Properties

Label 197.14.a.b.1.7
Level 197197
Weight 1414
Character 197.1
Self dual yes
Analytic conductor 211.245211.245
Analytic rank 00
Dimension 109109
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,14,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: N N == 197 197
Weight: k k == 14 14
Character orbit: [χ][\chi] == 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 211.244930035211.244930035
Analytic rank: 00
Dimension: 109109
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.7
Character χ\chi == 197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q161.852q2660.311q3+18003.9q463584.1q5+106872.q6+71804.7q71.58807e6q81.15831e6q9+1.02912e7q104.53298e6q111.18882e7q12+1.71206e7q131.16217e7q14+4.19853e7q15+1.09544e8q163.03506e7q17+1.87475e8q18+3.32240e8q191.14476e9q204.74135e7q21+7.33670e8q228.39481e8q23+1.04862e9q24+2.82223e9q252.77100e9q26+1.81760e9q27+1.29277e9q28+1.45089e7q296.79538e9q30+2.49444e9q314.72035e9q32+2.99318e9q33+4.91229e9q344.56564e9q352.08541e10q361.83648e10q375.37736e10q381.13049e10q39+1.00976e11q40+1.12175e10q41+7.67394e9q423.25288e9q438.16114e10q44+7.36502e10q45+1.35871e11q46+1.13733e11q477.23330e10q489.17331e10q494.56783e11q50+2.00408e10q51+3.08238e11q52+2.15115e11q532.94181e11q54+2.88225e11q551.14031e11q562.19382e11q572.34828e9q584.49869e11q59+7.55899e11q60+4.65093e11q614.03729e11q628.31723e10q631.33388e11q641.08860e12q654.84450e11q66+9.78215e11q675.46429e11q68+5.54319e11q69+7.38956e11q70+1.26556e12q71+1.83948e12q72+3.33534e11q73+2.97237e12q741.86355e12q75+5.98162e12q763.25489e11q77+1.82972e12q78+9.99907e11q796.96525e12q80+6.46545e11q811.81556e12q823.99214e12q838.53628e11q84+1.92981e12q85+5.26483e11q869.58038e9q87+7.19870e12q882.56186e12q891.19204e13q90+1.22934e12q911.51139e13q921.64711e12q931.84078e13q942.11252e13q95+3.11690e12q96+5.32052e12q97+1.48471e13q98+5.25061e12q99+O(q100)q-161.852 q^{2} -660.311 q^{3} +18003.9 q^{4} -63584.1 q^{5} +106872. q^{6} +71804.7 q^{7} -1.58807e6 q^{8} -1.15831e6 q^{9} +1.02912e7 q^{10} -4.53298e6 q^{11} -1.18882e7 q^{12} +1.71206e7 q^{13} -1.16217e7 q^{14} +4.19853e7 q^{15} +1.09544e8 q^{16} -3.03506e7 q^{17} +1.87475e8 q^{18} +3.32240e8 q^{19} -1.14476e9 q^{20} -4.74135e7 q^{21} +7.33670e8 q^{22} -8.39481e8 q^{23} +1.04862e9 q^{24} +2.82223e9 q^{25} -2.77100e9 q^{26} +1.81760e9 q^{27} +1.29277e9 q^{28} +1.45089e7 q^{29} -6.79538e9 q^{30} +2.49444e9 q^{31} -4.72035e9 q^{32} +2.99318e9 q^{33} +4.91229e9 q^{34} -4.56564e9 q^{35} -2.08541e10 q^{36} -1.83648e10 q^{37} -5.37736e10 q^{38} -1.13049e10 q^{39} +1.00976e11 q^{40} +1.12175e10 q^{41} +7.67394e9 q^{42} -3.25288e9 q^{43} -8.16114e10 q^{44} +7.36502e10 q^{45} +1.35871e11 q^{46} +1.13733e11 q^{47} -7.23330e10 q^{48} -9.17331e10 q^{49} -4.56783e11 q^{50} +2.00408e10 q^{51} +3.08238e11 q^{52} +2.15115e11 q^{53} -2.94181e11 q^{54} +2.88225e11 q^{55} -1.14031e11 q^{56} -2.19382e11 q^{57} -2.34828e9 q^{58} -4.49869e11 q^{59} +7.55899e11 q^{60} +4.65093e11 q^{61} -4.03729e11 q^{62} -8.31723e10 q^{63} -1.33388e11 q^{64} -1.08860e12 q^{65} -4.84450e11 q^{66} +9.78215e11 q^{67} -5.46429e11 q^{68} +5.54319e11 q^{69} +7.38956e11 q^{70} +1.26556e12 q^{71} +1.83948e12 q^{72} +3.33534e11 q^{73} +2.97237e12 q^{74} -1.86355e12 q^{75} +5.98162e12 q^{76} -3.25489e11 q^{77} +1.82972e12 q^{78} +9.99907e11 q^{79} -6.96525e12 q^{80} +6.46545e11 q^{81} -1.81556e12 q^{82} -3.99214e12 q^{83} -8.53628e11 q^{84} +1.92981e12 q^{85} +5.26483e11 q^{86} -9.58038e9 q^{87} +7.19870e12 q^{88} -2.56186e12 q^{89} -1.19204e13 q^{90} +1.22934e12 q^{91} -1.51139e13 q^{92} -1.64711e12 q^{93} -1.84078e13 q^{94} -2.11252e13 q^{95} +3.11690e12 q^{96} +5.32052e12 q^{97} +1.48471e13 q^{98} +5.25061e12 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 109q+192q2+8018q3+471040q4+88496q5+383232q6+1680731q7+1820859q8+59521391q9+16373653q10+21199298q11+63225856q12+59695238q13+37888529q14++12084396239183q99+O(q100) 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9} + 16373653 q^{10} + 21199298 q^{11} + 63225856 q^{12} + 59695238 q^{13} + 37888529 q^{14}+ \cdots + 12084396239183 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −161.852 −1.78822 −0.894112 0.447844i 0.852192π-0.852192\pi
−0.894112 + 0.447844i 0.852192π0.852192\pi
33 −660.311 −0.522950 −0.261475 0.965210i 0.584209π-0.584209\pi
−0.261475 + 0.965210i 0.584209π0.584209\pi
44 18003.9 2.19774
55 −63584.1 −1.81988 −0.909941 0.414737i 0.863874π-0.863874\pi
−0.909941 + 0.414737i 0.863874π0.863874\pi
66 106872. 0.935152
77 71804.7 0.230683 0.115342 0.993326i 0.463204π-0.463204\pi
0.115342 + 0.993326i 0.463204π0.463204\pi
88 −1.58807e6 −2.14183
99 −1.15831e6 −0.726523
1010 1.02912e7 3.25436
1111 −4.53298e6 −0.771492 −0.385746 0.922605i 0.626056π-0.626056\pi
−0.385746 + 0.922605i 0.626056π0.626056\pi
1212 −1.18882e7 −1.14931
1313 1.71206e7 0.983756 0.491878 0.870664i 0.336311π-0.336311\pi
0.491878 + 0.870664i 0.336311π0.336311\pi
1414 −1.16217e7 −0.412513
1515 4.19853e7 0.951709
1616 1.09544e8 1.63233
1717 −3.03506e7 −0.304964 −0.152482 0.988306i 0.548727π-0.548727\pi
−0.152482 + 0.988306i 0.548727π0.548727\pi
1818 1.87475e8 1.29919
1919 3.32240e8 1.62014 0.810072 0.586330i 0.199428π-0.199428\pi
0.810072 + 0.586330i 0.199428π0.199428\pi
2020 −1.14476e9 −3.99963
2121 −4.74135e7 −0.120636
2222 7.33670e8 1.37960
2323 −8.39481e8 −1.18244 −0.591221 0.806509i 0.701354π-0.701354\pi
−0.591221 + 0.806509i 0.701354π0.701354\pi
2424 1.04862e9 1.12007
2525 2.82223e9 2.31197
2626 −2.77100e9 −1.75918
2727 1.81760e9 0.902886
2828 1.29277e9 0.506982
2929 1.45089e7 0.00452947 0.00226473 0.999997i 0.499279π-0.499279\pi
0.00226473 + 0.999997i 0.499279π0.499279\pi
3030 −6.79538e9 −1.70187
3131 2.49444e9 0.504804 0.252402 0.967622i 0.418779π-0.418779\pi
0.252402 + 0.967622i 0.418779π0.418779\pi
