6.78622e12 0.995898
\(712\) 8.37482e12 1.22128
\(713\) 2.89716e12 0.419827
\(714\) −1.38673e12 −0.199687
\(715\) −1.34363e13 −1.92266
\(716\) −1.01062e13 −1.43707
\(717\) 2.60445e11 0.0368027
\(718\) −1.56056e12 −0.219139
\(719\) 2.15235e12 0.300354 0.150177 0.988659i \(-0.452016\pi\)
0.150177 + 0.988659i \(0.452016\pi\)
\(720\) −4.22367e12 −0.585725
\(721\) 9.23389e12 1.27255
\(722\) −5.74814e12 −0.787245
\(723\) 9.25841e11 0.126013
\(724\) −1.14333e13 −1.54649
\(725\) −8.78509e12 −1.18093
\(726\) −3.08481e11 −0.0412110
\(727\) 9.51298e12 1.26302 0.631512 0.775366i \(-0.282435\pi\)
0.631512 + 0.775366i \(0.282435\pi\)
\(728\) 1.11696e13 1.47382
\(729\) −7.25697e12 −0.951659
\(730\) −2.17981e13 −2.84096
\(731\) 1.13339e13 1.46809
\(732\) −1.53195e12 −0.197217
\(733\) 1.51345e13 1.93642 0.968211 0.250134i \(-0.0804748\pi\)
0.968211 + 0.250134i \(0.0804748\pi\)
\(734\) 1.13836e13 1.44759
\(735\) 1.82496e10 0.00230654
\(736\) −2.77128e12 −0.348121
\(737\) 1.31061e13 1.63633
\(738\) 2.07087e13 2.56980
\(739\) −3.27729e12 −0.404217 −0.202109 0.979363i \(-0.564779\pi\)
−0.202109 + 0.979363i \(0.564779\pi\)
\(740\) 2.35129e13 2.88246
\(741\) −6.11721e11 −0.0745369
\(742\) 1.26324e13 1.52992
\(743\) −1.44664e13 −1.74145 −0.870723 0.491775i \(-0.836348\pi\)
−0.870723 + 0.491775i \(0.836348\pi\)
\(744\) −7.66221e11 −0.0916803
\(745\) −1.88789e13 −2.24529
\(746\) −1.95864e12 −0.231542
\(747\) 5.15734e11 0.0606014
\(748\) −2.30972e13 −2.69776
\(749\) 8.32575e12 0.966618
\(750\) −4.60421e11 −0.0531349
\(751\) 9.62879e12 1.10457 0.552283 0.833656i \(-0.313757\pi\)
0.552283 + 0.833656i \(0.313757\pi\)
\(752\) 3.10476e12 0.354036
\(753\) −5.93251e11 −0.0672451
\(754\) −1.61028e13 −1.81439
\(755\) −2.42677e12 −0.271811
\(756\) 2.84740e12 0.317030
\(757\) −1.66900e13 −1.84725 −0.923623 0.383302i \(-0.874787\pi\)
−0.923623 + 0.383302i \(0.874787\pi\)
\(758\) 8.92419e12 0.981878
\(759\) 5.00425e11 0.0547332
\(760\) 1.30467e13 1.41854
\(761\) −1.68484e12 −0.182108 −0.0910538 0.995846i \(-0.529024\pi\)
−0.0910538 + 0.995846i \(0.529024\pi\)
\(762\) −1.83551e12 −0.197223
\(763\) 1.33425e12 0.142520
\(764\) −1.90299e13 −2.02077
\(765\) −1.88388e13 −1.98874
\(766\) −4.14013e12 −0.434494
\(767\) −8.96785e12 −0.935641
\(768\) 1.34409e12 0.139413
\(769\) −5.38645e12 −0.555436 −0.277718 0.960663i \(-0.589578\pi\)
−0.277718 + 0.960663i \(0.589578\pi\)
\(770\) −2.72332e13 −2.79184
\(771\) −1.90986e11 −0.0194651
\(772\) 1.40465e12 0.142328
\(773\) 2.71716e12 0.273720 0.136860 0.990590i \(-0.456299\pi\)
0.136860 + 0.990590i \(0.456299\pi\)
\(774\) −1.80900e13 −1.81178
\(775\) 9.68409e12 0.964276
\(776\) 1.97489e13 1.95509
\(777\) −9.80932e11 −0.0965482
\(778\) 1.42770e13 1.39710
\(779\) −1.16005e13 −1.12864
\(780\) −2.82668e12 −0.273433
\(781\) 1.22418e13 1.17738
\(782\) 1.25905e13 1.20396
\(783\) −1.80209e12 −0.171336
\(784\) −7.15311e10 −0.00676196
