Properties

Label 197.14.a.b.1.14
Level 197197
Weight 1414
Character 197.1
Self dual yes
Analytic conductor 211.245211.245
Analytic rank 00
Dimension 109109
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,14,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: N N == 197 197
Weight: k k == 14 14
Character orbit: [χ][\chi] == 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 211.244930035211.244930035
Analytic rank: 00
Dimension: 109109
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.14
Character χ\chi == 197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q136.248q22369.27q3+10371.7q4+626.226q5+322809.q679078.9q7296974.q8+4.01912e6q985322.4q109.86296e6q112.45732e7q12703969.q13+1.07744e7q141.48370e6q154.45023e7q164.75057e7q175.47598e8q18+8.73708e7q19+6.49500e6q20+1.87359e8q21+1.34381e9q226.38177e8q23+7.03612e8q241.22031e9q25+9.59148e7q265.74499e9q278.20179e8q285.24014e9q29+2.02152e8q30+8.56915e9q31+8.49618e9q32+2.33680e10q33+6.47257e9q344.95213e7q35+4.16849e10q36+6.61988e9q371.19041e10q38+1.66789e9q391.85973e8q40+1.28318e9q412.55274e10q42+7.65409e10q431.02295e11q44+2.51688e9q45+8.69506e10q466.38396e10q47+1.05438e11q489.06355e10q49+1.66266e11q50+1.12554e11q517.30132e9q525.66925e10q53+7.82746e11q546.17644e9q55+2.34844e10q562.07005e11q57+7.13961e11q58+1.77115e11q591.53884e10q60+1.00419e11q611.16753e12q623.17827e11q637.93029e11q644.40844e8q653.18386e12q661.82171e11q674.92712e11q68+1.51201e12q69+6.74720e9q702.29472e11q711.19357e12q72+8.52469e11q739.01948e11q74+2.89125e12q75+9.06179e11q76+7.79952e11q772.27248e11q781.12377e12q792.78685e10q80+7.20366e12q811.74832e11q822.74958e12q83+1.94323e12q842.97493e10q851.04286e13q86+1.24153e13q87+2.92904e12q887.83448e12q893.42921e11q90+5.56691e10q916.61895e12q922.03026e13q93+8.69805e12q94+5.47139e10q952.01297e13q962.16953e12q97+1.23490e13q983.96404e13q99+O(q100)q-136.248 q^{2} -2369.27 q^{3} +10371.7 q^{4} +626.226 q^{5} +322809. q^{6} -79078.9 q^{7} -296974. q^{8} +4.01912e6 q^{9} -85322.4 q^{10} -9.86296e6 q^{11} -2.45732e7 q^{12} -703969. q^{13} +1.07744e7 q^{14} -1.48370e6 q^{15} -4.45023e7 q^{16} -4.75057e7 q^{17} -5.47598e8 q^{18} +8.73708e7 q^{19} +6.49500e6 q^{20} +1.87359e8 q^{21} +1.34381e9 q^{22} -6.38177e8 q^{23} +7.03612e8 q^{24} -1.22031e9 q^{25} +9.59148e7 q^{26} -5.74499e9 q^{27} -8.20179e8 q^{28} -5.24014e9 q^{29} +2.02152e8 q^{30} +8.56915e9 q^{31} +8.49618e9 q^{32} +2.33680e10 q^{33} +6.47257e9 q^{34} -4.95213e7 q^{35} +4.16849e10 q^{36} +6.61988e9 q^{37} -1.19041e10 q^{38} +1.66789e9 q^{39} -1.85973e8 q^{40} +1.28318e9 q^{41} -2.55274e10 q^{42} +7.65409e10 q^{43} -1.02295e11 q^{44} +2.51688e9 q^{45} +8.69506e10 q^{46} -6.38396e10 q^{47} +1.05438e11 q^{48} -9.06355e10 q^{49} +1.66266e11 q^{50} +1.12554e11 q^{51} -7.30132e9 q^{52} -5.66925e10 q^{53} +7.82746e11 q^{54} -6.17644e9 q^{55} +2.34844e10 q^{56} -2.07005e11 q^{57} +7.13961e11 q^{58} +1.77115e11 q^{59} -1.53884e10 q^{60} +1.00419e11 q^{61} -1.16753e12 q^{62} -3.17827e11 q^{63} -7.93029e11 q^{64} -4.40844e8 q^{65} -3.18386e12 q^{66} -1.82171e11 q^{67} -4.92712e11 q^{68} +1.51201e12 q^{69} +6.74720e9 q^{70} -2.29472e11 q^{71} -1.19357e12 q^{72} +8.52469e11 q^{73} -9.01948e11 q^{74} +2.89125e12 q^{75} +9.06179e11 q^{76} +7.79952e11 q^{77} -2.27248e11 q^{78} -1.12377e12 q^{79} -2.78685e10 q^{80} +7.20366e12 q^{81} -1.74832e11 q^{82} -2.74958e12 q^{83} +1.94323e12 q^{84} -2.97493e10 q^{85} -1.04286e13 q^{86} +1.24153e13 q^{87} +2.92904e12 q^{88} -7.83448e12 q^{89} -3.42921e11 q^{90} +5.56691e10 q^{91} -6.61895e12 q^{92} -2.03026e13 q^{93} +8.69805e12 q^{94} +5.47139e10 q^{95} -2.01297e13 q^{96} -2.16953e12 q^{97} +1.23490e13 q^{98} -3.96404e13 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 109q+192q2+8018q3+471040q4+88496q5+383232q6+1680731q7+1820859q8+59521391q9+16373653q10+21199298q11+63225856q12+59695238q13+37888529q14++12084396239183q99+O(q100) 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9} + 16373653 q^{10} + 21199298 q^{11} + 63225856 q^{12} + 59695238 q^{13} + 37888529 q^{14}+ \cdots + 12084396239183 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −136.248 −1.50535 −0.752674 0.658394i 0.771236π-0.771236\pi
−0.752674 + 0.658394i 0.771236π0.771236\pi
33 −2369.27 −1.87640 −0.938202 0.346088i 0.887510π-0.887510\pi
−0.938202 + 0.346088i 0.887510π0.887510\pi
44 10371.7 1.26607
55 626.226 0.0179236 0.00896182 0.999960i 0.497147π-0.497147\pi
0.00896182 + 0.999960i 0.497147π0.497147\pi
66 322809. 2.82464
77 −79078.9 −0.254053 −0.127026 0.991899i 0.540543π-0.540543\pi
−0.127026 + 0.991899i 0.540543π0.540543\pi
88 −296974. −0.400529
99 4.01912e6 2.52089
1010 −85322.4 −0.0269813
1111 −9.86296e6 −1.67863 −0.839314 0.543646i 0.817043π-0.817043\pi
−0.839314 + 0.543646i 0.817043π0.817043\pi
1212 −2.45732e7 −2.37566
1313 −703969. −0.0404503 −0.0202252 0.999795i 0.506438π-0.506438\pi
−0.0202252 + 0.999795i 0.506438π0.506438\pi
1414 1.07744e7 0.382437
1515 −1.48370e6 −0.0336320
1616 −4.45023e7 −0.663136
1717 −4.75057e7 −0.477339 −0.238670 0.971101i 0.576711π-0.576711\pi
−0.238670 + 0.971101i 0.576711π0.576711\pi
1818 −5.47598e8 −3.79482
1919 8.73708e7 0.426057 0.213029 0.977046i 0.431667π-0.431667\pi
0.213029 + 0.977046i 0.431667π0.431667\pi
2020 6.49500e6 0.0226926
2121 1.87359e8 0.476705
2222 1.34381e9 2.52692
2323 −6.38177e8 −0.898897 −0.449449 0.893306i 0.648380π-0.648380\pi
−0.449449 + 0.893306i 0.648380π0.648380\pi
2424 7.03612e8 0.751554
2525 −1.22031e9 −0.999679
2626 9.59148e7 0.0608918
2727 −5.74499e9 −2.85381
2828 −8.20179e8 −0.321648
2929 −5.24014e9 −1.63590 −0.817948 0.575292i 0.804889π-0.804889\pi
−0.817948 + 0.575292i 0.804889π0.804889\pi
3030 2.02152e8 0.0506278
3131 8.56915e9 1.73415 0.867075 0.498178i 0.165997π-0.165997\pi
0.867075 + 0.498178i 0.165997π0.165997\pi
3232 8.49618e9 1.39878
