Properties

Label 197.2.a.b.1.1
Level $197$
Weight $2$
Character 197.1
Self dual yes
Analytic conductor $1.573$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,2,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.57305291982\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.24217.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 5x^{3} - x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.17442\) of defining polynomial
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.17442 q^{2} -3.26823 q^{3} +2.72812 q^{4} +2.11405 q^{5} +7.10652 q^{6} -0.641841 q^{7} -1.58325 q^{8} +7.68134 q^{9} -4.59684 q^{10} -0.802676 q^{11} -8.91614 q^{12} -6.11583 q^{13} +1.39564 q^{14} -6.90920 q^{15} -2.01359 q^{16} +5.40923 q^{17} -16.7025 q^{18} -3.52027 q^{19} +5.76738 q^{20} +2.09769 q^{21} +1.74536 q^{22} -5.84217 q^{23} +5.17442 q^{24} -0.530799 q^{25} +13.2984 q^{26} -15.2997 q^{27} -1.75102 q^{28} -0.595055 q^{29} +15.0235 q^{30} +3.76560 q^{31} +7.54490 q^{32} +2.62333 q^{33} -11.7620 q^{34} -1.35688 q^{35} +20.9556 q^{36} -8.25810 q^{37} +7.65456 q^{38} +19.9880 q^{39} -3.34707 q^{40} -10.3739 q^{41} -4.56126 q^{42} +1.82233 q^{43} -2.18980 q^{44} +16.2387 q^{45} +12.7034 q^{46} +2.71581 q^{47} +6.58088 q^{48} -6.58804 q^{49} +1.15418 q^{50} -17.6786 q^{51} -16.6847 q^{52} +4.58493 q^{53} +33.2680 q^{54} -1.69690 q^{55} +1.01619 q^{56} +11.5051 q^{57} +1.29390 q^{58} -10.9514 q^{59} -18.8491 q^{60} -7.29900 q^{61} -8.18801 q^{62} -4.93020 q^{63} -12.3786 q^{64} -12.9292 q^{65} -5.70424 q^{66} -3.23179 q^{67} +14.7570 q^{68} +19.0936 q^{69} +2.95044 q^{70} -6.41588 q^{71} -12.1615 q^{72} +1.90976 q^{73} +17.9566 q^{74} +1.73477 q^{75} -9.60373 q^{76} +0.515191 q^{77} -43.4623 q^{78} +13.4138 q^{79} -4.25683 q^{80} +26.9589 q^{81} +22.5573 q^{82} +1.25586 q^{83} +5.72275 q^{84} +11.4354 q^{85} -3.96252 q^{86} +1.94478 q^{87} +1.27084 q^{88} +7.71576 q^{89} -35.3099 q^{90} +3.92539 q^{91} -15.9382 q^{92} -12.3069 q^{93} -5.90532 q^{94} -7.44202 q^{95} -24.6585 q^{96} -13.4118 q^{97} +14.3252 q^{98} -6.16563 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 8 q^{3} - 4 q^{5} - 2 q^{6} - 10 q^{7} - 3 q^{8} + 13 q^{9} - 10 q^{10} - 8 q^{11} - 12 q^{12} - 8 q^{13} - 3 q^{14} - q^{15} - 2 q^{16} + 9 q^{17} - q^{18} - 16 q^{19} + 4 q^{20} + 14 q^{21} + 9 q^{22}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17442 −1.53755 −0.768775 0.639519i \(-0.779134\pi\)
−0.768775 + 0.639519i \(0.779134\pi\)
\(3\) −3.26823 −1.88691 −0.943457 0.331494i \(-0.892447\pi\)
−0.943457 + 0.331494i \(0.892447\pi\)
\(4\) 2.72812 1.36406
\(5\) 2.11405 0.945431 0.472716 0.881215i \(-0.343274\pi\)
0.472716 + 0.881215i \(0.343274\pi\)
\(6\) 7.10652 2.90123
\(7\) −0.641841 −0.242593 −0.121297 0.992616i \(-0.538705\pi\)
−0.121297 + 0.992616i \(0.538705\pi\)
\(8\) −1.58325 −0.559763
\(9\) 7.68134 2.56045
\(10\) −4.59684 −1.45365
\(11\) −0.802676 −0.242016 −0.121008 0.992652i \(-0.538613\pi\)
−0.121008 + 0.992652i \(0.538613\pi\)
\(12\) −8.91614 −2.57387
\(13\) −6.11583 −1.69623 −0.848113 0.529815i \(-0.822261\pi\)
−0.848113 + 0.529815i \(0.822261\pi\)
\(14\) 1.39564 0.372999
\(15\) −6.90920 −1.78395
\(16\) −2.01359 −0.503398
\(17\) 5.40923 1.31193 0.655965 0.754791i \(-0.272262\pi\)
0.655965 + 0.754791i \(0.272262\pi\)
\(18\) −16.7025 −3.93681
\(19\) −3.52027 −0.807605 −0.403802 0.914846i \(-0.632312\pi\)
−0.403802 + 0.914846i \(0.632312\pi\)
\(20\) 5.76738 1.28963
\(21\) 2.09769 0.457753
\(22\) 1.74536 0.372112
\(23\) −5.84217 −1.21818 −0.609088 0.793102i \(-0.708465\pi\)
−0.609088 + 0.793102i \(0.708465\pi\)
\(24\) 5.17442 1.05623
\(25\) −0.530799 −0.106160
\(26\) 13.2984 2.60803
\(27\) −15.2997 −2.94443
\(28\) −1.75102 −0.330912
\(29\) −0.595055 −0.110499 −0.0552495 0.998473i \(-0.517595\pi\)
−0.0552495 + 0.998473i \(0.517595\pi\)
\(30\) 15.0235 2.74291
\(31\) 3.76560 0.676322 0.338161 0.941088i \(-0.390195\pi\)
0.338161 + 0.941088i \(0.390195\pi\)
\(32\) 7.54490 1.33376
\(33\) 2.62333 0.456663
\(34\) −11.7620 −2.01716
\(35\) −1.35688 −0.229355
\(36\) 20.9556 3.49261
\(37\) −8.25810 −1.35762 −0.678812 0.734312i \(-0.737505\pi\)
−0.678812 + 0.734312i \(0.737505\pi\)
\(38\) 7.65456 1.24173
\(39\) 19.9880 3.20063
\(40\) −3.34707 −0.529218
\(41\) −10.3739 −1.62014 −0.810068 0.586336i \(-0.800570\pi\)
−0.810068 + 0.586336i \(0.800570\pi\)
\(42\) −4.56126 −0.703818
\(43\) 1.82233 0.277903 0.138951 0.990299i \(-0.455627\pi\)
0.138951 + 0.990299i \(0.455627\pi\)
\(44\) −2.18980 −0.330125
\(45\) 16.2387 2.42073
\(46\) 12.7034 1.87301
\(47\) 2.71581 0.396141 0.198071 0.980188i \(-0.436532\pi\)
0.198071 + 0.980188i \(0.436532\pi\)
\(48\) 6.58088 0.949868
\(49\) −6.58804 −0.941149
\(50\) 1.15418 0.163226
\(51\) −17.6786 −2.47550
\(52\) −16.6847 −2.31376
\(53\) 4.58493 0.629788 0.314894 0.949127i \(-0.398031\pi\)
0.314894 + 0.949127i \(0.398031\pi\)
\(54\) 33.2680 4.52721
\(55\) −1.69690 −0.228809
\(56\) 1.01619 0.135795
\(57\) 11.5051 1.52388
\(58\) 1.29390 0.169898
\(59\) −10.9514 −1.42574 −0.712872 0.701294i \(-0.752606\pi\)
−0.712872 + 0.701294i \(0.752606\pi\)
\(60\) −18.8491 −2.43341
