Properties

Label 4925.2.a.h.1.5
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.24217.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 5x^{3} - x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 197)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.17442\) of defining polynomial
Character \(\chi\) \(=\) 4925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17442 q^{2} +3.26823 q^{3} +2.72812 q^{4} +7.10652 q^{6} +0.641841 q^{7} +1.58325 q^{8} +7.68134 q^{9} -0.802676 q^{11} +8.91614 q^{12} +6.11583 q^{13} +1.39564 q^{14} -2.01359 q^{16} -5.40923 q^{17} +16.7025 q^{18} -3.52027 q^{19} +2.09769 q^{21} -1.74536 q^{22} +5.84217 q^{23} +5.17442 q^{24} +13.2984 q^{26} +15.2997 q^{27} +1.75102 q^{28} -0.595055 q^{29} +3.76560 q^{31} -7.54490 q^{32} -2.62333 q^{33} -11.7620 q^{34} +20.9556 q^{36} +8.25810 q^{37} -7.65456 q^{38} +19.9880 q^{39} -10.3739 q^{41} +4.56126 q^{42} -1.82233 q^{43} -2.18980 q^{44} +12.7034 q^{46} -2.71581 q^{47} -6.58088 q^{48} -6.58804 q^{49} -17.6786 q^{51} +16.6847 q^{52} -4.58493 q^{53} +33.2680 q^{54} +1.01619 q^{56} -11.5051 q^{57} -1.29390 q^{58} -10.9514 q^{59} -7.29900 q^{61} +8.18801 q^{62} +4.93020 q^{63} -12.3786 q^{64} -5.70424 q^{66} +3.23179 q^{67} -14.7570 q^{68} +19.0936 q^{69} -6.41588 q^{71} +12.1615 q^{72} -1.90976 q^{73} +17.9566 q^{74} -9.60373 q^{76} -0.515191 q^{77} +43.4623 q^{78} +13.4138 q^{79} +26.9589 q^{81} -22.5573 q^{82} -1.25586 q^{83} +5.72275 q^{84} -3.96252 q^{86} -1.94478 q^{87} -1.27084 q^{88} +7.71576 q^{89} +3.92539 q^{91} +15.9382 q^{92} +12.3069 q^{93} -5.90532 q^{94} -24.6585 q^{96} +13.4118 q^{97} -14.3252 q^{98} -6.16563 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 8 q^{3} - 2 q^{6} + 10 q^{7} + 3 q^{8} + 13 q^{9} - 8 q^{11} + 12 q^{12} + 8 q^{13} - 3 q^{14} - 2 q^{16} - 9 q^{17} + q^{18} - 16 q^{19} + 14 q^{21} - 9 q^{22} + q^{23} + 15 q^{24} + 11 q^{26}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17442 1.53755 0.768775 0.639519i \(-0.220866\pi\)
0.768775 + 0.639519i \(0.220866\pi\)
\(3\) 3.26823 1.88691 0.943457 0.331494i \(-0.107553\pi\)
0.943457 + 0.331494i \(0.107553\pi\)
\(4\) 2.72812 1.36406
\(5\) 0 0
\(6\) 7.10652 2.90123
\(7\) 0.641841 0.242593 0.121297 0.992616i \(-0.461295\pi\)
0.121297 + 0.992616i \(0.461295\pi\)
\(8\) 1.58325 0.559763
\(9\) 7.68134 2.56045
\(10\) 0 0
\(11\) −0.802676 −0.242016 −0.121008 0.992652i \(-0.538613\pi\)
−0.121008 + 0.992652i \(0.538613\pi\)
\(12\) 8.91614 2.57387