\(785\) 1.41127e13 1.32647
\(786\) −1.53747e12 −0.143683
\(787\) −7.14537e12 −0.663954 −0.331977 0.943287i \(-0.607716\pi\)
−0.331977 + 0.943287i \(0.607716\pi\)
\(788\) 1.37458e12 0.126999
\(789\) −3.76551e11 −0.0345921
\(790\) −2.74206e13 −2.50470
\(791\) −2.66193e12 −0.241770
\(792\) 1.61838e13 1.46156
\(793\) 1.55800e13 1.39906
\(794\) 8.56908e12 0.765142
\(795\) −1.40342e12 −0.124605
\(796\) 2.44333e13 2.15712
\(797\) −1.34979e13 −1.18496 −0.592482 0.805584i \(-0.701852\pi\)
−0.592482 + 0.805584i \(0.701852\pi\)
\(798\) −1.23986e12 −0.108233
\(799\) 1.38481e13 1.20207
\(800\) −9.26332e12 −0.799580
\(801\) −1.08121e13 −0.928030
\(802\) 2.55192e12 0.217812
\(803\) 1.51468e13 1.28558
\(804\) 2.75722e12 0.232712
\(805\) 9.50991e12 0.798169
\(806\) 1.77507e13 1.48152
\(807\) −4.94430e11 −0.0410368
\(808\) −2.12110e13 −1.75069
\(809\) −4.56990e12 −0.375092 −0.187546 0.982256i \(-0.560053\pi\)
−0.187546 + 0.982256i \(0.560053\pi\)
\(810\) 2.98206e13 2.43407
\(811\) −2.23553e12 −0.181462 −0.0907311 0.995875i \(-0.528920\pi\)
−0.0907311 + 0.995875i \(0.528920\pi\)
\(812\) −2.09083e13 −1.68778
\(813\) 2.06300e12 0.165612
\(814\) −2.55041e13 −2.03611
\(815\) 2.45837e13 1.95181
\(816\) −6.03858e11 −0.0476792
\(817\) 1.01336e13 0.795724
\(818\) −2.36548e13 −1.84727
\(819\) −1.44201e13 −1.11993
\(820\) −5.36042e13 −4.14034
\(821\) −1.00661e13 −0.773246 −0.386623 0.922238i \(-0.626359\pi\)
−0.386623 + 0.922238i \(0.626359\pi\)
\(822\) −1.16790e11 −0.00892238
\(823\) 1.79418e13 1.36323 0.681613 0.731713i \(-0.261279\pi\)
0.681613 + 0.731713i \(0.261279\pi\)
\(824\) 2.21725e13 1.67550
\(825\) 1.67273e12 0.125714
\(826\) −1.81764e13 −1.35862
\(827\) 1.53344e12 0.113997 0.0569984 0.998374i \(-0.481847\pi\)
0.0569984 + 0.998374i \(0.481847\pi\)
\(828\) −1.28735e13 −0.951830
\(829\) −1.99317e13 −1.46571 −0.732857 0.680383i \(-0.761813\pi\)
−0.732857 + 0.680383i \(0.761813\pi\)
\(830\) −2.08389e12 −0.152413
\(831\) −7.38908e11 −0.0537509
\(832\) −2.31950e13 −1.67819
\(833\) −3.19050e11 −0.0229591
\(834\) 2.93189e12 0.209846
\(835\) −3.66414e13 −2.60845
\(836\) −2.06510e13 −1.46222
\(837\) 1.98650e12 0.139902
\(838\) 1.13779e13 0.797010
\(839\) 3.30735e12 0.230437 0.115218 0.993340i \(-0.463243\pi\)
0.115218 + 0.993340i \(0.463243\pi\)
\(840\) −2.51511e12 −0.174301
\(841\) −1.27450e12 −0.0878536
\(842\) 4.49335e13 3.08081
\(843\) 2.47883e12 0.169053
\(844\) 7.84012e12 0.531841
\(845\) 6.58391e12 0.444251
\(846\) −2.21029e13 −1.48348
\(847\) 4.07349e12 0.271952
\(848\) 5.50083e12 0.365298
\(849\) −5.73772e11 −0.0379014
\(850\) 4.20850e13 2.76530
\(851\) 8.90612e12 0.582110
\(852\) 2.57539e12 0.167442
\(853\) −1.64413e13 −1.06332 −0.531662 0.846957i \(-0.678432\pi\)
−0.531662 + 0.846957i \(0.678432\pi\)
\(854\) 3.15781e13 2.03154
\(855\) −1.68436e13 −1.07792
\(856\) 1.99919e13 1.27269
\(857\) 8.18562e12 0.518368 0.259184 0.965828i \(-0.416546\pi\)