3232 −4.72035e9 −0.777140
3333 2.99318e9 0.403452
3434 4.91229e9 0.545345
3535 −4.56564e9 −0.419816
3636 −2.08541e10 −1.59671
3737 −1.83648e10 −1.17673 −0.588363 0.808597i 0.700227π-0.700227\pi
−0.588363 + 0.808597i 0.700227π0.700227\pi
3838 −5.37736e10 −2.89718
3939 −1.13049e10 −0.514456
4040 1.00976e11 3.89788
4141 1.12175e10 0.368808 0.184404 0.982851i 0.440965π-0.440965\pi
0.184404 + 0.982851i 0.440965π0.440965\pi
4242 7.67394e9 0.215724
4343 −3.25288e9 −0.0784734 −0.0392367 0.999230i 0.512493π-0.512493\pi
−0.0392367 + 0.999230i 0.512493π0.512493\pi
4444 −8.16114e10 −1.69554
4545 7.36502e10 1.32219
4646 1.35871e11 2.11447
4747 1.13733e11 1.53904 0.769518 0.638625i 0.220496π-0.220496\pi
0.769518 + 0.638625i 0.220496π0.220496\pi
4848 −7.23330e10 −0.853628
4949 −9.17331e10 −0.946785
5050 −4.56783e11 −4.13433
5151 2.00408e10 0.159481
5252 3.08238e11 2.16204
5353 2.15115e11 1.33314 0.666572 0.745440i 0.267761π-0.267761\pi
0.666572 + 0.745440i 0.267761π0.267761\pi
5454 −2.94181e11 −1.61456
5555 2.88225e11 1.40403
5656 −1.14031e11 −0.494084
5757 −2.19382e11 −0.847256
5858 −2.34828e9 −0.00809970
5959 −4.49869e11 −1.38851 −0.694254 0.719730i 0.744266π-0.744266\pi
−0.694254 + 0.719730i 0.744266π0.744266\pi
6060 7.55899e11 2.09161
6161 4.65093e11 1.15583 0.577917 0.816095i 0.303866π-0.303866\pi
0.577917 + 0.816095i 0.303866π0.303866\pi
6262 −4.03729e11 −0.902702
6363 −8.31723e10 −0.167597
6464 −1.33388e11 −0.242631
6565 −1.08860e12 −1.79032
6666 −4.84450e11 −0.721462
6767 9.78215e11 1.32114 0.660569 0.750765i 0.270315π-0.270315\pi
0.660569 + 0.750765i 0.270315π0.270315\pi
6868 −5.46429e11 −0.670233
6969 5.54319e11 0.618359
7070 7.38956e11 0.750725
7171 1.26556e12 1.17248 0.586239 0.810138i 0.300608π-0.300608\pi
0.586239 + 0.810138i 0.300608π0.300608\pi
7272 1.83948e12 1.55609
7373 3.33534e11 0.257954 0.128977 0.991648i 0.458831π-0.458831\pi
0.128977 + 0.991648i 0.458831π0.458831\pi
7474 2.97237e12 2.10425
7575 −1.86355e12 −1.20905
7676 5.98162e12 3.56066
7777 −3.25489e11 −0.177970
7878 1.82972e12 0.919962
7979 9.99907e11 0.462789 0.231395 0.972860i 0.425671π-0.425671\pi
0.231395 + 0.972860i 0.425671π0.425671\pi
8080 −6.96525e12 −2.97065
8181 6.46545e11 0.254358
8282 −1.81556e12 −0.659510
8383 −3.99214e12 −1.34029 −0.670144 0.742231i 0.733768π-0.733768\pi
−0.670144 + 0.742231i 0.733768π0.733768\pi
8484 −8.53628e11 −0.265127
8585 1.92981e12 0.555000
8686 5.26483e11 0.140328
8787 −9.58038e9 −0.00236869
8888 7.19870e12 1.65241
8989 −2.56186e12 −0.546413 −0.273207 0.961955i 0.588084π-0.588084\pi
−0.273207 + 0.961955i 0.588084π0.588084\pi
9090 −1.19204e13 −2.36436
9191 1.22934e12 0.226936
9292 −1.51139e13 −2.59870
9393 −1.64711e12 −0.263987
9494 −1.84078e13 −2.75214
9595 −2.11252e13 −2.94847
9696 3.11690e12 0.406406
9797 5.32052e12 0.648542 0.324271 0.945964i 0.394881π-0.394881\pi
0.324271 + 0.945964i 0.394881π0.394881\pi
9898 1.48471e13 1.69306
9999 5.25061e12 0.560507
100100 5.08112e13 5.08112
101101 1.25821e13 1.17941 0.589704 0.807619i 0.299244π-0.299244\pi
0.589704 + 0.807619i 0.299244π0.299244\pi
102102 −3.24364e12 −0.285188
103103 −1.63430e13 −1.34862 −0.674309 0.738449i 0.735559π-0.735559\pi
−0.674309 + 0.738449i 0.735559π0.735559\pi
104104 −2.71888e13 −2.10704
105105 3.01474e12 0.219543
106106 −3.48167e13 −2.38396
107107 1.87842e12 0.121004 0.0605018 0.998168i 0.480730π-0.480730\pi
0.0605018 + 0.998168i 0.480730π0.480730\pi
108108 3.27238e13 1.98431
109109 −2.30429e13 −1.31603 −0.658014 0.753006i 0.728603π-0.728603\pi
−0.658014 + 0.753006i 0.728603π0.728603\pi
110110 −4.66497e13 −2.51071
111111 1.21265e13 0.615370
112112 7.86577e12 0.376551
113113 −2.19203e13 −0.990458 −0.495229 0.868763i 0.664916π-0.664916\pi
−0.495229 + 0.868763i 0.664916π0.664916\pi
114114 3.55073e13 1.51508
115115 5.33777e13 2.15191
116116 2.61217e11 0.00995460
117117 −1.98310e13 −0.714722
118118 7.28120e13 2.48296
119119 −2.17932e12 −0.0703502
120120 −6.66757e13 −2.03840
121121 −1.39748e13 −0.404800
122122 −7.52760e13 −2.06689
123123 −7.40702e12 −0.192868
124124 4.49097e13 1.10943
125125 −1.01832e14 −2.38764
126126 1.34616e13 0.299700
127127 −5.54678e13 −1.17305 −0.586525 0.809931i 0.699505π-0.699505\pi
−0.586525 + 0.809931i 0.699505π0.699505\pi
128128 6.02581e13 1.21102
129129 2.14791e12 0.0410377
130130 1.76191e14 3.20149
131131 −9.32390e13 −1.61189 −0.805943 0.591994i 0.798341π-0.798341\pi
−0.805943 + 0.591994i 0.798341π0.798341\pi
132132 5.38889e13 0.886684
133133 2.38564e13 0.373740
134134 −1.58326e14 −2.36249
135135 −1.15570e14 −1.64315
136136 4.81989e13 0.653182
137137 −9.08819e13 −1.17434 −0.587170 0.809464i 0.699758π-0.699758\pi
−0.587170 + 0.809464i 0.699758π0.699758\pi
138138 −8.97174e13 −1.10576
139139 3.22253e13 0.378966 0.189483 0.981884i 0.439319π-0.439319\pi
0.189483 + 0.981884i 0.439319π0.439319\pi
140140 −8.21994e13 −0.922648
141141 −7.50989e13 −0.804840
142142 −2.04833e14 −2.09665
143143 −7.76074e13 −0.758960
144144 −1.26886e14 −1.18593
145145 −9.22534e11 −0.00824310
146146 −5.39830e13 −0.461279
147147 6.05724e13 0.495122
148148 −3.30639e14 −2.58614
149149 −2.10982e14 −1.57955 −0.789777 0.613394i 0.789804π-0.789804\pi
−0.789777 + 0.613394i 0.789804π0.789804\pi
150150 3.01619e14 2.16205
151151 1.58014e14 1.08479 0.542396 0.840123i 0.317517π-0.317517\pi
0.542396 + 0.840123i 0.317517π0.317517\pi
152152 −5.27622e14 −3.47008
153153 3.51555e13 0.221564
154154 5.26810e13 0.318250
155155 −1.58607e14 −0.918684
156156 −2.03533e14 −1.13064
157157 −2.65513e14 −1.41494 −0.707470 0.706743i 0.750164π-0.750164\pi
−0.707470 + 0.706743i 0.750164π0.750164\pi
158158 −1.61836e14 −0.827571
159159 −1.42043e14 −0.697168
160160 3.00139e14 1.41430
161161 −6.02787e13 −0.272770
162162 −1.04644e14 −0.454849