\(13\) 6.11583 1.69623 0.848113 0.529815i \(-0.177739\pi\)
0.848113 + 0.529815i \(0.177739\pi\)
\(14\) 1.39564 0.372999
\(15\) 0 0
\(16\) −2.01359 −0.503398
\(17\) −5.40923 −1.31193 −0.655965 0.754791i \(-0.727738\pi\)
−0.655965 + 0.754791i \(0.727738\pi\)
\(18\) 16.7025 3.93681
\(19\) −3.52027 −0.807605 −0.403802 0.914846i \(-0.632312\pi\)
−0.403802 + 0.914846i \(0.632312\pi\)
\(20\) 0 0
\(21\) 2.09769 0.457753
\(22\) −1.74536 −0.372112
\(23\) 5.84217 1.21818 0.609088 0.793102i \(-0.291535\pi\)
0.609088 + 0.793102i \(0.291535\pi\)
\(24\) 5.17442 1.05623
\(25\) 0 0
\(26\) 13.2984 2.60803
\(27\) 15.2997 2.94443
\(28\) 1.75102 0.330912
\(29\) −0.595055 −0.110499 −0.0552495 0.998473i \(-0.517595\pi\)
−0.0552495 + 0.998473i \(0.517595\pi\)
\(30\) 0 0
\(31\) 3.76560 0.676322 0.338161 0.941088i \(-0.390195\pi\)
0.338161 + 0.941088i \(0.390195\pi\)
\(32\) −7.54490 −1.33376
\(33\) −2.62333 −0.456663
\(34\) −11.7620 −2.01716
\(35\) 0 0
\(36\) 20.9556 3.49261
\(37\) 8.25810 1.35762 0.678812 0.734312i \(-0.262495\pi\)
0.678812 + 0.734312i \(0.262495\pi\)
\(38\) −7.65456 −1.24173
\(39\) 19.9880 3.20063
\(40\) 0 0
\(41\) −10.3739 −1.62014 −0.810068 0.586336i \(-0.800570\pi\)
−0.810068 + 0.586336i \(0.800570\pi\)
\(42\) 4.56126 0.703818
\(43\) −1.82233 −0.277903 −0.138951 0.990299i \(-0.544373\pi\)
−0.138951 + 0.990299i \(0.544373\pi\)
\(44\) −2.18980 −0.330125
\(45\) 0 0
\(46\) 12.7034 1.87301
\(47\) −2.71581 −0.396141 −0.198071 0.980188i \(-0.563468\pi\)
−0.198071 + 0.980188i \(0.563468\pi\)
\(48\) −6.58088 −0.949868
\(49\) −6.58804 −0.941149
\(50\) 0 0
\(51\) −17.6786 −2.47550
\(52\) 16.6847 2.31376
\(53\) −4.58493 −0.629788 −0.314894 0.949127i \(-0.601969\pi\)
−0.314894 + 0.949127i \(0.601969\pi\)
\(54\) 33.2680 4.52721
\(55\) 0 0
\(56\) 1.01619 0.135795
\(57\) −11.5051 −1.52388
\(58\) −1.29390 −0.169898
\(59\) −10.9514 −1.42574 −0.712872 0.701294i \(-0.752606\pi\)
−0.712872 + 0.701294i \(0.752606\pi\)
\(60\) 0 0
\(61\) −7.29900 −0.934542 −0.467271 0.884114i \(-0.654763\pi\)
−0.467271 + 0.884114i \(0.654763\pi\)
\(62\) 8.18801 1.03988
\(63\) 4.93020 0.621147
\(64\) −12.3786 −1.54733
\(65\) 0 0
\(66\) −5.70424 −0.702143
\(67\) 3.23179 0.394827 0.197413 0.980320i \(-0.436746\pi\)
0.197413 + 0.980320i \(0.436746\pi\)
\(68\) −14.7570 −1.78955
\(69\) 19.0936 2.29860
\(70\) 0 0
\(71\) −6.41588 −0.761425 −0.380712 0.924694i \(-0.624321\pi\)
−0.380712 + 0.924694i \(0.624321\pi\)
\(72\) 12.1615 1.43324