\(61\) −7.29900 −0.934542 −0.467271 0.884114i \(-0.654763\pi\)
−0.467271 + 0.884114i \(0.654763\pi\)
\(62\) −8.18801 −1.03988
\(63\) −4.93020 −0.621147
\(64\) −12.3786 −1.54733
\(65\) −12.9292 −1.60367
\(66\) −5.70424 −0.702143
\(67\) −3.23179 −0.394827 −0.197413 0.980320i \(-0.563254\pi\)
−0.197413 + 0.980320i \(0.563254\pi\)
\(68\) 14.7570 1.78955
\(69\) 19.0936 2.29860
\(70\) 2.95044 0.352645
\(71\) −6.41588 −0.761425 −0.380712 0.924694i \(-0.624321\pi\)
−0.380712 + 0.924694i \(0.624321\pi\)
\(72\) −12.1615 −1.43324
\(73\) 1.90976 0.223521 0.111760 0.993735i \(-0.464351\pi\)
0.111760 + 0.993735i \(0.464351\pi\)
\(74\) 17.9566 2.08741
\(75\) 1.73477 0.200315
\(76\) −9.60373 −1.10162
\(77\) 0.515191 0.0587114
\(78\) −43.4623 −4.92114
\(79\) 13.4138 1.50918 0.754588 0.656199i \(-0.227837\pi\)
0.754588 + 0.656199i \(0.227837\pi\)
\(80\) −4.25683 −0.475928
\(81\) 26.9589 2.99544
\(82\) 22.5573 2.49104
\(83\) 1.25586 0.137849 0.0689245 0.997622i \(-0.478043\pi\)
0.0689245 + 0.997622i \(0.478043\pi\)
\(84\) 5.72275 0.624403
\(85\) 11.4354 1.24034
\(86\) −3.96252 −0.427290
\(87\) 1.94478 0.208502
\(88\) 1.27084 0.135472
\(89\) 7.71576 0.817868 0.408934 0.912564i \(-0.365901\pi\)
0.408934 + 0.912564i \(0.365901\pi\)
\(90\) −35.3099 −3.72199
\(91\) 3.92539 0.411493
\(92\) −15.9382 −1.66167
\(93\) −12.3069 −1.27616
\(94\) −5.90532 −0.609087
\(95\) −7.44202 −0.763535
\(96\) −24.6585 −2.51670
\(97\) −13.4118 −1.36177 −0.680883 0.732393i \(-0.738404\pi\)
−0.680883 + 0.732393i \(0.738404\pi\)
\(98\) 14.3252 1.44706
\(99\) −6.16563 −0.619669
\(100\) −1.44809 −0.144809
\(101\) 6.25278 0.622175 0.311087 0.950381i \(-0.399307\pi\)
0.311087 + 0.950381i \(0.399307\pi\)
\(102\) 38.4408 3.80621
\(103\) −18.4509 −1.81802 −0.909012 0.416770i \(-0.863162\pi\)
−0.909012 + 0.416770i \(0.863162\pi\)
\(104\) 9.68289 0.949485
\(105\) 4.43461 0.432774
\(106\) −9.96958 −0.968331
\(107\) 6.56392 0.634558 0.317279 0.948332i \(-0.397231\pi\)
0.317279 + 0.948332i \(0.397231\pi\)
\(108\) −41.7394 −4.01638
\(109\) 12.4633 1.19377 0.596884 0.802328i \(-0.296405\pi\)
0.596884 + 0.802328i \(0.296405\pi\)
\(110\) 3.68977 0.351806
\(111\) 26.9894 2.56172
\(112\) 1.29241 0.122121
\(113\) 4.47578 0.421046 0.210523 0.977589i \(-0.432483\pi\)
0.210523 + 0.977589i \(0.432483\pi\)
\(114\) −25.0169 −2.34304
\(115\) −12.3506 −1.15170
\(116\) −1.62338 −0.150727
\(117\) −46.9778 −4.34310
\(118\) 23.8129 2.19215
\(119\) −3.47187 −0.318265
\(120\) 10.9390 0.998588
\(121\) −10.3557 −0.941428
\(122\) 15.8711 1.43691
\(123\) 33.9044 3.05706
\(124\) 10.2730 0.922545
\(125\) −11.6924 −1.04580
\(126\) 10.7203 0.955045
\(127\) 18.2081 1.61571 0.807854 0.589383i \(-0.200629\pi\)
0.807854 + 0.589383i \(0.200629\pi\)
\(128\) 11.8266 1.04533
\(129\) −5.95580 −0.524379
\(130\) 28.1135 2.46572
\(131\) −2.16344 −0.189021 −0.0945103 0.995524i \(-0.530129\pi\)
−0.0945103 + 0.995524i \(0.530129\pi\)
\(132\) 7.15677 0.622917
\(133\) 2.25945 0.195919
\(134\) 7.02729 0.607066
\(135\) −32.3443 −2.78375
\(136\) −8.56415 −0.734370
\(137\) 4.50345 0.384756 0.192378 0.981321i \(-0.438380\pi\)
0.192378 + 0.981321i \(0.438380\pi\)
\(138\) −41.5175 −3.53421
\(139\) −2.90133 −0.246087 −0.123044 0.992401i \(-0.539266\pi\)
−0.123044 + 0.992401i \(0.539266\pi\)
\(140\) −3.70175 −0.312855
\(141\) −8.87589 −0.747485
\(142\) 13.9508 1.17073
\(143\) 4.90903 0.410514
\(144\) −15.4671 −1.28892
\(145\) −1.25798 −0.104469
\(146\) −4.15263 −0.343674
\(147\) 21.5312 1.77587
\(148\) −22.5291 −1.85188
\(149\) 4.46127 0.365482 0.182741 0.983161i \(-0.441503\pi\)
0.182741 + 0.983161i \(0.441503\pi\)
\(150\) −3.77214 −0.307994
\(151\) 4.67943 0.380806 0.190403 0.981706i \(-0.439020\pi\)
0.190403 + 0.981706i \(0.439020\pi\)
\(152\) 5.57346 0.452067
\(153\) 41.5501 3.35913
\(154\) −1.12024 −0.0902718
\(155\) 7.96066 0.639416
\(156\) 54.5296 4.36586
\(157\) −7.27293 −0.580443 −0.290222 0.956959i \(-0.593729\pi\)
−0.290222 + 0.956959i \(0.593729\pi\)
\(158\) −29.1674 −2.32043
\(159\) −14.9846 −1.18836
\(160\) 15.9503 1.26098
\(161\) 3.74975 0.295522
\(162\) −58.6202 −4.60563
\(163\) 9.39619 0.735967 0.367983 0.929832i \(-0.380048\pi\)
0.367983 + 0.929832i \(0.380048\pi\)
\(164\) −28.3014 −2.20997
\(165\) 5.54585 0.431744
\(166\) −2.73078 −0.211950
\(167\) 0.485365 0.0375587 0.0187793 0.999824i \(-0.494022\pi\)
0.0187793 + 0.999824i \(0.494022\pi\)
\(168\) −3.32116 −0.256233
\(169\) 24.4034 1.87719
\(170\) −24.8653 −1.90708
\(171\) −27.0404 −2.06783
\(172\) 4.97154 0.379077
\(173\) 1.73351 0.131796 0.0658982 0.997826i \(-0.479009\pi\)
0.0658982 + 0.997826i \(0.479009\pi\)
\(174\) −4.22877 −0.320582
\(175\) 0.340689 0.0257537
\(176\) 1.61626 0.121830
\(177\) 35.7916 2.69026
\(178\) −16.7773 −1.25751
\(179\) 3.34468 0.249993 0.124996 0.992157i \(-0.460108\pi\)
0.124996 + 0.992157i \(0.460108\pi\)
\(180\) 44.3012 3.30202
\(181\) −6.89808 −0.512730 −0.256365 0.966580i \(-0.582525\pi\)
−0.256365 + 0.966580i \(0.582525\pi\)
\(182\) −8.53548 −0.632692
\(183\) 23.8548 1.76340
\(184\) 9.24961 0.681891
\(185\) −17.4580 −1.28354
\(186\) 26.7603 1.96216
\(187\) −4.34186 −0.317508
\(188\) 7.40906 0.540361
\(189\) 9.81998 0.714298