163163 −3.39919e14 −1.41957 −0.709784 0.704420i 0.751207π-0.751207\pi
−0.709784 + 0.704420i 0.751207π0.751207\pi
164164 2.01958e14 0.810544
165165 −1.90319e14 −0.734235
166166 6.46134e14 2.39673
167167 1.62057e14 0.578109 0.289055 0.957313i 0.406659π-0.406659\pi
0.289055 + 0.957313i 0.406659π0.406659\pi
168168 7.52960e13 0.258382
169169 −9.75962e12 −0.0322232
170170 −3.12343e14 −0.992463
171171 −3.84838e14 −1.17707
172172 −5.85645e13 −0.172464
173173 5.42203e13 0.153767 0.0768833 0.997040i 0.475503π-0.475503\pi
0.0768833 + 0.997040i 0.475503π0.475503\pi
174174 1.55060e12 0.00423574
175175 2.02650e14 0.533333
176176 −4.96560e14 −1.25933
177177 2.97054e14 0.726121
178178 4.14642e14 0.977109
179179 3.81040e14 0.865816 0.432908 0.901438i 0.357487π-0.357487\pi
0.432908 + 0.901438i 0.357487π0.357487\pi
180180 1.32599e15 2.90583
181181 9.04316e14 1.91165 0.955827 0.293930i 0.0949631π-0.0949631\pi
0.955827 + 0.293930i 0.0949631π0.0949631\pi
182182 −1.98971e14 −0.405812
183183 −3.07106e14 −0.604444
184184 1.33316e15 2.53259
185185 1.16771e15 2.14150
186186 2.66587e14 0.472068
187187 1.37579e14 0.235278
188188 2.04763e15 3.38241
189189 1.30512e14 0.208281
190190 3.41914e15 5.27253
191191 1.02700e15 1.53057 0.765283 0.643694i 0.222599π-0.222599\pi
0.765283 + 0.643694i 0.222599π0.222599\pi
192192 8.80774e13 0.126884
193193 1.19661e14 0.166660 0.0833299 0.996522i 0.473444π-0.473444\pi
0.0833299 + 0.996522i 0.473444π0.473444\pi
194194 −8.61135e14 −1.15974
195195 7.18814e14 0.936249
196196 −1.65155e15 −2.08079
197197 5.84517e13 0.0712470
198198 −8.49819e14 −1.00231
199199 −1.44234e14 −0.164636 −0.0823178 0.996606i 0.526232π-0.526232\pi
−0.0823178 + 0.996606i 0.526232π0.526232\pi
200200 −4.48191e15 −4.95186
201201 −6.45926e14 −0.690890
202202 −2.03643e15 −2.10905
203203 1.04181e12 0.00104487
204204 3.60813e14 0.350499
205205 −7.13253e14 −0.671187
206206 2.64513e15 2.41163
207207 9.72381e14 0.859072
208208 1.87546e15 1.60582
209209 −1.50604e15 −1.24993
210210 −4.87941e14 −0.392592
211211 −8.56976e14 −0.668548 −0.334274 0.942476i 0.608491π-0.608491\pi
−0.334274 + 0.942476i 0.608491π0.608491\pi
212212 3.87291e15 2.92991
213213 −8.35666e14 −0.613148
214214 −3.04025e14 −0.216381
215215 2.06831e14 0.142812
216216 −2.88647e15 −1.93383
217217 1.79113e14 0.116450
218218 3.72953e15 2.35335
219219 −2.20236e14 −0.134897
220220 5.18918e15 3.08569
221221 −5.19621e14 −0.300011
222222 −1.96269e15 −1.10042
223223 −1.03252e15 −0.562236 −0.281118 0.959673i 0.590705π-0.590705\pi
−0.281118 + 0.959673i 0.590705π0.590705\pi
224224 −3.38943e14 −0.179273
225225 −3.26903e15 −1.67970
226226 3.54783e15 1.77116
227227 2.75415e15 1.33604 0.668021 0.744143i 0.267142π-0.267142\pi
0.668021 + 0.744143i 0.267142π0.267142\pi
228228 −3.94973e15 −1.86205
229229 −2.78055e15 −1.27409 −0.637046 0.770826i 0.719844π-0.719844\pi
−0.637046 + 0.770826i 0.719844π0.719844\pi
230230 −8.63925e15 −3.84809
231231 2.14924e14 0.0930696
232232 −2.30412e13 −0.00970135
233233 3.21825e15 1.31767 0.658834 0.752288i 0.271050π-0.271050\pi
0.658834 + 0.752288i 0.271050π0.271050\pi
234234 3.20968e15 1.27808
235235 −7.23158e15 −2.80087
236236 −8.09941e15 −3.05158
237237 −6.60250e14 −0.242016
238238 3.52726e14 0.125802
239239 1.10565e15 0.383735 0.191868 0.981421i 0.438546π-0.438546\pi
0.191868 + 0.981421i 0.438546π0.438546\pi
240240 4.59923e15 1.55350
241241 −2.62239e15 −0.862156 −0.431078 0.902315i 0.641867π-0.641867\pi
−0.431078 + 0.902315i 0.641867π0.641867\pi
242242 2.26184e15 0.723873
243243 −3.32476e15 −1.03590
244244 8.37349e15 2.54023
245245 5.83277e15 1.72304
246246 1.19884e15 0.344891
247247 5.68816e15 1.59383
248248 −3.96136e15 −1.08120
249249 2.63605e15 0.700904
250250 1.64816e16 4.26963
251251 −4.75398e15 −1.19999 −0.599996 0.800003i 0.704831π-0.704831\pi
−0.599996 + 0.800003i 0.704831π0.704831\pi
252252 −1.49743e15 −0.368334
253253 3.80535e15 0.912245
254254 8.97755e15 2.09768
255255 −1.27428e15 −0.290237
256256 −8.66015e15 −1.92294
257257 5.61222e15 1.21498 0.607490 0.794327i 0.292176π-0.292176\pi
0.607490 + 0.794327i 0.292176π0.292176\pi
258258 −3.47643e14 −0.0733846
259259 −1.31868e15 −0.271451
260260 −1.95990e16 −3.93467
261261 −1.68058e13 −0.00329076
262262 1.50909e16 2.88241
263263 −5.25563e13 −0.00979292 −0.00489646 0.999988i 0.501559π-0.501559\pi
−0.00489646 + 0.999988i 0.501559π0.501559\pi
264264 −4.75338e15 −0.864126
265265 −1.36779e16 −2.42617
266266 −3.86120e15 −0.668331
267267 1.69163e15 0.285747
268268 1.76117e16 2.90352
269269 7.36210e15 1.18471 0.592355 0.805677i 0.298198π-0.298198\pi
0.592355 + 0.805677i 0.298198π0.298198\pi
270270 1.87052e16 2.93831
271271 −5.42236e15 −0.831550 −0.415775 0.909468i 0.636490π-0.636490\pi
−0.415775 + 0.909468i 0.636490π0.636490\pi
272272 −3.32472e15 −0.497803
273273 −8.11748e14 −0.118676
274274 1.47094e16 2.09998
275275 −1.27931e16 −1.78367
276276 9.97991e15 1.35899
277277 5.43483e15 0.722882 0.361441 0.932395i 0.382285π-0.382285\pi
0.361441 + 0.932395i 0.382285π0.382285\pi
278278 −5.21571e15 −0.677676
279279 −2.88934e15 −0.366752
280280 7.25056e15 0.899176
281281 −4.83950e15 −0.586421 −0.293210 0.956048i 0.594724π-0.594724\pi
−0.293210 + 0.956048i 0.594724π0.594724\pi
282282 1.21549e16 1.43923
283283 −5.96042e14 −0.0689708 −0.0344854 0.999405i 0.510979π-0.510979\pi
−0.0344854 + 0.999405i 0.510979π0.510979\pi
284284 2.27851e16 2.57681
285285 1.39492e16 1.54191
286286 1.25609e16 1.35719
287287 8.05468e14 0.0850777
288288 5.46764e15 0.564610
289289 −8.98342e15 −0.906997
290290 1.49314e14 0.0147405
291291 −3.51320e15 −0.339155
292292 6.00492e15 0.566916
293293 −2.09611e16 −1.93542 −0.967708 0.252072i 0.918888π-0.918888\pi
−0.967708 + 0.252072i 0.918888π0.918888\pi
294294 −9.80373e15 −0.885388
295295 2.86045e16 2.52692
296296 2.91647e16 2.52035