3333 2.33680e10 3.14979
3434 6.47257e9 0.718562
3535 −4.95213e7 −0.00455355
3636 4.16849e10 3.19163
3737 6.61988e9 0.424169 0.212084 0.977251i 0.431975π-0.431975\pi
0.212084 + 0.977251i 0.431975π0.431975\pi
3838 −1.19041e10 −0.641364
3939 1.66789e9 0.0759011
4040 −1.85973e8 −0.00717893
4141 1.28318e9 0.0421884 0.0210942 0.999777i 0.493285π-0.493285\pi
0.0210942 + 0.999777i 0.493285π0.493285\pi
4242 −2.55274e10 −0.717607
4343 7.65409e10 1.84650 0.923248 0.384204i 0.125524π-0.125524\pi
0.923248 + 0.384204i 0.125524π0.125524\pi
4444 −1.02295e11 −2.12526
4545 2.51688e9 0.0451836
4646 8.69506e10 1.35315
4747 −6.38396e10 −0.863881 −0.431941 0.901902i 0.642171π-0.642171\pi
−0.431941 + 0.901902i 0.642171π0.642171\pi
4848 1.05438e11 1.24431
4949 −9.06355e10 −0.935457
5050 1.66266e11 1.50486
5151 1.12554e11 0.895682
5252 −7.30132e9 −0.0512130
5353 −5.66925e10 −0.351344 −0.175672 0.984449i 0.556210π-0.556210\pi
−0.175672 + 0.984449i 0.556210π0.556210\pi
5454 7.82746e11 4.29597
5555 −6.17644e9 −0.0300871
5656 2.34844e10 0.101755
5757 −2.07005e11 −0.799455
5858 7.13961e11 2.46259
5959 1.77115e11 0.546661 0.273331 0.961920i 0.411875π-0.411875\pi
0.273331 + 0.961920i 0.411875π0.411875\pi
6060 −1.53884e10 −0.0425805
6161 1.00419e11 0.249557 0.124779 0.992185i 0.460178π-0.460178\pi
0.124779 + 0.992185i 0.460178π0.460178\pi
6262 −1.16753e12 −2.61050
6363 −3.17827e11 −0.640439
6464 −7.93029e11 −1.44251
6565 −4.40844e8 −0.000725017 0
6666 −3.18386e12 −4.74152
6767 −1.82171e11 −0.246033 −0.123016 0.992405i 0.539257π-0.539257\pi
−0.123016 + 0.992405i 0.539257π0.539257\pi
6868 −4.92712e11 −0.604345
6969 1.51201e12 1.68669
7070 6.74720e9 0.00685467
7171 −2.29472e11 −0.212594 −0.106297 0.994334i 0.533899π-0.533899\pi
−0.106297 + 0.994334i 0.533899π0.533899\pi
7272 −1.19357e12 −1.00969
7373 8.52469e11 0.659295 0.329648 0.944104i 0.393070π-0.393070\pi
0.329648 + 0.944104i 0.393070π0.393070\pi
7474 −9.01948e11 −0.638521
7575 2.89125e12 1.87580
7676 9.06179e11 0.539418
7777 7.79952e11 0.426460
7878 −2.27248e11 −0.114258
7979 −1.12377e12 −0.520119 −0.260060 0.965593i 0.583742π-0.583742\pi
−0.260060 + 0.965593i 0.583742π0.583742\pi
8080 −2.78685e10 −0.0118858
8181 7.20366e12 2.83400
8282 −1.74832e11 −0.0635082
8383 −2.74958e12 −0.923120 −0.461560 0.887109i 0.652710π-0.652710\pi
−0.461560 + 0.887109i 0.652710π0.652710\pi
8484 1.94323e12 0.603542
8585 −2.97493e10 −0.00855566
8686 −1.04286e13 −2.77962
8787 1.24153e13 3.06960
8888 2.92904e12 0.672339
8989 −7.83448e12 −1.67099 −0.835497 0.549495i 0.814820π-0.814820\pi
−0.835497 + 0.549495i 0.814820π0.814820\pi
9090 −3.42921e11 −0.0680170
9191 5.56691e10 0.0102765
9292 −6.61895e12 −1.13807
9393 −2.03026e13 −3.25397
9494 8.69805e12 1.30044
9595 5.47139e10 0.00763650
9696 −2.01297e13 −2.62467
9797 −2.16953e12 −0.264454 −0.132227 0.991219i 0.542213π-0.542213\pi
−0.132227 + 0.991219i 0.542213π0.542213\pi
9898 1.23490e13 1.40819
9999 −3.96404e13 −4.23164
100100 −1.26566e13 −1.26566
101101 1.27709e13 1.19711 0.598555 0.801082i 0.295742π-0.295742\pi
0.598555 + 0.801082i 0.295742π0.295742\pi
102102 −1.53353e13 −1.34831
103103 −2.12732e13 −1.75546 −0.877729 0.479158i 0.840942π-0.840942\pi
−0.877729 + 0.479158i 0.840942π0.840942\pi
104104 2.09061e11 0.0162015
105105 1.17329e11 0.00854429
106106 7.72427e12 0.528895
107107 8.67980e12 0.559133 0.279567 0.960126i 0.409809π-0.409809\pi
0.279567 + 0.960126i 0.409809π0.409809\pi
108108 −5.95850e13 −3.61312
109109 −2.40084e13 −1.37117 −0.685583 0.727994i 0.740453π-0.740453\pi
−0.685583 + 0.727994i 0.740453π0.740453\pi
110110 8.41531e11 0.0452916
111111 −1.56843e13 −0.795912
112112 3.51919e12 0.168471
113113 8.09782e11 0.0365896 0.0182948 0.999833i 0.494176π-0.494176\pi
0.0182948 + 0.999833i 0.494176π0.494176\pi
114114 2.82041e13 1.20346
115115 −3.99643e11 −0.0161115
116116 −5.43489e13 −2.07116
117117 −2.82933e12 −0.101971
118118 −2.41317e13 −0.822915
119119 3.75670e12 0.121269
120120 4.40620e11 0.0134706
121121 6.27552e13 1.81780
122122 −1.36819e13 −0.375670
123123 −3.04021e12 −0.0791625
124124 8.88762e13 2.19556
125125 −1.52863e12 −0.0358415
126126 4.33035e13 0.964083
127127 5.37622e13 1.13698 0.568490 0.822690i 0.307528π-0.307528\pi
0.568490 + 0.822690i 0.307528π0.307528\pi
128128 3.84483e13 0.772702
129129 −1.81346e14 −3.46477
130130 6.00643e10 0.00109140
131131 −7.04996e13 −1.21877 −0.609387 0.792873i 0.708584π-0.708584\pi
−0.609387 + 0.792873i 0.708584π0.708584\pi
132132 2.42365e14 3.98785
133133 −6.90919e12 −0.108241
134134 2.48205e13 0.370365
135135 −3.59766e12 −0.0511506
136136 1.41079e13 0.191188
137137 −6.77775e13 −0.875794 −0.437897 0.899025i 0.644277π-0.644277\pi
−0.437897 + 0.899025i 0.644277π0.644277\pi
138138 −2.06009e14 −2.53906
139139 −9.87016e13 −1.16072 −0.580361 0.814360i 0.697088π-0.697088\pi
−0.580361 + 0.814360i 0.697088π0.697088\pi
140140 −5.13618e11 −0.00576511
141141 1.51253e14 1.62099
142142 3.12652e13 0.320027
143143 6.94322e12 0.0679011
144144 −1.78860e14 −1.67169
145145 −3.28151e12 −0.0293212
146146 −1.16148e14 −0.992468
147147 2.14740e14 1.75530
148148 6.86591e13 0.537028
149149 9.85241e12 0.0737619 0.0368809 0.999320i 0.488258π-0.488258\pi
0.0368809 + 0.999320i 0.488258π0.488258\pi
150150 −3.93928e14 −2.82373
151151 −1.83204e14 −1.25772 −0.628860 0.777518i 0.716478π-0.716478\pi
−0.628860 + 0.777518i 0.716478π0.716478\pi
152152 −2.59469e13 −0.170648
153153 −1.90931e14 −1.20332
154154 −1.06267e14 −0.641970
155155 5.36623e12 0.0310823
156156 1.72988e13 0.0960962
157157 −1.53477e13 −0.0817890 −0.0408945 0.999163i 0.513021π-0.513021\pi
−0.0408945 + 0.999163i 0.513021π0.513021\pi
158158 1.53113e14 0.782960
159159 1.34320e14 0.659264
160160 5.32053e12 0.0250712
161161 5.04663e13 0.228367
162162 −9.81487e14 −4.26616
163163 7.53023e12 0.0314477 0.0157238 0.999876i 0.494995π-0.494995\pi