\(190\) 16.1821 1.17397
\(191\) −23.4432 −1.69629 −0.848147 0.529762i \(-0.822281\pi\)
−0.848147 + 0.529762i \(0.822281\pi\)
\(192\) 40.4562 2.91968
\(193\) 16.6470 1.19828 0.599140 0.800644i \(-0.295509\pi\)
0.599140 + 0.800644i \(0.295509\pi\)
\(194\) 29.1630 2.09378
\(195\) 42.2555 3.02598
\(196\) −17.9730 −1.28378
\(197\) −1.00000 −0.0712470
\(198\) 13.4067 0.952772
\(199\) 19.6056 1.38980 0.694902 0.719104i \(-0.255448\pi\)
0.694902 + 0.719104i \(0.255448\pi\)
\(200\) 0.840387 0.0594244
\(201\) 10.5623 0.745004
\(202\) −13.5962 −0.956625
\(203\) 0.381931 0.0268063
\(204\) −48.2294 −3.37673
\(205\) −21.9310 −1.53173
\(206\) 40.1202 2.79530
\(207\) −44.8757 −3.11908
\(208\) 12.3148 0.853876
\(209\) 2.82563 0.195453
\(210\) −9.64273 −0.665411
\(211\) −21.2155 −1.46053 −0.730266 0.683162i \(-0.760604\pi\)
−0.730266 + 0.683162i \(0.760604\pi\)
\(212\) 12.5082 0.859070
\(213\) 20.9686 1.43674
\(214\) −14.2727 −0.975665
\(215\) 3.85250 0.262738
\(216\) 24.2232 1.64818
\(217\) −2.41692 −0.164071
\(218\) −27.1005 −1.83548
\(219\) −6.24154 −0.421764
\(220\) −4.62934 −0.312110
\(221\) −33.0819 −2.22533
\(222\) −58.6864 −3.93877
\(223\) 4.90678 0.328582 0.164291 0.986412i \(-0.447466\pi\)
0.164291 + 0.986412i \(0.447466\pi\)
\(224\) −4.84263 −0.323562
\(225\) −4.07725 −0.271817
\(226\) −9.73224 −0.647379
\(227\) −8.70887 −0.578028 −0.289014 0.957325i \(-0.593327\pi\)
−0.289014 + 0.957325i \(0.593327\pi\)
\(228\) 31.3872 2.07867
\(229\) 5.35180 0.353657 0.176828 0.984242i \(-0.443416\pi\)
0.176828 + 0.984242i \(0.443416\pi\)
\(230\) 26.8555 1.77080
\(231\) −1.68376 −0.110783
\(232\) 0.942121 0.0618532
\(233\) −26.2053 −1.71677 −0.858384 0.513007i \(-0.828531\pi\)
−0.858384 + 0.513007i \(0.828531\pi\)
\(234\) 102.150 6.67773
\(235\) 5.74135 0.374524
\(236\) −29.8766 −1.94480
\(237\) −43.8396 −2.84769
\(238\) 7.54931 0.489349
\(239\) −13.3947 −0.866431 −0.433215 0.901290i \(-0.642621\pi\)
−0.433215 + 0.901290i \(0.642621\pi\)
\(240\) 13.9123 0.898035
\(241\) −30.3596 −1.95563 −0.977816 0.209463i \(-0.932828\pi\)
−0.977816 + 0.209463i \(0.932828\pi\)
\(242\) 22.5177 1.44749
\(243\) −42.2089 −2.70770
\(244\) −19.9126 −1.27477
\(245\) −13.9274 −0.889791
\(246\) −73.7226 −4.70038
\(247\) 21.5294 1.36988
\(248\) −5.96188 −0.378580
\(249\) −4.10445 −0.260109
\(250\) 25.4242 1.60797
\(251\) 17.8926 1.12937 0.564685 0.825306i \(-0.308997\pi\)
0.564685 + 0.825306i \(0.308997\pi\)
\(252\) −13.4502 −0.847283
\(253\) 4.68937 0.294818
\(254\) −39.5921 −2.48423
\(255\) −37.3734 −2.34041
\(256\) −0.958811 −0.0599257
\(257\) 7.04819 0.439654 0.219827 0.975539i \(-0.429451\pi\)
0.219827 + 0.975539i \(0.429451\pi\)
\(258\) 12.9504 0.806259
\(259\) 5.30039 0.329350
\(260\) −35.2724 −2.18750
\(261\) −4.57082 −0.282927
\(262\) 4.70424 0.290629
\(263\) 22.7572 1.40327 0.701636 0.712536i \(-0.252453\pi\)
0.701636 + 0.712536i \(0.252453\pi\)
\(264\) −4.15339 −0.255623
\(265\) 9.69275 0.595421
\(266\) −4.91301 −0.301236
\(267\) −25.2169 −1.54325
\(268\) −8.81673 −0.538568
\(269\) −5.98851 −0.365126 −0.182563 0.983194i \(-0.558439\pi\)
−0.182563 + 0.983194i \(0.558439\pi\)
\(270\) 70.3302 4.28016
\(271\) −1.51925 −0.0922880 −0.0461440 0.998935i \(-0.514693\pi\)
−0.0461440 + 0.998935i \(0.514693\pi\)
\(272\) −10.8920 −0.660422
\(273\) −12.8291 −0.776452
\(274\) −9.79242 −0.591582
\(275\) 0.426060 0.0256924
\(276\) 52.0896 3.13543
\(277\) −23.7824 −1.42894 −0.714472 0.699664i \(-0.753333\pi\)
−0.714472 + 0.699664i \(0.753333\pi\)
\(278\) 6.30871 0.378372
\(279\) 28.9248 1.73169
\(280\) 2.14829 0.128385
\(281\) 17.4212 1.03926 0.519631 0.854391i \(-0.326070\pi\)
0.519631 + 0.854391i \(0.326070\pi\)
\(282\) 19.3000 1.14930
\(283\) 7.48180 0.444747 0.222373 0.974962i \(-0.428620\pi\)
0.222373 + 0.974962i \(0.428620\pi\)
\(284\) −17.5033 −1.03863
\(285\) 24.3222 1.44072
\(286\) −10.6743 −0.631186
\(287\) 6.65842 0.393034
\(288\) 57.9549 3.41503
\(289\) 12.2597 0.721160
\(290\) 2.73537 0.160627
\(291\) 43.8330 2.56953
\(292\) 5.21007 0.304896
\(293\) 12.7277 0.743560 0.371780 0.928321i \(-0.378748\pi\)
0.371780 + 0.928321i \(0.378748\pi\)
\(294\) −46.8181 −2.73048
\(295\) −23.1517 −1.34794
\(296\) 13.0746 0.759948
\(297\) 12.2807 0.712598
\(298\) −9.70071 −0.561947
\(299\) 35.7297 2.06630
\(300\) 4.73268 0.273241
\(301\) −1.16965 −0.0674174
\(302\) −10.1751 −0.585509
\(303\) −20.4355 −1.17399
\(304\) 7.08838 0.406546
\(305\) −15.4304 −0.883545
\(306\) −90.3475 −5.16483
\(307\) −26.3035 −1.50122 −0.750610 0.660746i \(-0.770240\pi\)
−0.750610 + 0.660746i \(0.770240\pi\)
\(308\) 1.40550 0.0800860
\(309\) 60.3019 3.43046
\(310\) −17.3099 −0.983134
\(311\) 8.97930 0.509170 0.254585 0.967050i \(-0.418061\pi\)
0.254585 + 0.967050i \(0.418061\pi\)
\(312\) −31.6459 −1.79160
\(313\) −9.39749 −0.531177 −0.265589 0.964086i \(-0.585566\pi\)
−0.265589 + 0.964086i \(0.585566\pi\)
\(314\) 15.8144 0.892461
\(315\) −10.4227 −0.587252
\(316\) 36.5946 2.05861
\(317\) 22.0900 1.24070 0.620350 0.784325i \(-0.286991\pi\)
0.620350 + 0.784325i \(0.286991\pi\)
\(318\) 32.5829 1.82716
\(319\) 0.477637 0.0267425
\(320\) −26.1690 −1.46289