297297 −8.23913e15 −0.696569
298298 3.41478e16 2.82460
299299 −1.43724e16 −1.16324
300300 −3.35512e16 −2.65718
301301 −2.33572e14 −0.0181025
302302 −2.55749e16 −1.93985
303303 −8.30810e15 −0.616772
304304 3.63949e16 2.64461
305305 −2.95725e16 −2.10348
306306 −5.68996e15 −0.396205
307307 −1.21585e16 −0.828860 −0.414430 0.910081i 0.636019π-0.636019\pi
−0.414430 + 0.910081i 0.636019π0.636019\pi
308308 −5.86008e15 −0.391133
309309 1.07914e16 0.705261
310310 2.56708e16 1.64281
311311 8.55376e15 0.536061 0.268031 0.963410i 0.413627π-0.413627\pi
0.268031 + 0.963410i 0.413627π0.413627\pi
312312 1.79531e16 1.10188
313313 −2.02853e16 −1.21939 −0.609696 0.792636i 0.708708π-0.708708\pi
−0.609696 + 0.792636i 0.708708π0.708708\pi
314314 4.29737e16 2.53023
315315 5.28844e15 0.305006
316316 1.80022e16 1.01709
317317 1.57335e16 0.870844 0.435422 0.900227i 0.356599π-0.356599\pi
0.435422 + 0.900227i 0.356599π0.356599\pi
318318 2.29898e16 1.24669
319319 −6.57685e13 −0.00349445
320320 8.48134e15 0.441560
321321 −1.24034e15 −0.0632789
322322 9.75620e15 0.487773
323323 −1.00837e16 −0.494087
324324 1.16403e16 0.559014
325325 4.83184e16 2.27442
326326 5.50164e16 2.53850
327327 1.52155e16 0.688217
328328 −1.78142e16 −0.789924
329329 8.16654e15 0.355030
330330 3.08033e16 1.31298
331331 −6.61622e15 −0.276521 −0.138261 0.990396i 0.544151π-0.544151\pi
−0.138261 + 0.990396i 0.544151π0.544151\pi
332332 −7.18741e16 −2.94561
333333 2.12722e16 0.854919
334334 −2.62291e16 −1.03379
335335 −6.21989e16 −2.40432
336336 −5.19385e15 −0.196918
337337 4.25757e16 1.58331 0.791657 0.610965i 0.209219π-0.209219\pi
0.791657 + 0.610965i 0.209219π0.209219\pi
338338 1.57961e15 0.0576224
339339 1.44742e16 0.517960
340340 3.47442e16 1.21975
341341 −1.13073e16 −0.389452
342342 6.22866e16 2.10487
343343 −1.35440e16 −0.449091
344344 5.16580e15 0.168077
345345 −3.52459e16 −1.12534
346346 −8.77563e15 −0.274969
347347 2.65225e16 0.815591 0.407796 0.913073i 0.366298π-0.366298\pi
0.407796 + 0.913073i 0.366298π0.366298\pi
348348 −1.72484e14 −0.00520576
349349 −2.16480e15 −0.0641287 −0.0320644 0.999486i 0.510208π-0.510208\pi
−0.0320644 + 0.999486i 0.510208π0.510208\pi
350350 −3.27992e16 −0.953719
351351 3.11184e16 0.888220
352352 2.13972e16 0.599557
353353 1.31748e16 0.362416 0.181208 0.983445i 0.441999π-0.441999\pi
0.181208 + 0.983445i 0.441999π0.441999\pi
354354 −4.80786e16 −1.29847
355355 −8.04697e16 −2.13377
356356 −4.61236e16 −1.20088
357357 1.43903e15 0.0367896
358358 −6.16719e16 −1.54827
359359 4.92418e15 0.121400 0.0607001 0.998156i 0.480667π-0.480667\pi
0.0607001 + 0.998156i 0.480667π0.480667\pi
360360 −1.16962e17 −2.83190
361361 6.83306e16 1.62487
362362 −1.46365e17 −3.41846
363363 9.22772e15 0.211690
364364 2.21330e16 0.498747
365365 −2.12075e16 −0.469446
366366 4.97056e16 1.08088
367367 2.22830e16 0.476040 0.238020 0.971260i 0.423502π-0.423502\pi
0.238020 + 0.971260i 0.423502π0.423502\pi
368368 −9.19600e16 −1.93014
369369 −1.29933e16 −0.267947
370370 −1.88996e17 −3.82949
371371 1.54463e16 0.307534
372372 −2.96544e16 −0.580176
373373 2.10129e16 0.403997 0.201999 0.979386i 0.435256π-0.435256\pi
0.201999 + 0.979386i 0.435256π0.435256\pi
374374 −2.22673e16 −0.420729
375375 6.72407e16 1.24862
376376 −1.80616e17 −3.29636
377377 2.48401e14 0.00445589
378378 −2.11236e16 −0.372452
379379 −1.36267e16 −0.236177 −0.118088 0.993003i 0.537677π-0.537677\pi
−0.118088 + 0.993003i 0.537677π0.537677\pi
380380 −3.80336e17 −6.47999
381381 3.66260e16 0.613447
382382 −1.66221e17 −2.73699
383383 9.04485e16 1.46423 0.732115 0.681181i 0.238533π-0.238533\pi
0.732115 + 0.681181i 0.238533π0.238533\pi
384384 −3.97891e16 −0.633302
385385 2.06960e16 0.323885
386386 −1.93673e16 −0.298025
387387 3.76785e15 0.0570127
388388 9.57902e16 1.42533
389389 −1.04865e16 −0.153447 −0.0767234 0.997052i 0.524446π-0.524446\pi
−0.0767234 + 0.997052i 0.524446π0.524446\pi
390390 −1.16341e17 −1.67422
391391 2.54788e16 0.360603
392392 1.45679e17 2.02785
393393 6.15668e16 0.842936
394394 −9.46050e15 −0.127406
395395 −6.35782e16 −0.842222
396396 9.45314e16 1.23185
397397 7.26564e16 0.931398 0.465699 0.884943i 0.345803π-0.345803\pi
0.465699 + 0.884943i 0.345803π0.345803\pi
398398 2.33446e16 0.294405
399399 −1.57527e16 −0.195448
400400 3.09158e17 3.77391
401401 −7.93198e16 −0.952671 −0.476336 0.879263i 0.658035π-0.658035\pi
−0.476336 + 0.879263i 0.658035π0.658035\pi
402402 1.04544e17 1.23546
403403 4.27064e16 0.496604
404404 2.26527e17 2.59204
405405 −4.11100e16 −0.462902
406406 −1.68618e14 −0.00186846
407407 8.32474e16 0.907835
408408 −3.18263e16 −0.341582
409409 3.85376e16 0.407083 0.203541 0.979066i 0.434755π-0.434755\pi
0.203541 + 0.979066i 0.434755π0.434755\pi
410410 1.15441e17 1.20023
411411 6.00104e16 0.614122
412412 −2.94237e17 −2.96392
413413 −3.23028e16 −0.320305
414414 −1.57381e17 −1.53621
415415 2.53837e17 2.43917
416416 −8.08153e16 −0.764516
417417 −2.12787e16 −0.198181
418418 2.43755e17 2.23515
419419 8.84712e16 0.798750 0.399375 0.916788i 0.369227π-0.369227\pi
0.399375 + 0.916788i 0.369227π0.369227\pi
420420 5.42772e16 0.482499
421421 −8.65915e15 −0.0757952 −0.0378976 0.999282i 0.512066π-0.512066\pi
−0.0378976 + 0.999282i 0.512066π0.512066\pi
422422 1.38703e17 1.19551
423423 −1.31738e17 −1.11814
424424 −3.41618e17 −2.85537
425425 −8.56565e16 −0.705070
426426 1.35254e17 1.09645
427427 3.33959e16 0.266632
428428 3.38189e16 0.265935
429429 5.12451e16 0.396899
430430 −3.34759e16 −0.255381
431431 −1.90331e17 −1.43023 −0.715117 0.699005i 0.753627π-0.753627\pi
−0.715117 + 0.699005i 0.753627π0.753627\pi
432432 1.99106e17 1.47381
433433 1.44464e17 1.05338 0.526692 0.850056i 0.323432π-0.323432\pi
0.526692 + 0.850056i 0.323432π0.323432\pi
434434 −2.89897e16 −0.208238
435435 6.09160e14 0.00431073