\(73\) −1.90976 −0.223521 −0.111760 0.993735i \(-0.535649\pi\)
−0.111760 + 0.993735i \(0.535649\pi\)
\(74\) 17.9566 2.08741
\(75\) 0 0
\(76\) −9.60373 −1.10162
\(77\) −0.515191 −0.0587114
\(78\) 43.4623 4.92114
\(79\) 13.4138 1.50918 0.754588 0.656199i \(-0.227837\pi\)
0.754588 + 0.656199i \(0.227837\pi\)
\(80\) 0 0
\(81\) 26.9589 2.99544
\(82\) −22.5573 −2.49104
\(83\) −1.25586 −0.137849 −0.0689245 0.997622i \(-0.521957\pi\)
−0.0689245 + 0.997622i \(0.521957\pi\)
\(84\) 5.72275 0.624403
\(85\) 0 0
\(86\) −3.96252 −0.427290
\(87\) −1.94478 −0.208502
\(88\) −1.27084 −0.135472
\(89\) 7.71576 0.817868 0.408934 0.912564i \(-0.365901\pi\)
0.408934 + 0.912564i \(0.365901\pi\)
\(90\) 0 0
\(91\) 3.92539 0.411493
\(92\) 15.9382 1.66167
\(93\) 12.3069 1.27616
\(94\) −5.90532 −0.609087
\(95\) 0 0
\(96\) −24.6585 −2.51670
\(97\) 13.4118 1.36177 0.680883 0.732393i \(-0.261596\pi\)
0.680883 + 0.732393i \(0.261596\pi\)
\(98\) −14.3252 −1.44706
\(99\) −6.16563 −0.619669
\(100\) 0 0
\(101\) 6.25278 0.622175 0.311087 0.950381i \(-0.399307\pi\)
0.311087 + 0.950381i \(0.399307\pi\)
\(102\) −38.4408 −3.80621
\(103\) 18.4509 1.81802 0.909012 0.416770i \(-0.136838\pi\)
0.909012 + 0.416770i \(0.136838\pi\)
\(104\) 9.68289 0.949485
\(105\) 0 0
\(106\) −9.96958 −0.968331
\(107\) −6.56392 −0.634558 −0.317279 0.948332i \(-0.602769\pi\)
−0.317279 + 0.948332i \(0.602769\pi\)
\(108\) 41.7394 4.01638
\(109\) 12.4633 1.19377 0.596884 0.802328i \(-0.296405\pi\)
0.596884 + 0.802328i \(0.296405\pi\)
\(110\) 0 0
\(111\) 26.9894 2.56172
\(112\) −1.29241 −0.122121
\(113\) −4.47578 −0.421046 −0.210523 0.977589i \(-0.567517\pi\)
−0.210523 + 0.977589i \(0.567517\pi\)
\(114\) −25.0169 −2.34304
\(115\) 0 0
\(116\) −1.62338 −0.150727
\(117\) 46.9778 4.34310
\(118\) −23.8129 −2.19215
\(119\) −3.47187 −0.318265
\(120\) 0 0
\(121\) −10.3557 −0.941428
\(122\) −15.8711 −1.43691
\(123\) −33.9044 −3.05706
\(124\) 10.2730 0.922545
\(125\) 0 0
\(126\) 10.7203 0.955045
\(127\) −18.2081 −1.61571 −0.807854 0.589383i \(-0.799371\pi\)
−0.807854 + 0.589383i \(0.799371\pi\)
\(128\) −11.8266 −1.04533
\(129\) −5.95580 −0.524379
\(130\) 0 0
\(131\) −2.16344 −0.189021 −0.0945103 0.995524i \(-0.530129\pi\)
−0.0945103 + 0.995524i \(0.530129\pi\)
\(132\) −7.15677 −0.622917
\(133\) −2.25945 −0.195919
\(134\) 7.02729 0.607066
\(135\) 0 0
\(136\) −8.56415 −0.734370
\(137\) −4.50345 −0.384756 −0.192378 0.981321i \(-0.561620\pi\)
−0.192378 + 0.981321i \(0.561620\pi\)
\(138\) 41.5175 3.53421