\(321\) −21.4524 −1.19736
\(322\) −8.15354 −0.454379
\(323\) −19.0419 −1.05952
\(324\) 73.5473 4.08596
\(325\) 3.24628 0.180071
\(326\) −20.4313 −1.13159
\(327\) −40.7329 −2.25254
\(328\) 16.4245 0.906893
\(329\) −1.74312 −0.0961012
\(330\) −12.0590 −0.663828
\(331\) −7.34328 −0.403623 −0.201811 0.979424i \(-0.564683\pi\)
−0.201811 + 0.979424i \(0.564683\pi\)
\(332\) 3.42615 0.188034
\(333\) −63.4333 −3.47612
\(334\) −1.05539 −0.0577483
\(335\) −6.83217 −0.373281
\(336\) −4.22388 −0.230432
\(337\) 24.7467 1.34804 0.674020 0.738713i \(-0.264566\pi\)
0.674020 + 0.738713i \(0.264566\pi\)
\(338\) −53.0634 −2.88627
\(339\) −14.6279 −0.794477
\(340\) 31.1971 1.69190
\(341\) −3.02256 −0.163681
\(342\) 58.7972 3.17939
\(343\) 8.72137 0.470910
\(344\) −2.88520 −0.155560
\(345\) 40.3647 2.17316
\(346\) −3.76939 −0.202644
\(347\) 28.7654 1.54421 0.772103 0.635498i \(-0.219205\pi\)
0.772103 + 0.635498i \(0.219205\pi\)
\(348\) 5.30559 0.284410
\(349\) −3.72460 −0.199374 −0.0996868 0.995019i \(-0.531784\pi\)
−0.0996868 + 0.995019i \(0.531784\pi\)
\(350\) −0.740802 −0.0395976
\(351\) 93.5704 4.99442
\(352\) −6.05611 −0.322792
\(353\) 9.44475 0.502693 0.251347 0.967897i \(-0.419127\pi\)
0.251347 + 0.967897i \(0.419127\pi\)
\(354\) −77.8260 −4.13641
\(355\) −13.5635 −0.719875
\(356\) 21.0495 1.11562
\(357\) 11.3469 0.600539
\(358\) −7.27275 −0.384377
\(359\) 2.19917 0.116068 0.0580340 0.998315i \(-0.481517\pi\)
0.0580340 + 0.998315i \(0.481517\pi\)
\(360\) −25.7099 −1.35503
\(361\) −6.60771 −0.347774
\(362\) 14.9994 0.788349
\(363\) 33.8449 1.77639
\(364\) 10.7090 0.561302
\(365\) 4.03733 0.211323
\(366\) −51.8705 −2.71132
\(367\) 2.37829 0.124146 0.0620729 0.998072i \(-0.480229\pi\)
0.0620729 + 0.998072i \(0.480229\pi\)
\(368\) 11.7637 0.613227
\(369\) −79.6857 −4.14827
\(370\) 37.9612 1.97351
\(371\) −2.94280 −0.152782
\(372\) −33.5746 −1.74076
\(373\) −1.62799 −0.0842943 −0.0421471 0.999111i \(-0.513420\pi\)
−0.0421471 + 0.999111i \(0.513420\pi\)
\(374\) 9.44104 0.488185
\(375\) 38.2134 1.97333
\(376\) −4.29980 −0.221745
\(377\) 3.63926 0.187431
\(378\) −21.3528 −1.09827
\(379\) 5.76391 0.296072 0.148036 0.988982i \(-0.452705\pi\)
0.148036 + 0.988982i \(0.452705\pi\)
\(380\) −20.3027 −1.04151
\(381\) −59.5083 −3.04870
\(382\) 50.9756 2.60814
\(383\) −5.45665 −0.278822 −0.139411 0.990235i \(-0.544521\pi\)
−0.139411 + 0.990235i \(0.544521\pi\)
\(384\) −38.6521 −1.97246
\(385\) 1.08914 0.0555076
\(386\) −36.1977 −1.84242
\(387\) 13.9979 0.711555
\(388\) −36.5891 −1.85753
\(389\) −4.78289 −0.242502 −0.121251 0.992622i \(-0.538691\pi\)
−0.121251 + 0.992622i \(0.538691\pi\)
\(390\) −91.8814 −4.65260
\(391\) −31.6016 −1.59816
\(392\) 10.4305 0.526820
\(393\) 7.07062 0.356666
\(394\) 2.17442 0.109546
\(395\) 28.3575 1.42682
\(396\) −16.8206 −0.845266
\(397\) 10.8528 0.544686 0.272343 0.962200i \(-0.412201\pi\)
0.272343 + 0.962200i \(0.412201\pi\)
\(398\) −42.6309 −2.13689
\(399\) −7.38442 −0.369683
\(400\) 1.06881 0.0534406
\(401\) 30.0690 1.50157 0.750787 0.660544i \(-0.229674\pi\)
0.750787 + 0.660544i \(0.229674\pi\)
\(402\) −22.9668 −1.14548
\(403\) −23.0298 −1.14720
\(404\) 17.0584 0.848685
\(405\) 56.9925 2.83198
\(406\) −0.830480 −0.0412160
\(407\) 6.62858 0.328567
\(408\) 27.9896 1.38569
\(409\) 7.23621 0.357807 0.178904 0.983867i \(-0.442745\pi\)
0.178904 + 0.983867i \(0.442745\pi\)
\(410\) 47.6873 2.35511
\(411\) −14.7183 −0.726001
\(412\) −50.3364 −2.47990
\(413\) 7.02903 0.345876
\(414\) 97.5788 4.79574
\(415\) 2.65496 0.130327
\(416\) −46.1433 −2.26236
\(417\) 9.48220 0.464346
\(418\) −6.14413 −0.300519
\(419\) −18.3265 −0.895310 −0.447655 0.894206i \(-0.647741\pi\)
−0.447655 + 0.894206i \(0.647741\pi\)
\(420\) 12.0982 0.590330
\(421\) 11.3063 0.551035 0.275517 0.961296i \(-0.411151\pi\)
0.275517 + 0.961296i \(0.411151\pi\)
\(422\) 46.1314 2.24564
\(423\) 20.8610 1.01430
\(424\) −7.25908 −0.352532
\(425\) −2.87121 −0.139274
\(426\) −45.5946 −2.20906
\(427\) 4.68480 0.226714
\(428\) 17.9072 0.865576
\(429\) −16.0439 −0.774605
\(430\) −8.37697 −0.403973
\(431\) 17.3670 0.836541 0.418271 0.908322i \(-0.362636\pi\)
0.418271 + 0.908322i \(0.362636\pi\)
\(432\) 30.8073 1.48222
\(433\) −11.0939 −0.533140 −0.266570 0.963816i \(-0.585890\pi\)
−0.266570 + 0.963816i \(0.585890\pi\)
\(434\) 5.25541 0.252268
\(435\) 4.11135 0.197124
\(436\) 34.0014 1.62837
\(437\) 20.5660 0.983806
\(438\) 13.5718 0.648484
\(439\) 17.6727 0.843473 0.421737 0.906718i \(-0.361421\pi\)
0.421737 + 0.906718i \(0.361421\pi\)
\(440\) 2.68661 0.128079
\(441\) −50.6050 −2.40976
\(442\) 71.9341 3.42156
\(443\) 14.9026 0.708044 0.354022 0.935237i \(-0.384814\pi\)
0.354022 + 0.935237i \(0.384814\pi\)
\(444\) 73.6304 3.49434
\(445\) 16.3115 0.773238
\(446\) −10.6694 −0.505212
\(447\) −14.5805 −0.689633
\(448\) 7.94512 0.375372
\(449\) −26.5481 −1.25288 −0.626442 0.779468i \(-0.715489\pi\)
−0.626442 + 0.779468i \(0.715489\pi\)
\(450\) 8.86567 0.417932
\(451\) 8.32691 0.392099
\(452\) 12.2105 0.574332
\(453\) −15.2934 −0.718549
\(454\) 18.9368 0.888747
\(455\) 8.29847 0.389038
\(456\) −18.2154 −0.853013
\(457\) 1.72034 0.0804741 0.0402371 0.999190i \(-0.487189\pi\)