436436 −4.14862e17 −2.89229
437437 −2.78910e17 −1.91573
438438 3.56456e16 0.241226
439439 −1.59620e17 −1.06431 −0.532155 0.846647i 0.678618π-0.678618\pi
−0.532155 + 0.846647i 0.678618π0.678618\pi
440440 −4.57723e17 −3.00719
441441 1.06256e17 0.687861
442442 8.41014e16 0.536486
443443 1.48311e17 0.932283 0.466141 0.884710i 0.345644π-0.345644\pi
0.466141 + 0.884710i 0.345644π0.345644\pi
444444 2.18324e17 1.35242
445445 1.62894e17 0.994408
446446 1.67115e17 1.00540
447447 1.39314e17 0.826029
448448 −9.57787e15 −0.0559708
449449 −6.13401e16 −0.353300 −0.176650 0.984274i 0.556526π-0.556526\pi
−0.176650 + 0.984274i 0.556526π0.556526\pi
450450 5.29097e17 3.00368
451451 −5.08486e16 −0.284532
452452 −3.94650e17 −2.17677
453453 −1.04339e17 −0.567292
454454 −4.45764e17 −2.38914
455455 −7.81666e16 −0.412997
456456 3.48394e17 1.81468
457457 9.87011e15 0.0506835 0.0253418 0.999679i 0.491933π-0.491933\pi
0.0253418 + 0.999679i 0.491933π0.491933\pi
458458 4.50037e17 2.27836
459459 −5.51651e16 −0.275348
460460 9.61007e17 4.72934
461461 1.54747e17 0.750874 0.375437 0.926848i 0.377493π-0.377493\pi
0.375437 + 0.926848i 0.377493π0.377493\pi
462462 −3.47858e16 −0.166429
463463 −7.47206e16 −0.352504 −0.176252 0.984345i 0.556397π-0.556397\pi
−0.176252 + 0.984345i 0.556397π0.556397\pi
464464 1.58936e15 0.00739359
465465 1.04730e17 0.480426
466466 −5.20878e17 −2.35628
467467 −4.46882e17 −1.99358 −0.996788 0.0800859i 0.974481π-0.974481\pi
−0.996788 + 0.0800859i 0.974481π0.974481\pi
468468 −3.57036e17 −1.57077
469469 7.02405e16 0.304764
470470 1.17044e18 5.00857
471471 1.75321e17 0.739944
472472 7.14425e17 2.97395
473473 1.47452e16 0.0605416
474474 1.06862e17 0.432778
475475 9.37660e17 3.74573
476476 −3.92362e16 −0.154612
477477 −2.49170e17 −0.968560
478478 −1.78951e17 −0.686204
479479 1.94627e17 0.736244 0.368122 0.929778i 0.380001π-0.380001\pi
0.368122 + 0.929778i 0.380001π0.380001\pi
480480 −1.98185e17 −0.739611
481481 −3.14417e17 −1.15761
482482 4.24437e17 1.54173
483483 3.98027e16 0.142645
484484 −2.51601e17 −0.889647
485485 −3.38301e17 −1.18027
486486 5.38117e17 1.85243
487487 9.36190e16 0.317999 0.158999 0.987279i 0.449173π-0.449173\pi
0.158999 + 0.987279i 0.449173π0.449173\pi
488488 −7.38601e17 −2.47560
489489 2.24452e17 0.742363
490490 −9.44042e17 −3.08118
491491 4.63885e17 1.49410 0.747052 0.664765i 0.231468π-0.231468\pi
0.747052 + 0.664765i 0.231468π0.231468\pi
492492 −1.33355e17 −0.423874
493493 −4.40353e14 −0.00138133
494494 −9.20637e17 −2.85012
495495 −3.33855e17 −1.02006
496496 2.73251e17 0.824007
497497 9.08735e16 0.270471
498498 −4.26649e17 −1.25337
499499 −3.50457e16 −0.101621 −0.0508103 0.998708i 0.516180π-0.516180\pi
−0.0508103 + 0.998708i 0.516180π0.516180\pi
500500 −1.83337e18 −5.24742
501501 −1.07008e17 −0.302322
502502 7.69439e17 2.14585
503503 1.37447e17 0.378392 0.189196 0.981939i 0.439412π-0.439412\pi
0.189196 + 0.981939i 0.439412π0.439412\pi
504504 1.32084e17 0.358964
505505 −8.00022e17 −2.14639
506506 −6.15902e17 −1.63130
507507 6.44439e15 0.0168512
508508 −9.98637e17 −2.57806
509509 1.35534e17 0.345447 0.172724 0.984970i 0.444743π-0.444743\pi
0.172724 + 0.984970i 0.444743π0.444743\pi
510510 2.06244e17 0.519009
511511 2.39493e16 0.0595056
512512 9.08024e17 2.22763
513513 6.03879e17 1.46281
514514 −9.08346e17 −2.17266
515515 1.03915e18 2.45433
516516 3.86708e16 0.0901903
517517 −5.15548e17 −1.18735
518518 2.13431e17 0.485415
519519 −3.58022e16 −0.0804123
520520 1.72877e18 3.83457
521521 −6.36710e17 −1.39475 −0.697375 0.716707i 0.745649π-0.745649\pi
−0.697375 + 0.716707i 0.745649π0.745649\pi
522522 2.72005e15 0.00588462
523523 −2.84567e17 −0.608027 −0.304014 0.952668i 0.598327π-0.598327\pi
−0.304014 + 0.952668i 0.598327π0.598327\pi
524524 −1.67867e18 −3.54251
525525 −1.33812e17 −0.278907
526526 8.50631e15 0.0175119
527527 −7.57079e16 −0.153947
528528 3.27884e17 0.658567
529529 2.00693e17 0.398171
530530 2.21379e18 4.33853
531531 5.21089e17 1.00878
532532 4.29509e17 0.821385
533533 1.92050e17 0.362817
534534 −2.73793e17 −0.510979
535535 −1.19438e17 −0.220212
536536 −1.55348e18 −2.82965
537537 −2.51605e17 −0.452779
538538 −1.19157e18 −2.11853
539539 4.15824e17 0.730437
540540 −2.08071e18 −3.61121
541541 4.69475e17 0.805064 0.402532 0.915406i 0.368130π-0.368130\pi
0.402532 + 0.915406i 0.368130π0.368130\pi
542542 8.77618e17 1.48700
543543 −5.97130e17 −0.999700
544544 1.43265e17 0.237000
545545 1.46516e18 2.39502
546546 1.31383e17 0.212220
547547 3.63541e17 0.580278 0.290139 0.956985i 0.406299π-0.406299\pi
0.290139 + 0.956985i 0.406299π0.406299\pi
548548 −1.63623e18 −2.58090
549549 −5.38723e17 −0.839740
550550 2.07059e18 3.18960
551551 4.82044e15 0.00733839
552552 −8.80299e17 −1.32442
553553 7.17980e16 0.106758
554554 −8.79636e17 −1.29267
555555 −7.71052e17 −1.11990
556556 5.80181e17 0.832871
557557 6.36492e17 0.903097 0.451549 0.892247i 0.350872π-0.350872\pi
0.451549 + 0.892247i 0.350872π0.350872\pi
558558 4.67645e17 0.655834
559559 −5.56913e16 −0.0771988
560560 −5.00138e17 −0.685279
561561 −9.08447e16 −0.123039
562562 7.83280e17 1.04865
563563 −2.70320e17 −0.357745 −0.178872 0.983872i 0.557245π-0.557245\pi
−0.178872 + 0.983872i 0.557245π0.557245\pi
564564 −1.35207e18 −1.76883
565565 1.39378e18 1.80252
566566 9.64703e16 0.123335
567567 4.64250e16 0.0586762
568568 −2.00981e18 −2.51125
569569 −3.74472e17 −0.462583 −0.231291 0.972885i 0.574295π-0.574295\pi
−0.231291 + 0.972885i 0.574295π0.574295\pi
570570 −2.25770e18 −2.75727
571571 4.67355e17 0.564303 0.282151 0.959370i 0.408952π-0.408952\pi
0.282151 + 0.959370i 0.408952π0.408952\pi
572572 −1.39724e18 −1.66800
573573 −6.78137e17 −0.800410
574574 −1.30366e17 −0.152138
575575 −2.36921e18 −2.73378
576576 1.54505e17 0.176277
577577 2.85753e17 0.322365 0.161182 0.986925i 0.448469π-0.448469\pi