0.0157238 + 0.999876i 0.494995π0.494995\pi
164164 1.33087e13 0.0534135
165165 1.46337e13 0.0564556
166166 3.74626e14 1.38962
167167 4.88678e14 1.74327 0.871637 0.490152i 0.163059π-0.163059\pi
0.871637 + 0.490152i 0.163059π0.163059\pi
168168 −5.56409e13 −0.190934
169169 −3.02380e14 −0.998364
170170 4.05330e12 0.0128792
171171 3.51153e14 1.07404
172172 7.93855e14 2.33779
173173 −3.98296e14 −1.12955 −0.564777 0.825244i 0.691038π-0.691038\pi
−0.564777 + 0.825244i 0.691038π0.691038\pi
174174 −1.69157e15 −4.62082
175175 9.65009e13 0.253971
176176 4.38924e14 1.11316
177177 −4.19634e14 −1.02576
178178 1.06744e15 2.51543
179179 −1.65770e14 −0.376670 −0.188335 0.982105i 0.560309π-0.560309\pi
−0.188335 + 0.982105i 0.560309π0.560309\pi
180180 2.61042e13 0.0572056
181181 −5.03538e14 −1.06444 −0.532221 0.846606i 0.678642π-0.678642\pi
−0.532221 + 0.846606i 0.678642π0.678642\pi
182182 −7.58484e12 −0.0154697
183183 −2.37919e14 −0.468270
184184 1.89522e14 0.360034
185185 4.14554e12 0.00760265
186186 2.76620e15 4.89835
187187 4.68546e14 0.801276
188188 −6.62122e14 −1.09373
189189 4.54308e14 0.725017
190190 −7.45468e12 −0.0114956
191191 −6.71364e14 −1.00056 −0.500278 0.865865i 0.666769π-0.666769\pi
−0.500278 + 0.865865i 0.666769π0.666769\pi
192192 1.87890e15 2.70673
193193 −1.88722e14 −0.262845 −0.131422 0.991326i 0.541954π-0.541954\pi
−0.131422 + 0.991326i 0.541954π0.541954\pi
194194 2.95595e14 0.398095
195195 1.04448e12 0.00136042
196196 −9.40040e14 −1.18435
197197 5.84517e13 0.0712470
198198 5.40094e15 6.37009
199199 2.61523e14 0.298514 0.149257 0.988798i 0.452312π-0.452312\pi
0.149257 + 0.988798i 0.452312π0.452312\pi
200200 3.62401e14 0.400400
201201 4.31612e14 0.461657
202202 −1.74002e15 −1.80207
203203 4.14385e14 0.415604
204204 1.16737e15 1.13400
205205 8.03563e11 0.000756170 0
206206 2.89844e15 2.64257
207207 −2.56491e15 −2.26602
208208 3.13282e13 0.0268241
209209 −8.61734e14 −0.715192
210210 −1.59859e13 −0.0128621
211211 2.50873e15 1.95712 0.978561 0.205958i 0.0660312π-0.0660312\pi
0.978561 + 0.205958i 0.0660312π0.0660312\pi
212212 −5.87995e14 −0.444826
213213 5.43681e14 0.398912
214214 −1.18261e15 −0.841690
215215 4.79319e13 0.0330959
216216 1.70611e15 1.14303
217217 −6.77639e14 −0.440565
218218 3.27110e15 2.06408
219219 −2.01973e15 −1.23710
220220 −6.40599e13 −0.0380925
221221 3.34425e13 0.0193085
222222 2.13696e15 1.19812
223223 −3.56146e15 −1.93931 −0.969654 0.244481i 0.921382π-0.921382\pi
−0.969654 + 0.244481i 0.921382π0.921382\pi
224224 −6.71869e14 −0.355363
225225 −4.90457e15 −2.52008
226226 −1.10332e14 −0.0550801
227227 −2.83498e15 −1.37525 −0.687625 0.726066i 0.741347π-0.741347\pi
−0.687625 + 0.726066i 0.741347π0.741347\pi
228228 −2.14698e15 −1.01217
229229 −2.34206e15 −1.07317 −0.536583 0.843847i 0.680285π-0.680285\pi
−0.536583 + 0.843847i 0.680285π0.680285\pi
230230 5.44508e13 0.0242534
231231 −1.84792e15 −0.800211
232232 1.55619e15 0.655224
233233 3.02838e15 1.23993 0.619965 0.784630i 0.287147π-0.287147\pi
0.619965 + 0.784630i 0.287147π0.287147\pi
234234 3.85492e14 0.153502
235235 −3.99780e13 −0.0154839
236236 1.83698e15 0.692112
237237 2.66252e15 0.975954
238238 −5.11844e14 −0.182552
239239 3.12486e15 1.08454 0.542268 0.840206i 0.317566π-0.317566\pi
0.542268 + 0.840206i 0.317566π0.317566\pi
240240 6.60280e13 0.0223026
241241 3.53540e15 1.16233 0.581163 0.813787i 0.302598π-0.302598\pi
0.581163 + 0.813787i 0.302598π0.302598\pi
242242 −8.55030e15 −2.73641
243243 −7.90804e15 −2.46393
244244 1.04151e15 0.315957
245245 −5.67584e13 −0.0167668
246246 4.14223e14 0.119167
247247 −6.15063e13 −0.0172341
248248 −2.54481e15 −0.694577
249249 6.51449e15 1.73215
250250 2.08273e14 0.0539540
251251 −3.28125e15 −0.828248 −0.414124 0.910220i 0.635912π-0.635912\pi
−0.414124 + 0.910220i 0.635912π0.635912\pi
252252 −3.29639e15 −0.810841
253253 6.29431e15 1.50891
254254 −7.32502e15 −1.71155
255255 7.04841e13 0.0160539
256256 1.25797e15 0.279326
257257 −4.88124e15 −1.05673 −0.528366 0.849017i 0.677195π-0.677195\pi
−0.528366 + 0.849017i 0.677195π0.677195\pi
258258 2.47081e16 5.21569
259259 −5.23493e14 −0.107761
260260 −4.57228e12 −0.000917923 0
261261 −2.10607e16 −4.12392
262262 9.60546e15 1.83468
263263 −6.94251e15 −1.29361 −0.646806 0.762655i 0.723896π-0.723896\pi
−0.646806 + 0.762655i 0.723896π0.723896\pi
264264 −6.93969e15 −1.26158
265265 −3.55024e13 −0.00629737
266266 9.41366e14 0.162940
267267 1.85620e16 3.13546
268268 −1.88941e15 −0.311495
269269 −6.84319e15 −1.10121 −0.550603 0.834767i 0.685602π-0.685602\pi
−0.550603 + 0.834767i 0.685602π0.685602\pi
270270 4.90176e14 0.0769995
271271 −1.06166e15 −0.162811 −0.0814054 0.996681i 0.525941π-0.525941\pi
−0.0814054 + 0.996681i 0.525941π0.525941\pi
272272 2.11411e15 0.316541
273273 −1.31895e14 −0.0192829
274274 9.23459e15 1.31837
275275 1.20359e16 1.67809
276276 1.56821e16 2.13547
277277 −2.08301e15 −0.277060 −0.138530 0.990358i 0.544238π-0.544238\pi
−0.138530 + 0.990358i 0.544238π0.544238\pi
278278 1.34479e16 1.74729
279279 3.44404e16 4.37160
280280 1.47065e13 0.00182383
281281 −9.15500e15 −1.10935 −0.554673 0.832068i 0.687157π-0.687157\pi
−0.554673 + 0.832068i 0.687157π0.687157\pi
282282 −2.06080e16 −2.44015
283283 −6.75751e15 −0.781943 −0.390971 0.920403i 0.627861π-0.627861\pi
−0.390971 + 0.920403i 0.627861π0.627861\pi
284284 −2.38000e15 −0.269159
285285 −1.29632e14 −0.0143292
286286 −9.46003e14 −0.102215
287287 −1.01473e14 −0.0107181
288288 3.41471e16 3.52617
289289 −7.64779e15 −0.772147
290290 4.47101e14 0.0441386
291291 5.14020e15 0.496222
292292 8.84151e15 0.834714
293293 −6.83001e14 −0.0630641 −0.0315320 0.999503i 0.510039π-0.510039\pi
−0.0315320 + 0.999503i 0.510039π0.510039\pi
294294 −2.92580e16 −2.64233
295295 1.10914e14 0.00979816
296296 −1.96593e15 −0.169892
297297 5.66626e16 4.79048