0.0402371 + 0.999190i \(0.487189\pi\)
\(458\) −11.6371 −0.543765
\(459\) −82.7595 −3.86288
\(460\) −33.6941 −1.57099
\(461\) 1.68192 0.0783350 0.0391675 0.999233i \(-0.487529\pi\)
0.0391675 + 0.999233i \(0.487529\pi\)
\(462\) 3.66121 0.170335
\(463\) −26.6832 −1.24007 −0.620037 0.784573i \(-0.712882\pi\)
−0.620037 + 0.784573i \(0.712882\pi\)
\(464\) 1.19820 0.0556249
\(465\) −26.0173 −1.20652
\(466\) 56.9815 2.63962
\(467\) −15.9830 −0.739607 −0.369804 0.929110i \(-0.620575\pi\)
−0.369804 + 0.929110i \(0.620575\pi\)
\(468\) −128.161 −5.92425
\(469\) 2.07430 0.0957823
\(470\) −12.4841 −0.575850
\(471\) 23.7696 1.09525
\(472\) 17.3387 0.798079
\(473\) −1.46274 −0.0672569
\(474\) 95.3258 4.37846
\(475\) 1.86856 0.0857352
\(476\) −9.47168 −0.434134
\(477\) 35.2184 1.61254
\(478\) 29.1258 1.33218
\(479\) 2.44625 0.111772 0.0558860 0.998437i \(-0.482202\pi\)
0.0558860 + 0.998437i \(0.482202\pi\)
\(480\) −52.1292 −2.37936
\(481\) 50.5052 2.30284
\(482\) 66.0146 3.00688
\(483\) −12.2550 −0.557624
\(484\) −28.2517 −1.28417
\(485\) −28.3533 −1.28746
\(486\) 91.7802 4.16323
\(487\) −15.2624 −0.691608 −0.345804 0.938307i \(-0.612394\pi\)
−0.345804 + 0.938307i \(0.612394\pi\)
\(488\) 11.5561 0.523122
\(489\) −30.7089 −1.38871
\(490\) 30.2842 1.36810
\(491\) 7.46380 0.336837 0.168418 0.985716i \(-0.446134\pi\)
0.168418 + 0.985716i \(0.446134\pi\)
\(492\) 92.4954 4.17002
\(493\) −3.21879 −0.144967
\(494\) −46.8140 −2.10626
\(495\) −13.0344 −0.585854
\(496\) −7.58238 −0.340459
\(497\) 4.11798 0.184716
\(498\) 8.92482 0.399931
\(499\) 18.1973 0.814623 0.407311 0.913289i \(-0.366466\pi\)
0.407311 + 0.913289i \(0.366466\pi\)
\(500\) −31.8982 −1.42653
\(501\) −1.58628 −0.0708700
\(502\) −38.9061 −1.73646
\(503\) 22.5496 1.00544 0.502718 0.864451i \(-0.332333\pi\)
0.502718 + 0.864451i \(0.332333\pi\)
\(504\) 7.80574 0.347695
\(505\) 13.2187 0.588224
\(506\) −10.1967 −0.453298
\(507\) −79.7560 −3.54209
\(508\) 49.6739 2.20392
\(509\) 11.6759 0.517526 0.258763 0.965941i \(-0.416685\pi\)
0.258763 + 0.965941i \(0.416685\pi\)
\(510\) 81.2657 3.59851
\(511\) −1.22576 −0.0542246
\(512\) −21.5684 −0.953196
\(513\) 53.8590 2.37793
\(514\) −15.3258 −0.675990
\(515\) −39.0062 −1.71882
\(516\) −16.2482 −0.715285
\(517\) −2.17991 −0.0958725
\(518\) −11.5253 −0.506393
\(519\) −5.66552 −0.248689
\(520\) 20.4701 0.897673
\(521\) 1.29227 0.0566153 0.0283076 0.999599i \(-0.490988\pi\)
0.0283076 + 0.999599i \(0.490988\pi\)
\(522\) 9.93890 0.435014
\(523\) −12.2632 −0.536232 −0.268116 0.963387i \(-0.586401\pi\)
−0.268116 + 0.963387i \(0.586401\pi\)
\(524\) −5.90213 −0.257836
\(525\) −1.11345 −0.0485950
\(526\) −49.4839 −2.15760
\(527\) 20.3690 0.887287
\(528\) −5.28231 −0.229883
\(529\) 11.1310 0.483955
\(530\) −21.0762 −0.915490
\(531\) −84.1210 −3.65054
\(532\) 6.16407 0.267246
\(533\) 63.4452 2.74812
\(534\) 54.8322 2.37282
\(535\) 13.8764 0.599931
\(536\) 5.11674 0.221009
\(537\) −10.9312 −0.471715
\(538\) 13.0216 0.561399
\(539\) 5.28806 0.227773
\(540\) −88.2392 −3.79721
\(541\) −28.2751 −1.21564 −0.607821 0.794074i \(-0.707956\pi\)
−0.607821 + 0.794074i \(0.707956\pi\)
\(542\) 3.30350 0.141897
\(543\) 22.5445 0.967478
\(544\) 40.8121 1.74980
\(545\) 26.3480 1.12863
\(546\) 27.8959 1.19383
\(547\) −24.0615 −1.02880 −0.514398 0.857552i \(-0.671985\pi\)
−0.514398 + 0.857552i \(0.671985\pi\)
\(548\) 12.2860 0.524831
\(549\) −56.0661 −2.39284
\(550\) −0.926435 −0.0395033
\(551\) 2.09475 0.0892395
\(552\) −30.2299 −1.28667
\(553\) −8.60956 −0.366116
\(554\) 51.7130 2.19707
\(555\) 57.0569 2.42193
\(556\) −7.91517 −0.335678
\(557\) −21.7650 −0.922212 −0.461106 0.887345i \(-0.652547\pi\)
−0.461106 + 0.887345i \(0.652547\pi\)
\(558\) −62.8949 −2.66255
\(559\) −11.1451 −0.471386
\(560\) 2.73221 0.115457
\(561\) 14.1902 0.599110
\(562\) −37.8811 −1.59792
\(563\) 8.19217 0.345259 0.172629 0.984987i \(-0.444774\pi\)
0.172629 + 0.984987i \(0.444774\pi\)
\(564\) −24.2145 −1.01962
\(565\) 9.46201 0.398070
\(566\) −16.2686 −0.683821
\(567\) −17.3034 −0.726673
\(568\) 10.1579 0.426217
\(569\) 16.8191 0.705092 0.352546 0.935795i \(-0.385316\pi\)
0.352546 + 0.935795i \(0.385316\pi\)
\(570\) −52.8869 −2.21519
\(571\) 23.6048 0.987831 0.493916 0.869510i \(-0.335565\pi\)
0.493916 + 0.869510i \(0.335565\pi\)
\(572\) 13.3924 0.559966
\(573\) 76.6179 3.20076
\(574\) −14.4782 −0.604310
\(575\) 3.10102 0.129321
\(576\) −95.0845 −3.96185
\(577\) −12.8776 −0.536102 −0.268051 0.963405i \(-0.586380\pi\)
−0.268051 + 0.963405i \(0.586380\pi\)
\(578\) −26.6579 −1.10882
\(579\) −54.4064 −2.26105
\(580\) −3.43191 −0.142502
\(581\) −0.806065 −0.0334412
\(582\) −95.3115 −3.95079
\(583\) −3.68021 −0.152419
\(584\) −3.02363 −0.125119
\(585\) −99.3133 −4.10610
\(586\) −27.6754 −1.14326
\(587\) −40.9492 −1.69015 −0.845077 0.534644i \(-0.820446\pi\)
−0.845077 + 0.534644i \(0.820446\pi\)
\(588\) 58.7399 2.42239
\(589\) −13.2559 −0.546201
\(590\) 50.3416 2.07253
\(591\) 3.26823 0.134437
\(592\) 16.6284 0.683424
\(593\) −5.07212 −0.208287 −0.104144 0.994562i \(-0.533210\pi\)
−0.104144 + 0.994562i \(0.533210\pi\)
\(594\) −26.7035 −1.09566