0.161182 + 0.986925i 0.448469π0.448469\pi
578578 1.45398e18 1.62191
579579 −7.90136e16 −0.0871548
580580 −1.66092e16 −0.0181162
581581 −2.86655e17 −0.309182
582582 5.68617e17 0.606485
583583 −9.75111e17 −1.02851
584584 −5.29677e17 −0.552494
585585 1.26094e18 1.30071
586586 3.39259e18 3.46096
587587 −8.67923e17 −0.875656 −0.437828 0.899059i 0.644252π-0.644252\pi
−0.437828 + 0.899059i 0.644252π0.644252\pi
588588 1.09054e18 1.08815
589589 8.28755e17 0.817856
590590 −4.62969e18 −4.51870
591591 −3.85963e16 −0.0372587
592592 −2.01175e18 −1.92081
593593 1.73027e18 1.63402 0.817010 0.576623i 0.195630π-0.195630\pi
0.817010 + 0.576623i 0.195630π0.195630\pi
594594 1.33352e18 1.24562
595595 1.38570e17 0.128029
596596 −3.79850e18 −3.47145
597597 9.52396e16 0.0860963
598598 2.32620e18 2.08013
599599 −5.53980e17 −0.490027 −0.245013 0.969520i 0.578792π-0.578792\pi
−0.245013 + 0.969520i 0.578792π0.578792\pi
600600 2.95946e18 2.58958
601601 2.93553e17 0.254099 0.127050 0.991896i 0.459449π-0.459449\pi
0.127050 + 0.991896i 0.459449π0.459449\pi
602602 3.78040e16 0.0323713
603603 −1.13308e18 −0.959837
604604 2.84488e18 2.38409
605605 8.88575e17 0.736689
606606 1.34468e18 1.10293
607607 −2.37694e18 −1.92882 −0.964408 0.264417i 0.914820π-0.914820\pi
−0.964408 + 0.264417i 0.914820π0.914820\pi
608608 −1.56829e18 −1.25908
609609 −6.87917e14 −0.000546416 0
610610 4.78635e18 3.76150
611611 1.94717e18 1.51404
612612 6.32936e17 0.486940
613613 1.93356e18 1.47185 0.735926 0.677062i 0.236747π-0.236747\pi
0.735926 + 0.677062i 0.236747π0.236747\pi
614614 1.96787e18 1.48219
615615 4.70969e17 0.350997
616616 5.16901e17 0.381182
617617 1.25524e18 0.915950 0.457975 0.888965i 0.348575π-0.348575\pi
0.457975 + 0.888965i 0.348575π0.348575\pi
618618 −1.74661e18 −1.26116
619619 −2.31333e18 −1.65290 −0.826452 0.563007i 0.809645π-0.809645\pi
−0.826452 + 0.563007i 0.809645π0.809645\pi
620620 −2.85554e18 −2.01903
621621 −1.52584e18 −1.06761
622622 −1.38444e18 −0.958597
623623 −1.83954e17 −0.126048
624624 −1.23839e18 −0.839762
625625 3.02978e18 2.03325
626626 3.28321e18 2.18054
627627 9.94454e17 0.653651
628628 −4.78027e18 −3.10968
629629 5.57383e17 0.358860
630630 −8.55941e17 −0.545419
631631 −2.05904e18 −1.29860 −0.649298 0.760534i 0.724937π-0.724937\pi
−0.649298 + 0.760534i 0.724937π0.724937\pi
632632 −1.58792e18 −0.991217
633633 5.65871e17 0.349618
634634 −2.54649e18 −1.55726
635635 3.52687e18 2.13481
636636 −2.55732e18 −1.53220
637637 −1.57053e18 −0.931406
638638 1.06447e16 0.00624885
639639 −1.46592e18 −0.851832
640640 −3.83146e18 −2.20391
641641 1.10720e18 0.630448 0.315224 0.949017i 0.397920π-0.397920\pi
0.315224 + 0.949017i 0.397920π0.397920\pi
642642 2.00751e17 0.113157
643643 2.06216e18 1.15067 0.575337 0.817917i 0.304871π-0.304871\pi
0.575337 + 0.817917i 0.304871π0.304871\pi
644644 −1.08525e18 −0.599477
645645 −1.36573e17 −0.0746838
646646 1.63206e18 0.883537
647647 −2.36823e17 −0.126925 −0.0634623 0.997984i 0.520214π-0.520214\pi
−0.0634623 + 0.997984i 0.520214π0.520214\pi
648648 −1.02676e18 −0.544793
649649 2.03925e18 1.07122
650650 −7.82040e18 −4.06717
651651 −1.18270e17 −0.0608974
652652 −6.11987e18 −3.11984
653653 2.05911e18 1.03931 0.519654 0.854377i 0.326061π-0.326061\pi
0.519654 + 0.854377i 0.326061π0.326061\pi
654654 −2.46265e18 −1.23069
655655 5.92852e18 2.93344
656656 1.22880e18 0.602016
657657 −3.86337e17 −0.187409
658658 −1.32177e18 −0.634872
659659 3.41781e17 0.162552 0.0812762 0.996692i 0.474100π-0.474100\pi
0.0812762 + 0.996692i 0.474100π0.474100\pi
660660 −3.42648e18 −1.61366
661661 1.84163e18 0.858800 0.429400 0.903114i 0.358725π-0.358725\pi
0.429400 + 0.903114i 0.358725π0.358725\pi
662662 1.07085e18 0.494481
663663 3.43111e17 0.156891
664664 6.33981e18 2.87067
665665 −1.51689e18 −0.680163
666666 −3.44294e18 −1.52879
667667 −1.21799e16 −0.00535584
668668 2.91765e18 1.27054
669669 6.81787e17 0.294021
670670 1.00670e19 4.29945
671671 −2.10826e18 −0.891717
672672 2.23808e17 0.0937509
673673 1.11285e18 0.461678 0.230839 0.972992i 0.425853π-0.425853\pi
0.230839 + 0.972992i 0.425853π0.425853\pi
674674 −6.89094e18 −2.83132
675675 5.12968e18 2.08745
676676 −1.75711e17 −0.0708184
677677 6.37763e17 0.254585 0.127293 0.991865i 0.459371π-0.459371\pi
0.127293 + 0.991865i 0.459371π0.459371\pi
678678 −2.34267e18 −0.926229
679679 3.82039e17 0.149608
680680 −3.06469e18 −1.18872
681681 −1.81860e18 −0.698683
682682 1.83010e18 0.696427
683683 −3.33494e18 −1.25705 −0.628526 0.777789i 0.716341π-0.716341\pi
−0.628526 + 0.777789i 0.716341π0.716341\pi
684684 −6.92859e18 −2.58690
685685 5.77865e18 2.13716
686686 2.19211e18 0.803074
687687 1.83603e18 0.666287
688688 −3.56333e17 −0.128095
689689 3.68290e18 1.31149
690690 5.70460e18 2.01236
691691 −4.43856e18 −1.55108 −0.775540 0.631298i 0.782523π-0.782523\pi
−0.775540 + 0.631298i 0.782523π0.782523\pi
692692 9.76176e17 0.337939
693693 3.77018e17 0.129299
694694 −4.29270e18 −1.45846
695695 −2.04902e18 −0.689674
696696 1.52143e16 0.00507333
697697 −3.40457e17 −0.112473
698698 3.50376e17 0.114677
699699 −2.12505e18 −0.689075
700700 3.64849e18 1.17213
701701 −3.12346e18 −0.994188 −0.497094 0.867697i 0.665600π-0.665600\pi
−0.497094 + 0.867697i 0.665600π0.665600\pi
702702 −5.03655e18 −1.58834
703703 −6.10153e18 −1.90647
704704 6.04644e17 0.187188
705705 4.77510e18 1.46471
706706 −2.13236e18 −0.648082
707707 9.03455e17 0.272070
708708 5.34813e18 1.59583
709709 3.67313e18 1.08601 0.543007 0.839728i 0.317286π-0.317286\pi
0.543007 + 0.839728i 0.317286π0.317286\pi
710710 1.30241e19 3.81566
711711 −1.15820e18 −0.336227
712712 4.06843e18 1.17032
713713 −2.09404e18 −0.596902
714714 −2.32909e17 −0.0657881
715715 4.93460e18 1.38122
716716 6.86021e18 1.90284
717717 −7.30074e17 −0.200674