\(139\) −2.90133 −0.246087 −0.123044 0.992401i \(-0.539266\pi\)
−0.123044 + 0.992401i \(0.539266\pi\)
\(140\) 0 0
\(141\) −8.87589 −0.747485
\(142\) −13.9508 −1.17073
\(143\) −4.90903 −0.410514
\(144\) −15.4671 −1.28892
\(145\) 0 0
\(146\) −4.15263 −0.343674
\(147\) −21.5312 −1.77587
\(148\) 22.5291 1.85188
\(149\) 4.46127 0.365482 0.182741 0.983161i \(-0.441503\pi\)
0.182741 + 0.983161i \(0.441503\pi\)
\(150\) 0 0
\(151\) 4.67943 0.380806 0.190403 0.981706i \(-0.439020\pi\)
0.190403 + 0.981706i \(0.439020\pi\)
\(152\) −5.57346 −0.452067
\(153\) −41.5501 −3.35913
\(154\) −1.12024 −0.0902718
\(155\) 0 0
\(156\) 54.5296 4.36586
\(157\) 7.27293 0.580443 0.290222 0.956959i \(-0.406271\pi\)
0.290222 + 0.956959i \(0.406271\pi\)
\(158\) 29.1674 2.32043
\(159\) −14.9846 −1.18836
\(160\) 0 0
\(161\) 3.74975 0.295522
\(162\) 58.6202 4.60563
\(163\) −9.39619 −0.735967 −0.367983 0.929832i \(-0.619952\pi\)
−0.367983 + 0.929832i \(0.619952\pi\)
\(164\) −28.3014 −2.20997
\(165\) 0 0
\(166\) −2.73078 −0.211950
\(167\) −0.485365 −0.0375587 −0.0187793 0.999824i \(-0.505978\pi\)
−0.0187793 + 0.999824i \(0.505978\pi\)
\(168\) 3.32116 0.256233
\(169\) 24.4034 1.87719
\(170\) 0 0
\(171\) −27.0404 −2.06783
\(172\) −4.97154 −0.379077
\(173\) −1.73351 −0.131796 −0.0658982 0.997826i \(-0.520991\pi\)
−0.0658982 + 0.997826i \(0.520991\pi\)
\(174\) −4.22877 −0.320582
\(175\) 0 0
\(176\) 1.61626 0.121830
\(177\) −35.7916 −2.69026
\(178\) 16.7773 1.25751
\(179\) 3.34468 0.249993 0.124996 0.992157i \(-0.460108\pi\)
0.124996 + 0.992157i \(0.460108\pi\)
\(180\) 0 0
\(181\) −6.89808 −0.512730 −0.256365 0.966580i \(-0.582525\pi\)
−0.256365 + 0.966580i \(0.582525\pi\)
\(182\) 8.53548 0.632692
\(183\) −23.8548 −1.76340
\(184\) 9.24961 0.681891
\(185\) 0 0
\(186\) 26.7603 1.96216
\(187\) 4.34186 0.317508
\(188\) −7.40906 −0.540361
\(189\) 9.81998 0.714298
\(190\) 0 0
\(191\) −23.4432 −1.69629 −0.848147 0.529762i \(-0.822281\pi\)
−0.848147 + 0.529762i \(0.822281\pi\)
\(192\) −40.4562 −2.91968
\(193\) −16.6470 −1.19828 −0.599140 0.800644i \(-0.704491\pi\)
−0.599140 + 0.800644i \(0.704491\pi\)
\(194\) 29.1630 2.09378
\(195\) 0 0
\(196\) −17.9730 −1.28378
\(197\) 1.00000 0.0712470
\(198\) −13.4067 −0.952772
\(199\) 19.6056 1.38980 0.694902 0.719104i \(-0.255448\pi\)
0.694902 + 0.719104i \(0.255448\pi\)
\(200\) 0 0
\(201\) 10.5623 0.745004
\(202\) 13.5962 0.956625
\(203\) −0.381931 −0.0268063
\(204\) −48.2294 −3.37673
\(205\) 0 0
\(206\) 40.1202 2.79530