\(595\) −7.33969 −0.300898
\(596\) 12.1709 0.498540
\(597\) −64.0756 −2.62244
\(598\) −77.6916 −3.17705
\(599\) 11.4068 0.466071 0.233036 0.972468i \(-0.425134\pi\)
0.233036 + 0.972468i \(0.425134\pi\)
\(600\) −2.74658 −0.112129
\(601\) −13.6218 −0.555644 −0.277822 0.960633i \(-0.589612\pi\)
−0.277822 + 0.960633i \(0.589612\pi\)
\(602\) 2.54331 0.103658
\(603\) −24.8245 −1.01093
\(604\) 12.7661 0.519443
\(605\) −21.8925 −0.890056
\(606\) 44.4355 1.80507
\(607\) −14.4219 −0.585366 −0.292683 0.956210i \(-0.594548\pi\)
−0.292683 + 0.956210i \(0.594548\pi\)
\(608\) −26.5601 −1.07715
\(609\) −1.24824 −0.0505812
\(610\) 33.5524 1.35849
\(611\) −16.6094 −0.671945
\(612\) 113.354 4.58205
\(613\) 4.64089 0.187444 0.0937219 0.995598i \(-0.470124\pi\)
0.0937219 + 0.995598i \(0.470124\pi\)
\(614\) 57.1949 2.30820
\(615\) 71.6756 2.89024
\(616\) −0.815675 −0.0328645
\(617\) −48.4293 −1.94969 −0.974845 0.222884i \(-0.928453\pi\)
−0.974845 + 0.222884i \(0.928453\pi\)
\(618\) −131.122 −5.27450
\(619\) −16.5262 −0.664243 −0.332122 0.943237i \(-0.607764\pi\)
−0.332122 + 0.943237i \(0.607764\pi\)
\(620\) 21.7177 0.872202
\(621\) 89.3834 3.58683
\(622\) −19.5248 −0.782874
\(623\) −4.95229 −0.198409
\(624\) −40.2476 −1.61119
\(625\) −22.0643 −0.882570
\(626\) 20.4341 0.816712
\(627\) −9.23483 −0.368804
\(628\) −19.8415 −0.791760
\(629\) −44.6699 −1.78111
\(630\) 22.6633 0.902929
\(631\) 20.0375 0.797679 0.398840 0.917021i \(-0.369413\pi\)
0.398840 + 0.917021i \(0.369413\pi\)
\(632\) −21.2375 −0.844781
\(633\) 69.3371 2.75590
\(634\) −48.0331 −1.90764
\(635\) 38.4928 1.52754
\(636\) −40.8798 −1.62099
\(637\) 40.2913 1.59640
\(638\) −1.03858 −0.0411180
\(639\) −49.2825 −1.94959
\(640\) 25.0020 0.988292
\(641\) 16.2197 0.640639 0.320319 0.947310i \(-0.396210\pi\)
0.320319 + 0.947310i \(0.396210\pi\)
\(642\) 46.6466 1.84100
\(643\) −34.7519 −1.37048 −0.685241 0.728316i \(-0.740303\pi\)
−0.685241 + 0.728316i \(0.740303\pi\)
\(644\) 10.2298 0.403110
\(645\) −12.5909 −0.495764
\(646\) 41.4052 1.62907
\(647\) 29.5762 1.16276 0.581381 0.813631i \(-0.302513\pi\)
0.581381 + 0.813631i \(0.302513\pi\)
\(648\) −42.6827 −1.67673
\(649\) 8.79039 0.345053
\(650\) −7.05879 −0.276869
\(651\) 7.89905 0.309588
\(652\) 25.6340 1.00390
\(653\) −15.3265 −0.599774 −0.299887 0.953975i \(-0.596949\pi\)
−0.299887 + 0.953975i \(0.596949\pi\)
\(654\) 88.5707 3.46339
\(655\) −4.57362 −0.178706
\(656\) 20.8889 0.815573
\(657\) 14.6695 0.572313
\(658\) 3.79028 0.147760
\(659\) 9.67569 0.376911 0.188456 0.982082i \(-0.439652\pi\)
0.188456 + 0.982082i \(0.439652\pi\)
\(660\) 15.1298 0.588925
\(661\) 2.68152 0.104299 0.0521496 0.998639i \(-0.483393\pi\)
0.0521496 + 0.998639i \(0.483393\pi\)
\(662\) 15.9674 0.620591
\(663\) 108.119 4.19901
\(664\) −1.98834 −0.0771627
\(665\) 4.77659 0.185228
\(666\) 137.931 5.34471
\(667\) 3.47641 0.134607
\(668\) 1.32414 0.0512323
\(669\) −16.0365 −0.620006
\(670\) 14.8560 0.573939
\(671\) 5.85874 0.226174
\(672\) 15.8268 0.610533
\(673\) −20.1020 −0.774876 −0.387438 0.921896i \(-0.626640\pi\)
−0.387438 + 0.921896i \(0.626640\pi\)
\(674\) −53.8099 −2.07268
\(675\) 8.12107 0.312580
\(676\) 66.5755 2.56060
\(677\) 26.3355 1.01216 0.506078 0.862488i \(-0.331095\pi\)
0.506078 + 0.862488i \(0.331095\pi\)
\(678\) 31.8072 1.22155
\(679\) 8.60827 0.330355
\(680\) −18.1050 −0.694296
\(681\) 28.4626 1.09069
\(682\) 6.57232 0.251667
\(683\) −50.1081 −1.91733 −0.958667 0.284531i \(-0.908162\pi\)
−0.958667 + 0.284531i \(0.908162\pi\)
\(684\) −73.7694 −2.82065
\(685\) 9.52051 0.363760
\(686\) −18.9640 −0.724047
\(687\) −17.4909 −0.667320
\(688\) −3.66943 −0.139896
\(689\) −28.0406 −1.06826
\(690\) −87.7701 −3.34135
\(691\) −42.3958 −1.61281 −0.806407 0.591362i \(-0.798591\pi\)
−0.806407 + 0.591362i \(0.798591\pi\)
\(692\) 4.72923 0.179778
\(693\) 3.95735 0.150327
\(694\) −62.5481 −2.37429
\(695\) −6.13354 −0.232659
\(696\) −3.07907 −0.116712
\(697\) −56.1150 −2.12551
\(698\) 8.09887 0.306547
\(699\) 85.6451 3.23940
\(700\) 0.929441 0.0351296
\(701\) −1.56980 −0.0592906 −0.0296453 0.999560i \(-0.509438\pi\)
−0.0296453 + 0.999560i \(0.509438\pi\)
\(702\) −203.462 −7.67917
\(703\) 29.0707 1.09642
\(704\) 9.93603 0.374478
\(705\) −18.7641 −0.706695
\(706\) −20.5369 −0.772917
\(707\) −4.01329 −0.150935
\(708\) 97.6438 3.66968
\(709\) −23.0787 −0.866739 −0.433369 0.901216i \(-0.642675\pi\)
−0.433369 + 0.901216i \(0.642675\pi\)
\(710\) 29.4928 1.10684
\(711\) 103.036 3.86416
\(712\) −12.2160 −0.457813
\(713\) −21.9993 −0.823880
\(714\) −24.6729 −0.923360
\(715\) 10.3779 0.388113
\(716\) 9.12469 0.341006
\(717\) 43.7770 1.63488
\(718\) −4.78194 −0.178460
\(719\) −27.8449 −1.03844 −0.519220 0.854641i \(-0.673777\pi\)
−0.519220 + 0.854641i \(0.673777\pi\)
\(720\) −32.6981 −1.21859
\(721\) 11.8426 0.441040
\(722\) 14.3680 0.534721
\(723\) 99.2222 3.69011
\(724\) −18.8188 −0.699396
\(725\) 0.315855 0.0117306
\(726\) −73.5931 −2.73130
\(727\) −4.15211 −0.153993 −0.0769966 0.997031i \(-0.524533\pi\)
−0.0769966 + 0.997031i \(0.524533\pi\)
\(728\) −6.21488 −0.230339
\(729\) 57.0718 2.11377
\(730\) −8.77887 −0.324920
\(731\) 9.85740 0.364589