0.259184 + 0.965828i \(0.416546\pi\)
\(858\) 3.06606e12 0.193147
\(859\) 2.72058e13 1.70487 0.852436 0.522831i \(-0.175124\pi\)
0.852436 + 0.522831i \(0.175124\pi\)
\(860\) 4.68257e13 2.91905
\(861\) 2.23631e12 0.138681
\(862\) 3.33915e13 2.05994
\(863\) 1.73975e13 1.06767 0.533835 0.845589i \(-0.320750\pi\)
0.533835 + 0.845589i \(0.320750\pi\)
\(864\) −1.90019e12 −0.116007
\(865\) −4.76161e13 −2.89188
\(866\) 1.30931e13 0.791067
\(867\) −1.19495e12 −0.0718229
\(868\) 2.30479e13 1.37814
\(869\) 1.90537e13 1.13342
\(870\) 3.62597e12 0.214579
\(871\) −2.80411e13 −1.65087
\(872\) 3.20381e12 0.187647
\(873\) −2.54963e13 −1.48564
\(874\) 1.12570e13 0.652561
\(875\) 6.07987e12 0.350637
\(876\) 3.18653e12 0.182831
\(877\) −1.12698e13 −0.643305 −0.321653 0.946858i \(-0.604238\pi\)
−0.321653 + 0.946858i \(0.604238\pi\)
\(878\) 1.10933e13 0.629992
\(879\) 2.38742e12 0.134890
\(880\) −1.18588e13 −0.666605
\(881\) −7.04811e12 −0.394167 −0.197084 0.980387i \(-0.563147\pi\)
−0.197084 + 0.980387i \(0.563147\pi\)
\(882\) 5.09233e11 0.0283340
\(883\) −2.02190e13 −1.11927 −0.559636 0.828738i \(-0.689059\pi\)
−0.559636 + 0.828738i \(0.689059\pi\)
\(884\) 4.94175e13 2.72173
\(885\) 2.01934e12 0.110653
\(886\) −3.09157e13 −1.68550
\(887\) 2.47730e13 1.34376 0.671882 0.740658i \(-0.265486\pi\)
0.671882 + 0.740658i \(0.265486\pi\)
\(888\) −2.35543e12 −0.127119
\(889\) 2.42379e13 1.30148
\(890\) 4.36876e13 2.33401
\(891\) −2.07213e13 −1.10146
\(892\) 4.80714e13 2.54240
\(893\) 1.23815e13 0.651538
\(894\) 4.30803e12 0.225559
\(895\) −2.31436e13 −1.20567
\(896\) −3.46445e13 −1.79576
\(897\) −1.07068e12 −0.0552196
\(898\) 4.24424e13 2.17799
\(899\) −1.45868e13 −0.744802
\(900\) −4.30311e13 −2.18620
\(901\) 2.45353e13 1.24031
\(902\) 5.81438e13 2.92465
\(903\) −1.95352e12 −0.0977739
\(904\) −6.39185e12 −0.318324
\(905\) −2.61827e13 −1.29746
\(906\) 5.53772e11 0.0273057
\(907\) −3.25103e13 −1.59510 −0.797551 0.603251i \(-0.793872\pi\)
−0.797551 + 0.603251i \(0.793872\pi\)
\(908\) −6.11516e13 −2.98553
\(909\) 2.73838e13 1.33032
\(910\) 5.82665e13 2.81665
\(911\) −1.03382e11 −0.00497292 −0.00248646 0.999997i \(-0.500791\pi\)
−0.00248646 + 0.999997i \(0.500791\pi\)
\(912\) −5.39903e11 −0.0258427
\(913\) 1.44803e12 0.0689696
\(914\) −8.51069e12 −0.403373
\(915\) −3.50823e12 −0.165460
\(916\) −5.54545e13 −2.60260
\(917\) 2.03023e13 0.948163
\(918\) 8.63293e12 0.401205
\(919\) 3.52155e13 1.62860 0.814298 0.580446i \(-0.197122\pi\)
0.814298 + 0.580446i \(0.197122\pi\)
\(920\) 2.28353e13 1.05090
\(921\) 1.07936e12 0.0494307
\(922\) 4.34301e13 1.97925
\(923\) −2.61918e13 −1.18784
\(924\) 3.98105e12 0.179669
\(925\) 2.97697e13 1.33702
\(926\) −4.31994e13 −1.93076
\(927\) −2.86252e13 −1.27318
\(928\) 1.39530e13 0.617591
\(929\) 2.63485e13 1.16061 0.580304 0.814400i \(-0.302934\pi\)
0.580304 + 0.814400i \(0.302934\pi\)
\(930\) −3.99702e12 −0.175212