718718 −7.96985e17 −0.217091
719719 −6.53709e18 −1.76460 −0.882300 0.470687i 0.844006π-0.844006\pi
−0.882300 + 0.470687i 0.844006π0.844006\pi
720720 8.06793e18 2.15825
721721 −1.17350e18 −0.311104
722722 −1.10594e19 −2.90563
723723 1.73159e18 0.450865
724724 1.62812e19 4.20132
725725 4.09475e16 0.0104720
726726 −1.49352e18 −0.378550
727727 −5.12294e17 −0.128690 −0.0643451 0.997928i 0.520496π-0.520496\pi
−0.0643451 + 0.997928i 0.520496π0.520496\pi
728728 −1.95228e18 −0.486059
729729 1.16457e18 0.287367
730730 3.43246e18 0.839474
731731 9.87268e16 0.0239316
732732 −5.52911e18 −1.32841
733733 3.69936e18 0.880949 0.440474 0.897765i 0.354810π-0.354810\pi
0.440474 + 0.897765i 0.354810π0.354810\pi
734734 −3.60653e18 −0.851266
735735 −3.85144e18 −0.901064
736736 3.96264e18 0.918923
737737 −4.43423e18 −1.01925
738738 2.10299e18 0.479149
739739 3.65486e17 0.0825433 0.0412717 0.999148i 0.486859π-0.486859\pi
0.0412717 + 0.999148i 0.486859π0.486859\pi
740740 2.10234e19 4.70648
741741 −3.75595e18 −0.833493
742742 −2.50000e18 −0.549939
743743 5.21381e18 1.13692 0.568458 0.822713i 0.307540π-0.307540\pi
0.568458 + 0.822713i 0.307540π0.307540\pi
744744 2.61573e18 0.565417
745745 1.34151e19 2.87460
746746 −3.40097e18 −0.722437
747747 4.62414e18 0.973750
748748 2.47695e18 0.517080
749749 1.34879e17 0.0279135
750750 −1.08830e19 −2.23281
751751 5.18963e18 1.05555 0.527773 0.849386i 0.323027π-0.323027\pi
0.527773 + 0.849386i 0.323027π0.323027\pi
752752 1.24587e19 2.51222
753753 3.13911e18 0.627537
754754 −4.02041e16 −0.00796813
755755 −1.00472e19 −1.97419
756756 2.34973e18 0.457747
757757 −8.02080e18 −1.54915 −0.774577 0.632480i 0.782037π-0.782037\pi
−0.774577 + 0.632480i 0.782037π0.782037\pi
758758 2.20551e18 0.422337
759759 −2.51272e18 −0.477059
760760 3.35483e19 6.31513
761761 1.11765e18 0.208596 0.104298 0.994546i 0.466740π-0.466740\pi
0.104298 + 0.994546i 0.466740π0.466740\pi
762762 −5.92797e18 −1.09698
763763 −1.65459e18 −0.303585
764764 1.84900e19 3.36379
765765 −2.23533e18 −0.403220
766766 −1.46392e19 −2.61837
767767 −7.70204e18 −1.36595
768768 5.71839e18 1.00560
769769 −6.30917e17 −0.110015 −0.0550074 0.998486i 0.517518π-0.517518\pi
−0.0550074 + 0.998486i 0.517518π0.517518\pi
770770 −3.34967e18 −0.579179
771771 −3.70581e18 −0.635375
772772 2.15437e18 0.366275
773773 −9.45637e18 −1.59426 −0.797128 0.603811i 0.793648π-0.793648\pi
−0.797128 + 0.603811i 0.793648π0.793648\pi
774774 −6.09832e17 −0.101952
775775 7.03990e18 1.16709
776776 −8.44938e18 −1.38907
777777 8.70740e17 0.141955
778778 1.69726e18 0.274397
779779 3.72690e18 0.597522
780780 1.29415e19 2.05764
781781 −5.73678e18 −0.904558
782782 −4.12378e18 −0.644839
783783 2.63713e16 0.00408959
784784 −1.00488e19 −1.54547
785785 1.68824e19 2.57503
786786 −9.96467e18 −1.50736
787787 −2.29005e18 −0.343565 −0.171782 0.985135i 0.554953π-0.554953\pi
−0.171782 + 0.985135i 0.554953π0.554953\pi
788788 1.05236e18 0.156583
789789 3.47035e16 0.00512121
790790 1.02902e19 1.50608
791791 −1.57398e18 −0.228482
792792 −8.33834e18 −1.20051
793793 7.96267e18 1.13706
794794 −1.17595e19 −1.66555
795795 9.03166e18 1.26876
796796 −2.59678e18 −0.361827
797797 7.05977e18 0.975689 0.487844 0.872931i 0.337783π-0.337783\pi
0.487844 + 0.872931i 0.337783π0.337783\pi
798798 2.54959e18 0.349504
799799 −3.45185e18 −0.469351
800800 −1.33219e19 −1.79673
801801 2.96744e18 0.396982
802802 1.28380e19 1.70359
803803 −1.51190e18 −0.199009
804804 −1.16292e19 −1.51840
805805 3.83277e18 0.496409
806806 −6.91210e18 −0.888039
807807 −4.86128e18 −0.619545
808808 −1.99813e19 −2.52609
809809 9.00882e18 1.12980 0.564901 0.825159i 0.308914π-0.308914\pi
0.564901 + 0.825159i 0.308914π0.308914\pi
810810 6.65371e18 0.827773
811811 4.38285e18 0.540905 0.270452 0.962733i 0.412827π-0.412827\pi
0.270452 + 0.962733i 0.412827π0.412827\pi
812812 1.87566e16 0.00229636
813813 3.58045e18 0.434859
814814 −1.34737e19 −1.62341
815815 2.16134e19 2.58345
816816 2.19535e18 0.260326
817817 −1.08074e18 −0.127138
818818 −6.23736e18 −0.727955
819819 −1.42396e18 −0.164874
820820 −1.28413e19 −1.47510
821821 −1.32851e19 −1.51403 −0.757013 0.653400i 0.773342π-0.773342\pi
−0.757013 + 0.653400i 0.773342π0.773342\pi
822822 −9.71277e18 −1.09819
823823 8.64684e18 0.969970 0.484985 0.874522i 0.338825π-0.338825\pi
0.484985 + 0.874522i 0.338825π0.338825\pi
824824 2.59538e19 2.88851
825825 8.44745e18 0.932771
826826 5.22825e18 0.572778
827827 −1.15051e19 −1.25056 −0.625278 0.780402i 0.715015π-0.715015\pi
−0.625278 + 0.780402i 0.715015π0.715015\pi
828828 1.75067e19 1.88802
829829 −4.37644e17 −0.0468292 −0.0234146 0.999726i 0.507454π-0.507454\pi
−0.0234146 + 0.999726i 0.507454π0.507454\pi
830830 −4.10838e19 −4.36178
831831 −3.58868e18 −0.378032
832832 −2.28368e18 −0.238690
833833 2.78415e18 0.288736
834834 3.44399e18 0.354391
835835 −1.03042e19 −1.05209
836836 −2.71146e19 −2.74702
837837 4.53389e18 0.455780
838838 −1.43192e19 −1.42834
839839 1.33922e19 1.32556 0.662780 0.748814i 0.269376π-0.269376\pi
0.662780 + 0.748814i 0.269376π0.269376\pi
840840 −4.78763e18 −0.470224
841841 −1.02604e19 −0.999979
842842 1.40150e18 0.135539
843843 3.19558e18 0.306669
844844 −1.54289e19 −1.46930
845845 6.20557e17 0.0586425
846846 2.13220e19 1.99949
847847 −1.00346e18 −0.0933806
848848 2.35645e19 2.17613
849849 3.93573e17 0.0360683
850850 1.38636e19 1.26082
851851 1.54169e19 1.39141
852852 −1.50453e19 −1.34754
853853 2.20997e18 0.196435 0.0982174 0.995165i 0.468686π-0.468686\pi
0.0982174 + 0.995165i 0.468686π0.468686\pi
854854 −5.40517e18 −0.476797
855855 2.44696e19 2.14213
856856 −2.98307e18 −0.259169
857857 8.12505e18 0.700568 0.350284 0.936643i 0.386085π-0.386085\pi
0.350284 + 0.936643i 0.386085π0.386085\pi
858858 −8.29409e18 −0.709743
859859 8.00716e18 0.680022 0.340011 0.940422i 0.389569π-0.389569\pi