\(207\) 44.8757 3.11908
\(208\) −12.3148 −0.853876
\(209\) 2.82563 0.195453
\(210\) 0 0
\(211\) −21.2155 −1.46053 −0.730266 0.683162i \(-0.760604\pi\)
−0.730266 + 0.683162i \(0.760604\pi\)
\(212\) −12.5082 −0.859070
\(213\) −20.9686 −1.43674
\(214\) −14.2727 −0.975665
\(215\) 0 0
\(216\) 24.2232 1.64818
\(217\) 2.41692 0.164071
\(218\) 27.1005 1.83548
\(219\) −6.24154 −0.421764
\(220\) 0 0
\(221\) −33.0819 −2.22533
\(222\) 58.6864 3.93877
\(223\) −4.90678 −0.328582 −0.164291 0.986412i \(-0.552534\pi\)
−0.164291 + 0.986412i \(0.552534\pi\)
\(224\) −4.84263 −0.323562
\(225\) 0 0
\(226\) −9.73224 −0.647379
\(227\) 8.70887 0.578028 0.289014 0.957325i \(-0.406673\pi\)
0.289014 + 0.957325i \(0.406673\pi\)
\(228\) −31.3872 −2.07867
\(229\) 5.35180 0.353657 0.176828 0.984242i \(-0.443416\pi\)
0.176828 + 0.984242i \(0.443416\pi\)
\(230\) 0 0
\(231\) −1.68376 −0.110783
\(232\) −0.942121 −0.0618532
\(233\) 26.2053 1.71677 0.858384 0.513007i \(-0.171469\pi\)
0.858384 + 0.513007i \(0.171469\pi\)
\(234\) 102.150 6.67773
\(235\) 0 0
\(236\) −29.8766 −1.94480
\(237\) 43.8396 2.84769
\(238\) −7.54931 −0.489349
\(239\) −13.3947 −0.866431 −0.433215 0.901290i \(-0.642621\pi\)
−0.433215 + 0.901290i \(0.642621\pi\)
\(240\) 0 0
\(241\) −30.3596 −1.95563 −0.977816 0.209463i \(-0.932828\pi\)
−0.977816 + 0.209463i \(0.932828\pi\)
\(242\) −22.5177 −1.44749
\(243\) 42.2089 2.70770
\(244\) −19.9126 −1.27477
\(245\) 0 0
\(246\) −73.7226 −4.70038
\(247\) −21.5294 −1.36988
\(248\) 5.96188 0.378580
\(249\) −4.10445 −0.260109
\(250\) 0 0
\(251\) 17.8926 1.12937 0.564685 0.825306i \(-0.308997\pi\)
0.564685 + 0.825306i \(0.308997\pi\)
\(252\) 13.4502 0.847283
\(253\) −4.68937 −0.294818
\(254\) −39.5921 −2.48423
\(255\) 0 0
\(256\) −0.958811 −0.0599257
\(257\) −7.04819 −0.439654 −0.219827 0.975539i \(-0.570549\pi\)
−0.219827 + 0.975539i \(0.570549\pi\)
\(258\) −12.9504 −0.806259
\(259\) 5.30039 0.329350
\(260\) 0 0
\(261\) −4.57082 −0.282927
\(262\) −4.70424 −0.290629
\(263\) −22.7572 −1.40327 −0.701636 0.712536i \(-0.747547\pi\)
−0.701636 + 0.712536i \(0.747547\pi\)
\(264\) −4.15339 −0.255623
\(265\) 0 0
\(266\) −4.91301 −0.301236
\(267\) 25.2169 1.54325
\(268\) 8.81673 0.538568
\(269\) −5.98851 −0.365126 −0.182563 0.983194i \(-0.558439\pi\)
−0.182563 + 0.983194i \(0.558439\pi\)
\(270\) 0 0
\(271\) −1.51925 −0.0922880 −0.0461440 0.998935i \(-0.514693\pi\)
−0.0461440 + 0.998935i \(0.514693\pi\)
\(272\) 10.8920 0.660422