\(931\) −2.85259e11 −0.0124442
\(932\) −1.97292e13 −0.856523
\(933\) 1.28370e12 0.0554619
\(934\) 4.18811e13 1.80077
\(935\) −5.28937e13 −2.26335
\(936\) −3.46258e13 −1.47455
\(937\) −1.91087e12 −0.0809847 −0.0404923 0.999180i \(-0.512893\pi\)
−0.0404923 + 0.999180i \(0.512893\pi\)
\(938\) −5.68347e13 −2.39718
\(939\) 1.44517e12 0.0606630
\(940\) 5.72130e13 2.39012
\(941\) 3.81321e13 1.58539 0.792697 0.609616i \(-0.208676\pi\)
0.792697 + 0.609616i \(0.208676\pi\)
\(942\) −3.22041e12 −0.133255
\(943\) −2.03040e13 −0.836140
\(944\) −7.91499e12 −0.324397
\(945\) 6.52068e12 0.265981
\(946\) −5.07913e13 −2.06196
\(947\) −8.41980e12 −0.340194 −0.170097 0.985427i \(-0.554408\pi\)
−0.170097 + 0.985427i \(0.554408\pi\)
\(948\) 4.00844e12 0.161190
\(949\) −3.24071e13 −1.29701
\(950\) 3.76278e13 1.49883
\(951\) −2.23264e11 −0.00885131
\(952\) 4.39705e13 1.73498
\(953\) 1.15938e13 0.455310 0.227655 0.973742i \(-0.426894\pi\)
0.227655 + 0.973742i \(0.426894\pi\)
\(954\) −3.91607e13 −1.53067
\(955\) −4.35793e13 −1.69537
\(956\) −1.88115e13 −0.728388
\(957\) −2.51956e12 −0.0971005
\(958\) −4.89314e13 −1.87691
\(959\) 1.54221e12 0.0588788
\(960\) 5.22295e12 0.198470
\(961\) −1.03601e13 −0.391841
\(962\) 5.45671e13 2.05420
\(963\) −2.58099e13 −0.967094
\(964\) −6.68720e13 −2.49401
\(965\) 3.21671e12 0.119410
\(966\) −2.17010e12 −0.0801829
\(967\) 5.28976e12 0.194543 0.0972717 0.995258i \(-0.468988\pi\)
0.0972717 + 0.995258i \(0.468988\pi\)
\(968\) 9.78132e12 0.358062
\(969\) −2.40812e12 −0.0877449
\(970\) 1.03021e14 3.73640
\(971\) 1.71219e13 0.618108 0.309054 0.951045i \(-0.399988\pi\)
0.309054 + 0.951045i \(0.399988\pi\)
\(972\) −1.32585e13 −0.476425
\(973\) −3.87156e13 −1.38477
\(974\) −4.49050e13 −1.59875
\(975\) −3.57886e12 −0.126831
\(976\) 1.37508e13 0.485070
\(977\) 1.06777e13 0.374932 0.187466 0.982271i \(-0.439973\pi\)
0.187466 + 0.982271i \(0.439973\pi\)
\(978\) −5.60983e12 −0.196076
\(979\) −3.03570e13 −1.05618
\(980\) −1.31814e12 −0.0456504
\(981\) −4.13618e12 −0.142590
\(982\) 3.58840e13 1.23140
\(983\) 4.51168e13 1.54116 0.770579 0.637344i \(-0.219967\pi\)
0.770579 + 0.637344i \(0.219967\pi\)
\(984\) 5.36986e12 0.182593
\(985\) 3.14785e12 0.106549
\(986\) −6.33910e13 −2.13590
\(987\) −2.38686e12 −0.0800572
\(988\) 4.41836e13 1.47521
\(989\) 1.77365e13 0.589500
\(990\) 8.44233e13 2.79321
\(991\) 1.01742e13 0.335095 0.167548 0.985864i \(-0.446415\pi\)
0.167548 + 0.985864i \(0.446415\pi\)
\(992\) −1.53808e13 −0.504286
\(993\) −2.50689e12 −0.0818208
\(994\) −5.30867e13 −1.72483
\(995\) 5.59534e13 1.80977
\(996\) 3.04631e11 0.00980859
\(997\) 2.59997e13 0.833376 0.416688 0.909050i \(-0.363191\pi\)
0.416688 + 0.909050i \(0.363191\pi\)
\(998\) 4.79127e13 1.52884
\(999\) 6.10667e12 0.193981
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.b.1.67 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.b.1.67 76 1.1 even 1 trivial