298298 −1.34238e15 −0.111037
299299 4.49257e14 0.0363607
300300 2.99870e16 2.37490
301301 −6.05277e15 −0.469107
302302 2.49612e16 1.89331
303303 −3.02578e16 −2.24626
304304 −3.88820e15 −0.282534
305305 6.28848e13 0.00447297
306306 2.60140e16 1.81142
307307 1.98495e16 1.35316 0.676582 0.736368i 0.263461π-0.263461\pi
0.676582 + 0.736368i 0.263461π0.263461\pi
308308 8.08939e15 0.539928
309309 5.04019e16 3.29395
310310 −7.31140e14 −0.0467896
311311 −2.14229e16 −1.34256 −0.671282 0.741202i 0.734256π-0.734256\pi
−0.671282 + 0.741202i 0.734256π0.734256\pi
312312 −4.95321e14 −0.0304006
313313 2.45494e16 1.47572 0.737859 0.674955i 0.235837π-0.235837\pi
0.737859 + 0.674955i 0.235837π0.235837\pi
314314 2.09110e15 0.123121
315315 −1.99032e14 −0.0114790
316316 −1.16554e16 −0.658508
317317 −1.24886e16 −0.691242 −0.345621 0.938374i 0.612332π-0.612332\pi
−0.345621 + 0.938374i 0.612332π0.612332\pi
318318 −1.83009e16 −0.992421
319319 5.16833e16 2.74606
320320 −4.96616e14 −0.0258551
321321 −2.05648e16 −1.04916
322322 −6.87596e15 −0.343772
323323 −4.15061e15 −0.203374
324324 7.47138e16 3.58805
325325 8.59061e14 0.0404373
326326 −1.02598e15 −0.0473397
327327 5.68823e16 2.57286
328328 −3.81072e14 −0.0168977
329329 5.04837e15 0.219471
330330 −1.99381e15 −0.0849854
331331 −2.01808e16 −0.843444 −0.421722 0.906725i 0.638574π-0.638574\pi
−0.421722 + 0.906725i 0.638574π0.638574\pi
332332 −2.85177e16 −1.16874
333333 2.66061e16 1.06928
334334 −6.65816e16 −2.62423
335335 −1.14080e14 −0.00440981
336336 −8.33792e15 −0.316120
337337 −4.21449e16 −1.56729 −0.783647 0.621206i 0.786643π-0.786643\pi
−0.783647 + 0.621206i 0.786643π0.786643\pi
338338 4.11988e16 1.50288
339339 −1.91859e15 −0.0686569
340340 −3.08549e14 −0.0108321
341341 −8.45171e16 −2.91099
342342 −4.78441e16 −1.61681
343343 1.48292e16 0.491708
344344 −2.27307e16 −0.739575
345345 9.46862e14 0.0302317
346346 5.42673e16 1.70037
347347 −4.66388e16 −1.43419 −0.717094 0.696977i 0.754528π-0.754528\pi
−0.717094 + 0.696977i 0.754528π0.754528\pi
348348 1.28767e17 3.88633
349349 −2.41535e16 −0.715508 −0.357754 0.933816i 0.616457π-0.616457\pi
−0.357754 + 0.933816i 0.616457π0.616457\pi
350350 −1.31481e16 −0.382314
351351 4.04429e15 0.115437
352352 −8.37975e16 −2.34803
353353 2.55915e16 0.703980 0.351990 0.936004i 0.385505π-0.385505\pi
0.351990 + 0.936004i 0.385505π0.385505\pi
354354 5.71745e16 1.54412
355355 −1.43701e14 −0.00381045
356356 −8.12564e16 −2.11560
357357 −8.90063e15 −0.227550
358358 2.25859e16 0.567019
359359 −6.99003e15 −0.172332 −0.0861659 0.996281i 0.527462π-0.527462\pi
−0.0861659 + 0.996281i 0.527462π0.527462\pi
360360 −7.47447e14 −0.0180973
361361 −3.44193e16 −0.818475
362362 6.86064e16 1.60235
363363 −1.48684e17 −3.41092
364364 5.77381e14 0.0130108
365365 5.33839e14 0.0118170
366366 3.24161e16 0.704909
367367 4.72910e16 1.01030 0.505149 0.863032i 0.331438π-0.331438\pi
0.505149 + 0.863032i 0.331438π0.331438\pi
368368 2.84003e16 0.596091
369369 5.15726e15 0.106352
370370 −5.64824e14 −0.0114446
371371 4.48319e15 0.0892599
372372 −2.10572e17 −4.11975
373373 −4.10822e15 −0.0789854 −0.0394927 0.999220i 0.512574π-0.512574\pi
−0.0394927 + 0.999220i 0.512574π0.512574\pi
374374 −6.38387e16 −1.20620
375375 3.62173e15 0.0672532
376376 1.89587e16 0.346009
377377 3.68890e15 0.0661725
378378 −6.18987e16 −1.09140
379379 −1.00785e16 −0.174678 −0.0873392 0.996179i 0.527836π-0.527836\pi
−0.0873392 + 0.996179i 0.527836π0.527836\pi
380380 5.67473e14 0.00966834
381381 −1.27377e17 −2.13343
382382 9.14723e16 1.50618
383383 7.10771e16 1.15064 0.575318 0.817930i 0.304878π-0.304878\pi
0.575318 + 0.817930i 0.304878π0.304878\pi
384384 −9.10944e16 −1.44990
385385 4.88427e14 0.00764372
386386 2.57131e16 0.395673
387387 3.07627e17 4.65482
388388 −2.25016e16 −0.334817
389389 −1.03822e17 −1.51920 −0.759602 0.650388i 0.774606π-0.774606\pi
−0.759602 + 0.650388i 0.774606π0.774606\pi
390390 −1.42309e14 −0.00204791
391391 3.03170e16 0.429079
392392 2.69164e16 0.374677
393393 1.67032e17 2.28691
394394 −7.96396e15 −0.107252
395395 −7.03737e14 −0.00932243
396396 −4.11136e17 −5.35756
397397 −1.30696e17 −1.67543 −0.837713 0.546111i 0.816108π-0.816108\pi
−0.837713 + 0.546111i 0.816108π0.816108\pi
398398 −3.56321e16 −0.449367
399399 1.63697e16 0.203104
400400 5.43066e16 0.662923
401401 −3.71176e16 −0.445802 −0.222901 0.974841i 0.571553π-0.571553\pi
−0.222901 + 0.974841i 0.571553π0.571553\pi
402402 −5.88065e16 −0.694954
403403 −6.03242e15 −0.0701469
404404 1.32456e17 1.51563
405405 4.51112e15 0.0507957
406406 −5.64593e16 −0.625628
407407 −6.52916e16 −0.712022
408408 −3.34255e16 −0.358746
409409 −1.28149e17 −1.35367 −0.676834 0.736136i 0.736648π-0.736648\pi
−0.676834 + 0.736136i 0.736648π0.736648\pi
410410 −1.09484e14 −0.00113830
411411 1.60583e17 1.64334
412412 −2.20638e17 −2.22253
413413 −1.40061e16 −0.138881
414414 3.49465e17 3.41115
415415 −1.72186e15 −0.0165457
416416 −5.98105e15 −0.0565810
417417 2.33851e17 2.17798
418418 1.17410e17 1.07661
419419 −1.09499e17 −0.988593 −0.494297 0.869293i 0.664574π-0.664574\pi
−0.494297 + 0.869293i 0.664574π0.664574\pi
420420 1.21690e15 0.0108177
421421 −1.48757e17 −1.30210 −0.651049 0.759035i 0.725671π-0.725671\pi
−0.651049 + 0.759035i 0.725671π0.725671\pi
422422 −3.41811e17 −2.94615
423423 −2.56579e17 −2.17775
424424 1.68362e16 0.140723
425425 5.79717e16 0.477186
426426 −7.40757e16 −0.600501
427427 −7.94099e15 −0.0634006
428428 9.00239e16 0.707902
429429 −1.64504e16 −0.127410
430430 −6.53065e15 −0.0498209
431431 5.40844e16 0.406415 0.203207 0.979136i 0.434863π-0.434863\pi
0.203207 + 0.979136i 0.434863π0.434863\pi
432432 2.55665e17 1.89246
433433 −1.87138e17 −1.36455 −0.682276 0.731095i 0.739010π-0.739010\pi
−0.682276 + 0.731095i 0.739010π0.739010\pi
434434 9.23273e16 0.663204
435435 7.77479e15 0.0550185