\(732\) 65.0789 2.40539
\(733\) −29.8478 −1.10245 −0.551226 0.834356i \(-0.685840\pi\)
−0.551226 + 0.834356i \(0.685840\pi\)
\(734\) −5.17142 −0.190881
\(735\) 45.5181 1.67896
\(736\) −44.0786 −1.62476
\(737\) 2.59408 0.0955543
\(738\) 173.271 6.37818
\(739\) −0.294754 −0.0108427 −0.00542135 0.999985i \(-0.501726\pi\)
−0.00542135 + 0.999985i \(0.501726\pi\)
\(740\) −47.6276 −1.75083
\(741\) −70.3630 −2.58485
\(742\) 6.39889 0.234911
\(743\) −29.7164 −1.09019 −0.545095 0.838374i \(-0.683507\pi\)
−0.545095 + 0.838374i \(0.683507\pi\)
\(744\) 19.4848 0.714348
\(745\) 9.43135 0.345538
\(746\) 3.53995 0.129607
\(747\) 9.64671 0.352955
\(748\) −11.8451 −0.433100
\(749\) −4.21299 −0.153939
\(750\) −83.0922 −3.03410
\(751\) −0.823196 −0.0300389 −0.0150194 0.999887i \(-0.504781\pi\)
−0.0150194 + 0.999887i \(0.504781\pi\)
\(752\) −5.46852 −0.199417
\(753\) −58.4772 −2.13103
\(754\) −7.91329 −0.288185
\(755\) 9.89253 0.360026
\(756\) 26.7901 0.974347
\(757\) 26.5876 0.966342 0.483171 0.875526i \(-0.339485\pi\)
0.483171 + 0.875526i \(0.339485\pi\)
\(758\) −12.5332 −0.455226
\(759\) −15.3260 −0.556297
\(760\) 11.7826 0.427399
\(761\) 15.4789 0.561109 0.280555 0.959838i \(-0.409482\pi\)
0.280555 + 0.959838i \(0.409482\pi\)
\(762\) 129.396 4.68753
\(763\) −7.99946 −0.289600
\(764\) −63.9560 −2.31385
\(765\) 87.8389 3.17582
\(766\) 11.8651 0.428702
\(767\) 66.9766 2.41839
\(768\) 3.13362 0.113075
\(769\) −14.5671 −0.525302 −0.262651 0.964891i \(-0.584597\pi\)
−0.262651 + 0.964891i \(0.584597\pi\)
\(770\) −2.36825 −0.0853458
\(771\) −23.0351 −0.829589
\(772\) 45.4152 1.63453
\(773\) −46.6724 −1.67869 −0.839344 0.543601i \(-0.817061\pi\)
−0.839344 + 0.543601i \(0.817061\pi\)
\(774\) −30.4375 −1.09405
\(775\) −1.99878 −0.0717982
\(776\) 21.2343 0.762266
\(777\) −17.3229 −0.621456
\(778\) 10.4000 0.372859
\(779\) 36.5190 1.30843
\(780\) 115.278 4.12762
\(781\) 5.14987 0.184277
\(782\) 68.7154 2.45726
\(783\) 9.10416 0.325356
\(784\) 13.2656 0.473772
\(785\) −15.3753 −0.548769
\(786\) −15.3745 −0.548391
\(787\) 20.3538 0.725535 0.362768 0.931880i \(-0.381832\pi\)
0.362768 + 0.931880i \(0.381832\pi\)
\(788\) −2.72812 −0.0971854
\(789\) −74.3759 −2.64785
\(790\) −61.6613 −2.19381
\(791\) −2.87274 −0.102143
\(792\) 9.76172 0.346868
\(793\) 44.6395 1.58519
\(794\) −23.5986 −0.837482
\(795\) −31.6782 −1.12351
\(796\) 53.4865 1.89578
\(797\) −15.9131 −0.563669 −0.281835 0.959463i \(-0.590943\pi\)
−0.281835 + 0.959463i \(0.590943\pi\)
\(798\) 16.0569 0.568407
\(799\) 14.6904 0.519710
\(800\) −4.00483 −0.141592
\(801\) 59.2673 2.09411
\(802\) −65.3828 −2.30875
\(803\) −1.53292 −0.0540956
\(804\) 28.8151 1.01623
\(805\) 7.92715 0.279395
\(806\) 50.0765 1.76387
\(807\) 19.5718 0.688961
\(808\) −9.89971 −0.348271
\(809\) 4.20699 0.147910 0.0739550 0.997262i \(-0.476438\pi\)
0.0739550 + 0.997262i \(0.476438\pi\)
\(810\) −123.926 −4.35431
\(811\) −24.1310 −0.847355 −0.423678 0.905813i \(-0.639261\pi\)
−0.423678 + 0.905813i \(0.639261\pi\)
\(812\) 1.04195 0.0365654
\(813\) 4.96527 0.174139
\(814\) −14.4133 −0.505188
\(815\) 19.8640 0.695806
\(816\) 35.5975 1.24616
\(817\) −6.41510 −0.224436
\(818\) −15.7346 −0.550147
\(819\) 30.1523 1.05361
\(820\) −59.8305 −2.08937
\(821\) 24.0770 0.840294 0.420147 0.907456i \(-0.361978\pi\)
0.420147 + 0.907456i \(0.361978\pi\)
\(822\) 32.0039 1.11626
\(823\) −32.1941 −1.12222 −0.561108 0.827743i \(-0.689625\pi\)
−0.561108 + 0.827743i \(0.689625\pi\)
\(824\) 29.2124 1.01766
\(825\) −1.39246 −0.0484793
\(826\) −15.2841 −0.531802
\(827\) 41.6832 1.44947 0.724733 0.689030i \(-0.241963\pi\)
0.724733 + 0.689030i \(0.241963\pi\)
\(828\) −122.426 −4.25461
\(829\) 6.67442 0.231812 0.115906 0.993260i \(-0.463023\pi\)
0.115906 + 0.993260i \(0.463023\pi\)
\(830\) −5.77300 −0.200384
\(831\) 77.7263 2.69630
\(832\) 75.7057 2.62462
\(833\) −35.6362 −1.23472
\(834\) −20.6183 −0.713955
\(835\) 1.02608 0.0355091
\(836\) 7.70868 0.266610
\(837\) −57.6125 −1.99138
\(838\) 39.8497 1.37658
\(839\) −38.9406 −1.34438 −0.672189 0.740380i \(-0.734646\pi\)
−0.672189 + 0.740380i \(0.734646\pi\)
\(840\) −7.02109 −0.242251
\(841\) −28.6459 −0.987790
\(842\) −24.5847 −0.847244
\(843\) −56.9365 −1.96100
\(844\) −57.8784 −1.99226
\(845\) 51.5900 1.77475
\(846\) −45.3608 −1.55953
\(847\) 6.64672 0.228384
\(848\) −9.23216 −0.317034
\(849\) −24.4523 −0.839199
\(850\) 6.24324 0.214141
\(851\) 48.2452 1.65383
\(852\) 57.2049 1.95981
\(853\) −36.9545 −1.26530 −0.632649 0.774438i \(-0.718033\pi\)
−0.632649 + 0.774438i \(0.718033\pi\)
\(854\) −10.1868 −0.348583
\(855\) −57.1646 −1.95499
\(856\) −10.3923 −0.355202
\(857\) 24.2311 0.827719 0.413859 0.910341i \(-0.364180\pi\)
0.413859 + 0.910341i \(0.364180\pi\)
\(858\) 34.8862 1.19099
\(859\) 56.9012 1.94144 0.970721 0.240209i \(-0.0772159\pi\)
0.970721 + 0.240209i \(0.0772159\pi\)
\(860\) 10.5101 0.358391
\(861\) −21.7613 −0.741622
\(862\) −37.7633 −1.28622
\(863\) 23.7648 0.808964 0.404482 0.914546i \(-0.367452\pi\)
0.404482 + 0.914546i \(0.367452\pi\)
\(864\) −115.435 −3.92717
\(865\) 3.66473 0.124604
\(866\) 24.1229 0.819730
\(867\) −40.0676 −1.36077