0.340011 + 0.940422i 0.389569π0.389569\pi
860860 3.72377e18 0.313865
861861 −5.31859e17 −0.0444914
862862 3.08053e19 2.55758
863863 −6.77034e18 −0.557880 −0.278940 0.960309i 0.589983π-0.589983\pi
−0.278940 + 0.960309i 0.589983π0.589983\pi
864864 −8.57969e18 −0.701669
865865 −3.44755e18 −0.279837
866866 −2.33816e19 −1.88369
867867 5.93185e18 0.474314
868868 3.22473e18 0.255927
869869 −4.53256e18 −0.357038
870870 −9.85934e16 −0.00770855
871871 1.67476e19 1.29968
872872 3.65938e19 2.81871
873873 −6.16283e18 −0.471181
874874 4.51419e19 3.42575
875875 −7.31201e18 −0.550788
876876 −3.96512e18 −0.296469
877877 5.67266e17 0.0421007 0.0210503 0.999778i 0.493299π-0.493299\pi
0.0210503 + 0.999778i 0.493299π0.493299\pi
878878 2.58348e19 1.90322
879879 1.38408e19 1.01213
880880 3.15733e19 2.29183
881881 −1.56416e19 −1.12703 −0.563516 0.826105i 0.690552π-0.690552\pi
−0.563516 + 0.826105i 0.690552π0.690552\pi
882882 −1.71976e19 −1.23005
883883 −1.49339e19 −1.06030 −0.530149 0.847904i 0.677864π-0.677864\pi
−0.530149 + 0.847904i 0.677864π0.677864\pi
884884 −9.35521e18 −0.659346
885885 −1.88879e19 −1.32146
886886 −2.40043e19 −1.66713
887887 −2.55246e19 −1.75977 −0.879884 0.475188i 0.842380π-0.842380\pi
−0.879884 + 0.475188i 0.842380π0.842380\pi
888888 −1.92578e19 −1.31802
889889 −3.98285e18 −0.270603
890890 −2.63646e19 −1.77822
891891 −2.93077e18 −0.196235
892892 −1.85895e19 −1.23565
893893 3.77865e19 2.49346
894894 −2.25481e19 −1.47712
895895 −2.42281e19 −1.57568
896896 4.32682e18 0.279361
897897 9.49028e18 0.608315
898898 9.92798e18 0.631779
899899 3.61916e16 0.00228649
900900 −5.88553e19 −3.69155
901901 −6.52886e18 −0.406562
902902 8.22992e18 0.508807
903903 1.54230e17 0.00946671
904904 3.48110e19 2.12139
905905 −5.75001e19 −3.47899
906906 1.68874e19 1.01445
907907 −1.07791e19 −0.642886 −0.321443 0.946929i 0.604168π-0.604168\pi
−0.321443 + 0.946929i 0.604168π0.604168\pi
908908 4.95855e19 2.93627
909909 −1.45740e19 −0.856867
910910 1.26514e19 0.738531
911911 −1.77358e19 −1.02797 −0.513985 0.857799i 0.671831π-0.671831\pi
−0.513985 + 0.857799i 0.671831π0.671831\pi
912912 −2.40319e19 −1.38300
913913 1.80963e19 1.03402
914914 −1.59749e18 −0.0906334
915915 1.95271e19 1.10002
916916 −5.00609e19 −2.80013
917917 −6.69500e18 −0.371835
918918 8.92856e18 0.492384
919919 −1.95862e19 −1.07250 −0.536252 0.844058i 0.680160π-0.680160\pi
−0.536252 + 0.844058i 0.680160π0.680160\pi
920920 −8.47676e19 −4.60902
921921 8.02840e18 0.433453
922922 −2.50461e19 −1.34273
923923 2.16672e19 1.15343
924924 3.86948e18 0.204543
925925 −5.18298e19 −2.72056
926926 1.20936e19 0.630356
927927 1.89303e19 0.979802
928928 −6.84870e16 −0.00352003
929929 4.43006e18 0.226103 0.113052 0.993589i 0.463937π-0.463937\pi
0.113052 + 0.993589i 0.463937π0.463937\pi
930930 −1.69507e19 −0.859109
931931 −3.04774e19 −1.53393
932932 5.79410e19 2.89590
933933 −5.64814e18 −0.280334
934934 7.23285e19 3.56496
935935 −8.74781e18 −0.428178
936936 3.14931e19 1.53081
937937 1.11253e19 0.537037 0.268519 0.963275i 0.413466π-0.413466\pi
0.268519 + 0.963275i 0.413466π0.413466\pi
938938 −1.13685e19 −0.544986
939939 1.33946e19 0.637681
940940 −1.30197e20 −6.15558
941941 3.37076e19 1.58269 0.791343 0.611372i 0.209382π-0.209382\pi
0.791343 + 0.611372i 0.209382π0.209382\pi
942942 −2.83760e19 −1.32318
943943 −9.41686e18 −0.436094
944944 −4.92804e19 −2.26650
945945 −8.29849e18 −0.379046
946946 −2.38654e18 −0.108262
947947 −3.45738e19 −1.55766 −0.778830 0.627235i 0.784187π-0.784187\pi
−0.778830 + 0.627235i 0.784187π0.784187\pi
948948 −1.18871e19 −0.531889
949949 5.71031e18 0.253764
950950 −1.51762e20 −6.69821
951951 −1.03890e19 −0.455408
952952 3.46091e18 0.150678
953953 1.82301e19 0.788286 0.394143 0.919049i 0.371041π-0.371041\pi
0.394143 + 0.919049i 0.371041π0.371041\pi
954954 4.03286e19 1.73200
955955 −6.53006e19 −2.78545
956956 1.99060e19 0.843351
957957 4.34277e16 0.00182742
958958 −3.15006e19 −1.31657
959959 −6.52575e18 −0.270900
960960 −5.60032e18 −0.230914
961961 −1.81953e19 −0.745173
962962 5.08889e19 2.07007
963963 −2.17580e18 −0.0879118
964964 −4.72132e19 −1.89480
965965 −7.60854e18 −0.303301
966966 −6.44213e18 −0.255081
967967 2.12515e19 0.835830 0.417915 0.908486i 0.362761π-0.362761\pi
0.417915 + 0.908486i 0.362761π0.362761\pi
968968 2.21930e19 0.867014
969969 6.65837e18 0.258383
970970 5.47545e19 2.11059
971971 1.75569e19 0.672239 0.336119 0.941819i 0.390885π-0.390885\pi
0.336119 + 0.941819i 0.390885π0.390885\pi
972972 −5.98586e19 −2.27665
973973 2.31393e18 0.0874211
974974 −1.51524e19 −0.568653
975975 −3.19052e19 −1.18941
976976 5.09480e19 1.88670
977977 −4.83330e19 −1.77799 −0.888995 0.457917i 0.848596π-0.848596\pi
−0.888995 + 0.457917i 0.848596π0.848596\pi
978978 −3.63279e19 −1.32751
979979 1.16129e19 0.421553
980980 1.05013e20 3.78680
981981 2.66909e19 0.956124
982982 −7.50806e19 −2.67179
983983 3.40584e19 1.20400 0.601999 0.798497i 0.294371π-0.294371\pi
0.601999 + 0.798497i 0.294371π0.294371\pi
984984 1.17629e19 0.413091
985985 −3.71660e18 −0.129661
986986 7.12718e16 0.00247012
987987 −5.39246e18 −0.185663
988988 1.02409e20 3.50282
989989 2.73073e18 0.0927903
990990 5.40349e19 1.82409
991991 −4.46742e19 −1.49823 −0.749114 0.662441i 0.769520π-0.769520\pi
−0.749114 + 0.662441i 0.769520π0.769520\pi
992992 −1.17746e19 −0.392303
993993 4.36877e18 0.144607
994994 −1.47080e19 −0.483663
995995 9.17101e18 0.299618
996996 4.74593e19 1.54041
997997 2.19636e19 0.708246 0.354123 0.935199i 0.384779π-0.384779\pi
0.354123 + 0.935199i 0.384779π0.384779\pi
998998 5.67220e18 0.181720
999999 −3.33798e19 −1.06245
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.14.a.b.1.7 109
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.14.a.b.1.7 109 1.1 even 1 trivial