436436 −2.49006e17 −1.73599
437437 −5.57580e16 −0.382982
438438 2.75185e17 1.86227
439439 −2.28784e17 −1.52548 −0.762740 0.646705i 0.776147π-0.776147\pi
−0.762740 + 0.646705i 0.776147π0.776147\pi
440440 1.83424e15 0.0120508
441441 −3.64275e17 −2.35819
442442 −4.55649e15 −0.0290660
443443 1.62704e17 1.02276 0.511379 0.859355i 0.329135π-0.329135\pi
0.511379 + 0.859355i 0.329135π0.329135\pi
444444 −1.62672e17 −1.00768
445445 −4.90616e15 −0.0299503
446446 4.85244e17 2.91933
447447 −2.33430e16 −0.138407
448448 6.27119e16 0.366474
449449 −1.11714e17 −0.643440 −0.321720 0.946835i 0.604261π-0.604261\pi
−0.321720 + 0.946835i 0.604261π0.604261\pi
450450 6.68240e17 3.79360
451451 −1.26560e16 −0.0708187
452452 8.39877e15 0.0463251
453453 4.34059e17 2.35999
454454 3.86261e17 2.07023
455455 3.48615e13 0.000184192 0
456456 6.14751e16 0.320205
457457 −2.37317e17 −1.21863 −0.609317 0.792927i 0.708556π-0.708556\pi
−0.609317 + 0.792927i 0.708556π0.708556\pi
458458 3.19102e17 1.61549
459459 2.72919e17 1.36223
460460 −4.14496e15 −0.0203983
461461 1.04990e17 0.509437 0.254718 0.967015i 0.418017π-0.418017\pi
0.254718 + 0.967015i 0.418017π0.418017\pi
462462 2.51776e17 1.20460
463463 1.64857e17 0.777733 0.388867 0.921294i 0.372867π-0.372867\pi
0.388867 + 0.921294i 0.372867π0.372867\pi
464464 2.33198e17 1.08482
465465 −1.27140e16 −0.0583229
466466 −4.12612e17 −1.86652
467467 2.68820e16 0.119923 0.0599615 0.998201i 0.480902π-0.480902\pi
0.0599615 + 0.998201i 0.480902π0.480902\pi
468468 −2.93449e16 −0.129102
469469 1.44059e16 0.0625053
470470 5.44695e15 0.0233087
471471 3.63628e16 0.153469
472472 −5.25987e16 −0.218953
473473 −7.54919e17 −3.09958
474474 −3.62765e17 −1.46915
475475 −1.06620e17 −0.425920
476476 3.89631e16 0.153536
477477 −2.27854e17 −0.885701
478478 −4.25757e17 −1.63260
479479 −4.10601e17 −1.55324 −0.776622 0.629967i 0.783068π-0.783068\pi
−0.776622 + 0.629967i 0.783068π0.783068\pi
480480 −1.26058e16 −0.0470437
481481 −4.66019e15 −0.0171578
482482 −4.81693e17 −1.74970
483483 −1.19568e17 −0.428509
484484 6.50875e17 2.30146
485485 −1.35862e15 −0.00473997
486486 1.07746e18 3.70907
487487 1.18143e17 0.401300 0.200650 0.979663i 0.435695π-0.435695\pi
0.200650 + 0.979663i 0.435695π0.435695\pi
488488 −2.98217e16 −0.0999548
489489 −1.78411e16 −0.0590085
490490 7.73324e15 0.0252399
491491 5.16001e17 1.66196 0.830981 0.556301i 0.187780π-0.187780\pi
0.830981 + 0.556301i 0.187780π0.187780\pi
492492 −3.15319e16 −0.100225
493493 2.48936e17 0.780878
494494 8.38015e15 0.0259434
495495 −2.48238e16 −0.0758464
496496 −3.81347e17 −1.14998
497497 1.81464e16 0.0540100
498498 −8.87589e17 −2.60748
499499 4.36609e16 0.126601 0.0633007 0.997994i 0.479837π-0.479837\pi
0.0633007 + 0.997994i 0.479837π0.479837\pi
500500 −1.58544e16 −0.0453779
501501 −1.15781e18 −3.27109
502502 4.47066e17 1.24680
503503 3.25378e17 0.895769 0.447884 0.894092i 0.352178π-0.352178\pi
0.447884 + 0.894092i 0.352178π0.352178\pi
504504 9.43865e16 0.256514
505505 7.99750e15 0.0214566
506506 −8.57590e17 −2.27144
507507 7.16419e17 1.87333
508508 5.57603e17 1.43950
509509 1.57153e17 0.400551 0.200276 0.979740i 0.435816π-0.435816\pi
0.200276 + 0.979740i 0.435816π0.435816\pi
510510 −9.60335e15 −0.0241667
511511 −6.74123e16 −0.167496
512512 −4.86365e17 −1.19319
513513 −5.01944e17 −1.21588
514514 6.65061e17 1.59075
515515 −1.33218e16 −0.0314642
516516 −1.88086e18 −4.38665
517517 6.29647e17 1.45014
518518 7.13251e16 0.162218
519519 9.43672e17 2.11950
520520 1.30919e14 0.000290390 0
521521 −6.48115e17 −1.41973 −0.709866 0.704336i 0.751245π-0.751245\pi
−0.709866 + 0.704336i 0.751245π0.751245\pi
522522 2.86949e18 6.20793
523523 3.56821e17 0.762412 0.381206 0.924490i 0.375509π-0.375509\pi
0.381206 + 0.924490i 0.375509π0.375509\pi
524524 −7.31197e17 −1.54305
525525 −2.28637e17 −0.476552
526526 9.45906e17 1.94733
527527 −4.07083e17 −0.827778
528528 −1.03993e18 −2.08874
529529 −9.67668e16 −0.191984
530530 4.83714e15 0.00947973
531531 7.11847e17 1.37807
532532 −7.16597e16 −0.137041
533533 −9.03321e14 −0.00170654
534534 −2.52904e18 −4.71996
535535 5.43552e15 0.0100217
536536 5.41001e16 0.0985432
537537 3.92754e17 0.706785
538538 9.32374e17 1.65770
539539 8.93934e17 1.57029
540540 −3.73137e16 −0.0647603
541541 3.67709e17 0.630554 0.315277 0.949000i 0.397903π-0.397903\pi
0.315277 + 0.949000i 0.397903π0.397903\pi
542542 1.44649e17 0.245087
543543 1.19302e18 1.99732
544544 −4.03617e17 −0.667692
545545 −1.50347e16 −0.0245763
546546 1.79705e16 0.0290274
547547 1.05798e18 1.68873 0.844366 0.535766i 0.179977π-0.179977\pi
0.844366 + 0.535766i 0.179977π0.179977\pi
548548 −7.02965e17 −1.10882
549549 4.03594e17 0.629107
550550 −1.63987e18 −2.52611
551551 −4.57835e17 −0.696985
552552 −4.49029e17 −0.675569
553553 8.88669e16 0.132138
554554 2.83808e17 0.417072
555555 −9.82191e15 −0.0142656
556556 −1.02370e18 −1.46956
557557 −2.26477e17 −0.321340 −0.160670 0.987008i 0.551365π-0.551365\pi
−0.160670 + 0.987008i 0.551365π0.551365\pi
558558 −4.69245e18 −6.58078
559559 −5.38824e16 −0.0746914
560560 2.20381e15 0.00301962
561561 −1.11011e18 −1.50352
562562 1.24735e18 1.66995
563563 5.10889e17 0.676117 0.338058 0.941125i 0.390230π-0.390230\pi
0.338058 + 0.941125i 0.390230π0.390230\pi
564564 1.56875e18 2.05229
565565 5.07107e14 0.000655820 0
566566 9.20701e17 1.17710
567567 −5.69658e17 −0.719986
568568 6.81472e16 0.0851499
569569 2.78542e17 0.344081 0.172040 0.985090i 0.444964π-0.444964\pi
0.172040 + 0.985090i 0.444964π0.444964\pi
570570 1.76622e16 0.0215704
571571 1.03530e17 0.125006 0.0625029 0.998045i 0.480092π-0.480092\pi
0.0625029 + 0.998045i 0.480092π0.480092\pi
572572 7.20126e16 0.0859675
573573 1.59064e18 1.87745
574574 1.38255e16 0.0161344
575575 7.78774e17 0.898608
576576 −3.18728e18 −3.63642
577577 −7.51933e16 −0.0848274 −0.0424137 0.999100i 0.513505π-0.513505\pi