\(868\) −6.59365 −0.223803
\(869\) −10.7670 −0.365245
\(870\) −8.93983 −0.303089
\(871\) 19.7651 0.669715
\(872\) −19.7325 −0.668227
\(873\) −103.021 −3.48673
\(874\) −44.7192 −1.51265
\(875\) 7.50465 0.253704
\(876\) −17.0277 −0.575313
\(877\) 57.8679 1.95406 0.977030 0.213101i \(-0.0683564\pi\)
0.977030 + 0.213101i \(0.0683564\pi\)
\(878\) −38.4280 −1.29688
\(879\) −41.5971 −1.40303
\(880\) 3.41685 0.115182
\(881\) −0.710312 −0.0239310 −0.0119655 0.999928i \(-0.503809\pi\)
−0.0119655 + 0.999928i \(0.503809\pi\)
\(882\) 110.037 3.70513
\(883\) 51.0213 1.71700 0.858501 0.512811i \(-0.171396\pi\)
0.858501 + 0.512811i \(0.171396\pi\)
\(884\) −90.2516 −3.03549
\(885\) 75.6651 2.54345
\(886\) −32.4046 −1.08865
\(887\) −45.0994 −1.51429 −0.757145 0.653247i \(-0.773406\pi\)
−0.757145 + 0.653247i \(0.773406\pi\)
\(888\) −42.7309 −1.43396
\(889\) −11.6867 −0.391960
\(890\) −35.4681 −1.18889
\(891\) −21.6393 −0.724943
\(892\) 13.3863 0.448206
\(893\) −9.56037 −0.319926
\(894\) 31.7042 1.06035
\(895\) 7.07081 0.236351
\(896\) −7.59081 −0.253591
\(897\) −116.773 −3.89894
\(898\) 57.7269 1.92637
\(899\) −2.24074 −0.0747329
\(900\) −11.1232 −0.370774
\(901\) 24.8009 0.826238
\(902\) −18.1062 −0.602872
\(903\) 3.82268 0.127211
\(904\) −7.08627 −0.235686
\(905\) −14.5829 −0.484751
\(906\) 33.2545 1.10481
\(907\) −24.6849 −0.819647 −0.409824 0.912165i \(-0.634410\pi\)
−0.409824 + 0.912165i \(0.634410\pi\)
\(908\) −23.7589 −0.788466
\(909\) 48.0297 1.59304
\(910\) −18.0444 −0.598166
\(911\) −38.9583 −1.29075 −0.645374 0.763867i \(-0.723298\pi\)
−0.645374 + 0.763867i \(0.723298\pi\)
\(912\) −23.1665 −0.767118
\(913\) −1.00805 −0.0333616
\(914\) −3.74075 −0.123733
\(915\) 50.4303 1.66717
\(916\) 14.6004 0.482410
\(917\) 1.38858 0.0458551
\(918\) 179.954 5.93938
\(919\) 20.7203 0.683499 0.341749 0.939791i \(-0.388981\pi\)
0.341749 + 0.939791i \(0.388981\pi\)
\(920\) 19.5541 0.644681
\(921\) 85.9659 2.83267
\(922\) −3.65722 −0.120444
\(923\) 39.2384 1.29155
\(924\) −4.59351 −0.151115
\(925\) 4.38339 0.144125
\(926\) 58.0206 1.90668
\(927\) −141.728 −4.65495
\(928\) −4.48963 −0.147379
\(929\) −28.9907 −0.951154 −0.475577 0.879674i \(-0.657761\pi\)
−0.475577 + 0.879674i \(0.657761\pi\)
\(930\) 56.5726 1.85509
\(931\) 23.1917 0.760076
\(932\) −71.4914 −2.34178
\(933\) −29.3464 −0.960759
\(934\) 34.7539 1.13718
\(935\) −9.17889 −0.300182
\(936\) 74.3775 2.43111
\(937\) 48.8231 1.59498 0.797490 0.603332i \(-0.206160\pi\)
0.797490 + 0.603332i \(0.206160\pi\)
\(938\) −4.51041 −0.147270
\(939\) 30.7132 1.00229
\(940\) 15.6631 0.510874
\(941\) 16.5106 0.538230 0.269115 0.963108i \(-0.413269\pi\)
0.269115 + 0.963108i \(0.413269\pi\)
\(942\) −51.6853 −1.68400
\(943\) 60.6063 1.97361
\(944\) 22.0515 0.717716
\(945\) 20.7599 0.675320
\(946\) 3.18062 0.103411
\(947\) −4.92047 −0.159894 −0.0799469 0.996799i \(-0.525475\pi\)
−0.0799469 + 0.996799i \(0.525475\pi\)
\(948\) −119.600 −3.88442
\(949\) −11.6798 −0.379142
\(950\) −4.06303 −0.131822
\(951\) −72.1953 −2.34109
\(952\) 5.49683 0.178153
\(953\) −31.0718 −1.00651 −0.503257 0.864137i \(-0.667865\pi\)
−0.503257 + 0.864137i \(0.667865\pi\)
\(954\) −76.5797 −2.47936
\(955\) −49.5601 −1.60373
\(956\) −36.5424 −1.18187
\(957\) −1.56103 −0.0504608
\(958\) −5.31918 −0.171855
\(959\) −2.89050 −0.0933392
\(960\) 85.5265 2.76035
\(961\) −16.8203 −0.542589
\(962\) −109.820 −3.54073
\(963\) 50.4197 1.62475
\(964\) −82.8247 −2.66760
\(965\) 35.1926 1.13289
\(966\) 26.6477 0.857375
\(967\) −19.1582 −0.616085 −0.308042 0.951373i \(-0.599674\pi\)
−0.308042 + 0.951373i \(0.599674\pi\)
\(968\) 16.3957 0.526977
\(969\) 62.2334 1.99923
\(970\) 61.6520 1.97953
\(971\) 32.5259 1.04380 0.521902 0.853005i \(-0.325223\pi\)
0.521902 + 0.853005i \(0.325223\pi\)
\(972\) −115.151 −3.69348
\(973\) 1.86219 0.0596991
\(974\) 33.1870 1.06338
\(975\) −10.6096 −0.339779
\(976\) 14.6972 0.470446
\(977\) 32.4844 1.03927 0.519633 0.854389i \(-0.326069\pi\)
0.519633 + 0.854389i \(0.326069\pi\)
\(978\) 66.7743 2.13521
\(979\) −6.19325 −0.197937
\(980\) −37.9958 −1.21373
\(981\) 95.7348 3.05658
\(982\) −16.2295 −0.517903
\(983\) −23.8026 −0.759184 −0.379592 0.925154i \(-0.623936\pi\)
−0.379592 + 0.925154i \(0.623936\pi\)
\(984\) −53.6791 −1.71123
\(985\) −2.11405 −0.0673592
\(986\) 6.99901 0.222894
\(987\) 5.69691 0.181335
\(988\) 58.7348 1.86860
\(989\) −10.6464 −0.338535
\(990\) 28.3424 0.900780
\(991\) 33.2089 1.05492 0.527458 0.849581i \(-0.323145\pi\)
0.527458 + 0.849581i \(0.323145\pi\)
\(992\) 28.4111 0.902052
\(993\) 23.9995 0.761602
\(994\) −8.95423 −0.284011
\(995\) 41.4472 1.31396
\(996\) −11.1975 −0.354805
\(997\) 41.3000 1.30799 0.653993 0.756501i \(-0.273093\pi\)
0.653993 + 0.756501i \(0.273093\pi\)
\(998\) −39.5686 −1.25252
\(999\) 126.346 3.99742
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.2.a.b.1.1 5
3.2 odd 2 1773.2.a.e.1.5 5
4.3 odd 2 3152.2.a.j.1.4 5
5.4 even 2 4925.2.a.h.1.5 5
7.6 odd 2 9653.2.a.h.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.2.a.b.1.1 5 1.1 even 1 trivial
1773.2.a.e.1.5 5 3.2 odd 2
3152.2.a.j.1.4 5 4.3 odd 2
4925.2.a.h.1.5 5 5.4 even 2
9653.2.a.h.1.1 5 7.6 odd 2