−0.0424137 + 0.999100i 0.513505π0.513505\pi
578578 1.04200e18 1.16235
579579 4.47133e17 0.493203
580580 −3.40347e16 −0.0371227
581581 2.17434e17 0.234521
582582 −7.00345e17 −0.746986
583583 5.59156e17 0.589776
584584 −2.53161e17 −0.264067
585585 −1.77180e15 −0.00182769
586586 9.30579e16 0.0949334
587587 −3.03752e17 −0.306459 −0.153229 0.988191i 0.548967π-0.548967\pi
−0.153229 + 0.988191i 0.548967π0.548967\pi
588588 2.22721e18 2.22233
589589 7.48693e17 0.738847
590590 −1.51119e16 −0.0147496
591591 −1.38488e17 −0.133688
592592 −2.94600e17 −0.281282
593593 9.79565e17 0.925077 0.462538 0.886599i 0.346939π-0.346939\pi
0.462538 + 0.886599i 0.346939π0.346939\pi
594594 −7.72019e18 −7.21134
595595 2.35254e15 0.00217359
596596 1.02186e17 0.0933877
597597 −6.19618e17 −0.560132
598598 −6.12106e16 −0.0547355
599599 −6.42197e17 −0.568059 −0.284030 0.958815i 0.591671π-0.591671\pi
−0.284030 + 0.958815i 0.591671π0.591671\pi
600600 −8.58625e17 −0.751312
601601 1.01195e17 0.0875940 0.0437970 0.999040i 0.486055π-0.486055\pi
0.0437970 + 0.999040i 0.486055π0.486055\pi
602602 8.24681e17 0.706169
603603 −7.32167e17 −0.620222
604604 −1.90012e18 −1.59236
605605 3.92990e16 0.0325815
606606 4.12258e18 3.38140
607607 4.63457e17 0.376082 0.188041 0.982161i 0.439786π-0.439786\pi
0.188041 + 0.982161i 0.439786π0.439786\pi
608608 7.42318e17 0.595959
609609 −9.81789e17 −0.779840
610610 −8.56795e15 −0.00673338
611611 4.49411e16 0.0349443
612612 −1.98027e18 −1.52349
613613 −1.47621e18 −1.12371 −0.561854 0.827236i 0.689912π-0.689912\pi
−0.561854 + 0.827236i 0.689912π0.689912\pi
614614 −2.70446e18 −2.03698
615615 −1.90386e15 −0.00141888
616616 −2.31626e17 −0.170809
617617 −7.11214e17 −0.518975 −0.259488 0.965746i 0.583554π-0.583554\pi
−0.259488 + 0.965746i 0.583554π0.583554\pi
618618 −6.86718e18 −4.95853
619619 −7.83011e16 −0.0559472 −0.0279736 0.999609i 0.508905π-0.508905\pi
−0.0279736 + 0.999609i 0.508905π0.508905\pi
620620 5.56566e16 0.0393524
621621 3.66632e18 2.56528
622622 2.91883e18 2.02102
623623 6.19542e17 0.424520
624624 −7.42251e16 −0.0503328
625625 1.48868e18 0.999036
626626 −3.34482e18 −2.22147
627627 2.04168e18 1.34199
628628 −1.59181e17 −0.103551
629629 −3.14482e17 −0.202473
630630 2.71178e16 0.0172799
631631 −1.43794e18 −0.906878 −0.453439 0.891287i 0.649803π-0.649803\pi
−0.453439 + 0.891287i 0.649803π0.649803\pi
632632 3.33732e17 0.208323
633633 −5.94386e18 −3.67235
634634 1.70156e18 1.04056
635635 3.36673e16 0.0203788
636636 1.39312e18 0.834674
637637 6.38046e16 0.0378395
638638 −7.04177e18 −4.13378
639639 −9.22274e17 −0.535926
640640 2.40773e16 0.0138496
641641 −2.14598e18 −1.22194 −0.610969 0.791655i 0.709220π-0.709220\pi
−0.610969 + 0.791655i 0.709220π0.709220\pi
642642 2.80192e18 1.57935
643643 −4.58616e17 −0.255904 −0.127952 0.991780i 0.540840π-0.540840\pi
−0.127952 + 0.991780i 0.540840π0.540840\pi
644644 5.23419e17 0.289129
645645 −1.13564e17 −0.0621014
646646 5.65514e17 0.306148
647647 −2.06850e18 −1.10861 −0.554303 0.832315i 0.687015π-0.687015\pi
−0.554303 + 0.832315i 0.687015π0.687015\pi
648648 −2.13930e18 −1.13510
649649 −1.74688e18 −0.917641
650650 −1.17046e17 −0.0608722
651651 1.60551e18 0.826678
652652 7.81009e16 0.0398150
653653 −8.97096e17 −0.452797 −0.226398 0.974035i 0.572695π-0.572695\pi
−0.226398 + 0.974035i 0.572695π0.572695\pi
654654 −7.75012e18 −3.87305
655655 −4.41487e16 −0.0218449
656656 −5.71046e16 −0.0279767
657657 3.42617e18 1.66201
658658 −6.87833e17 −0.330381
659659 3.01280e18 1.43290 0.716448 0.697641i 0.245767π-0.245767\pi
0.716448 + 0.697641i 0.245767π0.245767\pi
660660 1.51775e17 0.0714768
661661 −1.28367e18 −0.598609 −0.299305 0.954158i 0.596755π-0.596755\pi
−0.299305 + 0.954158i 0.596755π0.596755\pi
662662 2.74960e18 1.26968
663663 −7.92344e16 −0.0362306
664664 8.16553e17 0.369736
665665 −4.32672e15 −0.00194007
666666 −3.62504e18 −1.60964
667667 3.34414e18 1.47050
668668 5.06840e18 2.20711
669669 8.43807e18 3.63893
670670 1.55433e16 0.00663829
671671 −9.90424e17 −0.418914
672672 1.59184e18 0.666805
673673 1.45837e18 0.605020 0.302510 0.953146i 0.402175π-0.402175\pi
0.302510 + 0.953146i 0.402175π0.402175\pi
674674 5.74218e18 2.35932
675675 7.01067e18 2.85289
676676 −3.13617e18 −1.26400
677677 1.37831e17 0.0550199 0.0275099 0.999622i 0.491242π-0.491242\pi
0.0275099 + 0.999622i 0.491242π0.491242\pi
678678 2.61405e17 0.103353
679679 1.71564e17 0.0671851
680680 8.83477e15 0.00342679
681681 6.71682e18 2.58052
682682 1.15153e19 4.38206
683683 −5.96219e17 −0.224735 −0.112368 0.993667i 0.535843π-0.535843\pi
−0.112368 + 0.993667i 0.535843π0.535843\pi
684684 3.64204e18 1.35982
685685 −4.24441e16 −0.0156974
686686 −2.02046e18 −0.740191
687687 5.54897e18 2.01369
688688 −3.40624e18 −1.22448
689689 3.99098e16 0.0142120
690690 −1.29009e17 −0.0455092
691691 4.94046e18 1.72647 0.863237 0.504799i 0.168433π-0.168433\pi
0.863237 + 0.504799i 0.168433π0.168433\pi
692692 −4.13099e18 −1.43009
693693 3.13472e18 1.07506
694694 6.35447e18 2.15895
695695 −6.18095e16 −0.0208044
696696 −3.68702e18 −1.22946
697697 −6.09584e16 −0.0201382
698698 3.29088e18 1.07709
699699 −7.17505e18 −2.32661
700700 1.00087e18 0.321545
701701 5.50789e18 1.75315 0.876573 0.481269i 0.159824π-0.159824\pi
0.876573 + 0.481269i 0.159824π0.159824\pi
702702 −5.51029e17 −0.173773
703703 5.78384e17 0.180720
704704 7.82161e18 2.42144
705705 9.47188e16 0.0290541
706706 −3.48680e18 −1.05973
707707 −1.00991e18 −0.304129
708708 −4.35230e18 −1.29868
709709 4.79429e18 1.41750 0.708752 0.705458i 0.249259π-0.249259\pi
0.708752 + 0.705458i 0.249259π0.249259\pi
710710 1.95791e16 0.00573606
711711 −4.51658e18 −1.31116
712712 2.32664e18 0.669281
713713 −5.46863e18 −1.55882
714714 1.21270e18 0.342542
715715 4.34803e15 0.00121703
716716 −1.71931e18 −0.476891
717717 −7.40363e18 −2.03503
718718 9.52381e17 0.259419
719719 9.28230e16 0.0250564 0.0125282 0.999922i 0.496012π-0.496012\pi
0.0125282 + 0.999922i 0.496012π0.496012\pi
720720 −1.12007e17 −0.0299628
721721 1.68226e18 0.445978
722722 4.68958e18 1.23209
723723 −8.37632e18 −2.18099
724724 −5.22252e18 −1.34766
725725 6.39460e18 1.63537
726726 2.02580e19 5.13462
727727 5.23730e18 1.31563 0.657815 0.753179i 0.271481π-0.271481\pi
0.657815 + 0.753179i 0.271481π0.271481\pi
728728 −1.65323e16 −0.00411604
729729 7.25132e18 1.78932
730730 −7.27347e16 −0.0177887
731731 −3.63612e18 −0.881406
732732 −2.46761e18 −0.592863
733733 −1.33014e18 −0.316753 −0.158377 0.987379i 0.550626π-0.550626\pi
−0.158377 + 0.987379i 0.550626π0.550626\pi
734734 −6.44333e18 −1.52085
735735 1.34476e17 0.0314613
736736 −5.42207e18 −1.25736
737737 1.79675e18 0.412998
738738 −7.02669e17 −0.160097
739739 6.19070e18 1.39814 0.699071 0.715053i 0.253597π-0.253597\pi
0.699071 + 0.715053i 0.253597π0.253597\pi
740740 4.29961e16 0.00962549
741741 1.45725e17 0.0323382
742742 −6.10827e17 −0.134367
743743 1.12440e18 0.245185 0.122593 0.992457i 0.460879π-0.460879\pi
0.122593 + 0.992457i 0.460879π0.460879\pi
744744 6.02935e18 1.30331
745745 6.16984e15 0.00132208
746746 5.59739e17 0.118900
747747 −1.10509e19 −2.32709
748748 4.85960e18 1.01447
749749 −6.86390e17 −0.142049
750750 −4.93455e17 −0.101239
751751 −3.01610e17 −0.0613460 −0.0306730 0.999529i 0.509765π-0.509765\pi
−0.0306730 + 0.999529i 0.509765π0.509765\pi
752752 2.84101e18 0.572871
753753 7.77417e18 1.55413
754754 −5.02607e17 −0.0996127
755755 −1.14727e17 −0.0225429
756756 4.71192e18 0.917923
757757 6.78214e18 1.30992 0.654958 0.755666i 0.272686π-0.272686\pi
0.654958 + 0.755666i 0.272686π0.272686\pi
758758 1.37317e18 0.262952
759759 −1.49129e19 −2.83133
760760 −1.62486e16 −0.00305864
761761 −1.50584e18 −0.281047 −0.140523 0.990077i 0.544878π-0.544878\pi
−0.140523 + 0.990077i 0.544878π0.544878\pi
762762 1.73549e19 3.21156
763763 1.89856e18 0.348348
764764 −6.96315e18 −1.26677
765765 −1.19566e17 −0.0215679
766766 −9.68415e18 −1.73211
767767 −1.24684e17 −0.0221126
768768 −2.98048e18 −0.524128
769769 8.57909e18 1.49596 0.747980 0.663721i 0.231024π-0.231024\pi
0.747980 + 0.663721i 0.231024π0.231024\pi
770770 −6.65474e16 −0.0115064
771771 1.15650e19 1.98285
772772 −1.95736e18 −0.332780
773773 −7.00576e18 −1.18110 −0.590552 0.806999i 0.701090π-0.701090\pi
−0.590552 + 0.806999i 0.701090π0.701090\pi
774774 −4.19137e19 −7.00712
775775 −1.04570e19 −1.73359
776776 6.44294e17 0.105921
777777 1.24030e18 0.202204
778778 1.41456e19 2.28693
779779 1.12113e17 0.0179747
780780 1.08330e16 0.00172239
781781 2.26327e18 0.356866
782782 −4.13065e18 −0.645913
783783 3.01045e19 4.66853
784784 4.03349e18 0.620335
785785 −9.61111e15 −0.00146596
786786 −2.27579e19 −3.44260
787787 3.27393e18 0.491172 0.245586 0.969375i 0.421020π-0.421020\pi
0.245586 + 0.969375i 0.421020π0.421020\pi
788788 6.06241e17 0.0902038
789789 1.64487e19 2.42734
790790 9.58831e16 0.0140335
791791 −6.40367e16 −0.00929569
792792 1.17722e19 1.69489
793793 −7.06916e16 −0.0100947
794794 1.78072e19 2.52210
795795 8.41147e16 0.0118164
796796 2.71242e18 0.377939
797797 5.28257e18 0.730072 0.365036 0.930993i 0.381057π-0.381057\pi
0.365036 + 0.930993i 0.381057π0.381057\pi
798798 −2.23035e18 −0.305742
799799 3.03274e18 0.412365
800800 −1.03680e19 −1.39833
801801 −3.14877e19 −4.21239
802802 5.05722e18 0.671087
803803 −8.40787e18 −1.10671
804804 4.47653e18 0.584490
805805 3.16034e16 0.00409317
806806 8.21908e17 0.105595
807807 1.62134e19 2.06631
808808 −3.79264e18 −0.479477
809809 −3.64046e18 −0.456553 −0.228276 0.973596i 0.573309π-0.573309\pi
−0.228276 + 0.973596i 0.573309π0.573309\pi
810810 −6.14633e17 −0.0764651
811811 −1.09182e19 −1.34746 −0.673732 0.738976i 0.735310π-0.735310\pi
−0.673732 + 0.738976i 0.735310π0.735310\pi
812812 4.29785e18 0.526184
813813 2.51535e18 0.305499
814814 8.89588e18 1.07184
815815 4.71563e15 0.000563657 0
816816 −5.00890e18 −0.593959
817817 6.68744e18 0.786713
818818 1.74600e19 2.03774
819819 2.23741e17 0.0259060
820820 8.33427e15 0.000957365 0
821821 −4.74287e18 −0.540519 −0.270259 0.962788i 0.587109π-0.587109\pi
−0.270259 + 0.962788i 0.587109π0.587109\pi
822822 −2.18792e19 −2.47380
823823 2.23773e18 0.251020 0.125510 0.992092i 0.459943π-0.459943\pi
0.125510 + 0.992092i 0.459943π0.459943\pi
824824 6.31758e18 0.703111
825825 −2.85162e19 −3.14877
826826 1.90831e18 0.209064
827827 1.35164e19 1.46918 0.734590 0.678511i 0.237375π-0.237375\pi
0.734590 + 0.678511i 0.237375π0.237375\pi
828828 −2.66023e19 −2.86894
829829 1.00669e19 1.07719 0.538596 0.842564i 0.318955π-0.318955\pi
0.538596 + 0.842564i 0.318955π0.318955\pi
830830 2.34600e17 0.0249070
831831 4.93522e18 0.519877
832832 5.58268e17 0.0583500
833833 4.30570e18 0.446531
834834 −3.18618e19 −3.27862
835835 3.06023e17 0.0312458
836836 −8.93761e18 −0.905483
837837 −4.92297e19 −4.94893
838838 1.49190e19 1.48818
839839 4.63747e18 0.459017 0.229508 0.973307i 0.426288π-0.426288\pi
0.229508 + 0.973307i 0.426288π0.426288\pi
840840 −3.48438e16 −0.00342223
841841 1.71984e19 1.67616
842842 2.02679e19 1.96011
843843 2.16907e19 2.08158
844844 2.60197e19 2.47785
845845 −1.89358e17 −0.0178943
846846 3.49585e19 3.27827
847847 −4.96262e18 −0.461815
848848 2.52295e18 0.232989
849849 1.60104e19 1.46724
850850 −7.89855e18 −0.718331
851851 −4.22465e18 −0.381284
852852 5.63887e18 0.505050
853853 7.05953e18 0.627490 0.313745 0.949507i 0.398416π-0.398416\pi
0.313745 + 0.949507i 0.398416π0.398416\pi
854854 1.08195e18 0.0954400
855855 2.19901e17 0.0192508
856856 −2.57768e18 −0.223949
857857 −1.81868e19 −1.56813 −0.784064 0.620680i 0.786857π-0.786857\pi
−0.784064 + 0.620680i 0.786857π0.786857\pi
858858 2.24134e18 0.191796
859859 −1.28581e19 −1.09199 −0.545997 0.837787i 0.683849π-0.683849\pi
−0.545997 + 0.837787i 0.683849π0.683849\pi
860860 4.97133e17 0.0419018
861861 2.40416e17 0.0201114
862862 −7.36891e18 −0.611795
863863 −9.45460e17 −0.0779064 −0.0389532 0.999241i 0.512402π-0.512402\pi
−0.0389532 + 0.999241i 0.512402π0.512402\pi
864864 −4.88105e19 −3.99184
865865 −2.49424e17 −0.0202457
866866 2.54972e19 2.05412
867867 1.81197e19 1.44886
868868 −7.02824e18 −0.557787
869869 1.10837e19 0.873087
870870 −1.05930e18 −0.0828219
871871 1.28243e17 0.00995211
872872 7.12986e18 0.549191
873873 −8.71960e18 −0.666659
874874 7.59694e18 0.576520
875875 1.20882e17 0.00910563
876876 −2.09479e19 −1.56626
877877 2.00346e19 1.48691 0.743453 0.668788i 0.233187π-0.233187\pi
0.743453 + 0.668788i 0.233187π0.233187\pi
878878 3.11715e19 2.29638
879879 1.61821e18 0.118334
880880 2.74866e17 0.0199519
881881 −2.43626e19 −1.75541 −0.877707 0.479198i 0.840928π-0.840928\pi
−0.877707 + 0.479198i 0.840928π0.840928\pi
882882 4.96319e19 3.54989
883883 7.74618e18 0.549975 0.274988 0.961448i 0.411326π-0.411326\pi
0.274988 + 0.961448i 0.411326π0.411326\pi
884884 3.46854e17 0.0244460
885885 −2.62786e17 −0.0183853
886886 −2.21681e19 −1.53961
887887 −4.26835e18 −0.294277 −0.147139 0.989116i 0.547006π-0.547006\pi
−0.147139 + 0.989116i 0.547006π0.547006\pi
888888 4.65782e18 0.318786
889889 −4.25146e18 −0.288853
890890 6.68456e17 0.0450856
891891 −7.10494e19 −4.75724
892892 −3.69382e19 −2.45530
893893 −5.57772e18 −0.368063
894894 3.18045e18 0.208351
895895 −1.03810e17 −0.00675130
896896 −3.04045e18 −0.196307
897897 −1.06441e18 −0.0682273
898898 1.52209e19 0.968601
899899 −4.49035e19 −2.83689
900900 −5.08685e19 −3.19060
901901 2.69322e18 0.167710
902902 1.72436e18 0.106607
903903 1.43406e19 0.880234
904904 −2.40484e17 −0.0146552
905905 −3.15329e17 −0.0190787
906906 −5.91399e19 −3.55261
907907 −2.47002e19 −1.47317 −0.736584 0.676346i 0.763562π-0.763562\pi
−0.736584 + 0.676346i 0.763562π0.763562\pi
908908 −2.94034e19 −1.74116
909909 5.13279e19 3.01778
910910 −4.74982e15 −0.000277274 0
911911 −1.76009e19 −1.02015 −0.510077 0.860129i 0.670383π-0.670383\pi
−0.510077 + 0.860129i 0.670383π0.670383\pi
912912 9.21219e18 0.530147
913913 2.71190e19 1.54958
914914 3.23340e19 1.83447
915915 −1.48991e17 −0.00839311
916916 −2.42910e19 −1.35870
917917 5.57503e18 0.309633
918918 −3.71849e19 −2.05064
919919 9.58308e17 0.0524752 0.0262376 0.999656i 0.491647π-0.491647\pi
0.0262376 + 0.999656i 0.491647π0.491647\pi
920920 1.18684e17 0.00645312
921921 −4.70288e19 −2.53908
922922 −1.43047e19 −0.766879
923923 1.61541e17 0.00859948
924924 −1.91659e19 −1.01312
925925 −8.07831e18 −0.424033
926926 −2.24615e19 −1.17076
927927 −8.54993e19 −4.42532
928928 −4.45212e19 −2.28826
929929 1.38796e19 0.708395 0.354198 0.935171i 0.384754π-0.384754\pi
0.354198 + 0.935171i 0.384754π0.384754\pi
930930 1.73227e18 0.0877963
931931 −7.91890e18 −0.398558
932932 3.14093e19 1.56984
933933 5.07565e19 2.51919
934934 −3.66263e18 −0.180526
935935 2.93416e17 0.0143618
936936 8.40239e17 0.0408423
937937 9.25448e16 0.00446729 0.00223365 0.999998i 0.499289π-0.499289\pi
0.00223365 + 0.999998i 0.499289π0.499289\pi
938938 −1.96278e18 −0.0940922
939939 −5.81643e19 −2.76904
940940 −4.14638e17 −0.0196037
941941 2.50315e19 1.17531 0.587657 0.809110i 0.300051π-0.300051\pi
0.587657 + 0.809110i 0.300051π0.300051\pi
942942 −4.95437e18 −0.231024
943943 −8.18897e17 −0.0379231
944944 −7.88204e18 −0.362511
945945 2.84499e17 0.0129949
946946 1.02857e20 4.66595
947947 1.42433e19 0.641706 0.320853 0.947129i 0.396030π-0.396030\pi
0.320853 + 0.947129i 0.396030π0.396030\pi
948948 2.76148e19 1.23563
949949 −6.00112e17 −0.0266687
950950 1.45267e19 0.641158
951951 2.95890e19 1.29705
952952 −1.11564e18 −0.0485718
953953 −3.92069e19 −1.69535 −0.847674 0.530518i 0.821997π-0.821997\pi
−0.847674 + 0.530518i 0.821997π0.821997\pi
954954 3.10447e19 1.33329
955955 −4.20426e17 −0.0179336
956956 3.24099e19 1.37310
957957 −1.22452e20 −5.15272
958958 5.59438e19 2.33817
959959 5.35977e18 0.222498
960960 1.17662e18 0.0485145
961961 4.90128e19 2.00728
962962 6.34944e17 0.0258284
963963 3.48851e19 1.40951
964964 3.66679e19 1.47159
965965 −1.18183e17 −0.00471114
966966 1.62910e19 0.645055
967967 −3.61528e19 −1.42190 −0.710952 0.703241i 0.751736π-0.751736\pi
−0.710952 + 0.703241i 0.751736π0.751736\pi
968968 −1.86367e19 −0.728079
969969 9.83391e18 0.381612
970970 1.85110e17 0.00713531
971971 −3.37605e19 −1.29266 −0.646330 0.763058i 0.723697π-0.723697\pi
−0.646330 + 0.763058i 0.723697π0.723697\pi
972972 −8.20194e19 −3.11951
973973 7.80522e18 0.294884
974974 −1.60968e19 −0.604096
975975 −2.03535e18 −0.0758767
976976 −4.46886e18 −0.165490
977977 −6.92540e17 −0.0254759 −0.0127380 0.999919i 0.504055π-0.504055\pi
−0.0127380 + 0.999919i 0.504055π0.504055\pi
978978 2.43083e18 0.0888283
979979 7.72711e19 2.80498
980980 −5.88678e17 −0.0212280
981981 −9.64923e19 −3.45656
982982 −7.03044e19 −2.50183
983983 2.09144e19 0.739347 0.369674 0.929162i 0.379470π-0.379470\pi
0.369674 + 0.929162i 0.379470π0.379470\pi
984984 9.02862e17 0.0317069
985985 3.66040e16 0.00127701
986986 −3.39172e19 −1.17549
987987 −1.19609e19 −0.411817
988988 −6.37922e17 −0.0218196
989989 −4.88466e19 −1.65981
990990 3.38221e18 0.114175
991991 2.52710e19 0.847507 0.423753 0.905778i 0.360712π-0.360712\pi
0.423753 + 0.905778i 0.360712π0.360712\pi
992992 7.28050e19 2.42569
993993 4.78138e19 1.58264
994994 −2.47242e18 −0.0813038
995995 1.63772e17 0.00535045
996996 6.75660e19 2.19302
997997 −2.32003e19 −0.748127 −0.374063 0.927403i 0.622036π-0.622036\pi
−0.374063 + 0.927403i 0.622036π0.622036\pi
998998 −5.94873e18 −0.190579
999999 −3.80311e19 −1.21050
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.14.a.b.1.14 109
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.14.a.b.1.14 109 1.1 even 1 trivial