\(273\) 12.8291 0.776452
\(274\) −9.79242 −0.591582
\(275\) 0 0
\(276\) 52.0896 3.13543
\(277\) 23.7824 1.42894 0.714472 0.699664i \(-0.246667\pi\)
0.714472 + 0.699664i \(0.246667\pi\)
\(278\) −6.30871 −0.378372
\(279\) 28.9248 1.73169
\(280\) 0 0
\(281\) 17.4212 1.03926 0.519631 0.854391i \(-0.326070\pi\)
0.519631 + 0.854391i \(0.326070\pi\)
\(282\) −19.3000 −1.14930
\(283\) −7.48180 −0.444747 −0.222373 0.974962i \(-0.571380\pi\)
−0.222373 + 0.974962i \(0.571380\pi\)
\(284\) −17.5033 −1.03863
\(285\) 0 0
\(286\) −10.6743 −0.631186
\(287\) −6.65842 −0.393034
\(288\) −57.9549 −3.41503
\(289\) 12.2597 0.721160
\(290\) 0 0
\(291\) 43.8330 2.56953
\(292\) −5.21007 −0.304896
\(293\) −12.7277 −0.743560 −0.371780 0.928321i \(-0.621252\pi\)
−0.371780 + 0.928321i \(0.621252\pi\)
\(294\) −46.8181 −2.73048
\(295\) 0 0
\(296\) 13.0746 0.759948
\(297\) −12.2807 −0.712598
\(298\) 9.70071 0.561947
\(299\) 35.7297 2.06630
\(300\) 0 0
\(301\) −1.16965 −0.0674174
\(302\) 10.1751 0.585509
\(303\) 20.4355 1.17399
\(304\) 7.08838 0.406546
\(305\) 0 0
\(306\) −90.3475 −5.16483
\(307\) 26.3035 1.50122 0.750610 0.660746i \(-0.229760\pi\)
0.750610 + 0.660746i \(0.229760\pi\)
\(308\) −1.40550 −0.0800860
\(309\) 60.3019 3.43046
\(310\) 0 0
\(311\) 8.97930 0.509170 0.254585 0.967050i \(-0.418061\pi\)
0.254585 + 0.967050i \(0.418061\pi\)
\(312\) 31.6459 1.79160
\(313\) 9.39749 0.531177 0.265589 0.964086i \(-0.414434\pi\)
0.265589 + 0.964086i \(0.414434\pi\)
\(314\) 15.8144 0.892461
\(315\) 0 0
\(316\) 36.5946 2.05861
\(317\) −22.0900 −1.24070 −0.620350 0.784325i \(-0.713009\pi\)
−0.620350 + 0.784325i \(0.713009\pi\)
\(318\) −32.5829 −1.82716
\(319\) 0.477637 0.0267425
\(320\) 0 0
\(321\) −21.4524 −1.19736
\(322\) 8.15354 0.454379
\(323\) 19.0419 1.05952
\(324\) 73.5473 4.08596
\(325\) 0 0
\(326\) −20.4313 −1.13159
\(327\) 40.7329 2.25254
\(328\) −16.4245 −0.906893
\(329\) −1.74312 −0.0961012
\(330\) 0 0
\(331\) −7.34328 −0.403623 −0.201811 0.979424i \(-0.564683\pi\)
−0.201811 + 0.979424i \(0.564683\pi\)
\(332\) −3.42615 −0.188034
\(333\) 63.4333 3.47612
\(334\) −1.05539 −0.0577483
\(335\) 0 0
\(336\) −4.22388 −0.230432
\(337\) −24.7467 −1.34804 −0.674020 0.738713i \(-0.735434\pi\)
−0.674020 + 0.738713i \(0.735434\pi\)
\(338\) 53.0634 2.88627
\(339\) −14.6279 −0.794477
\(340\) 0 0
\(341\) −3.02256 −0.163681
\(342\) −58.7972 −3.17939
\(343\) −8.72137 −0.470910
\(344\) −2.88520 −0.155560
\(345\) 0 0
\(346\) −3.76939 −0.202644
\(347\) −28.7654 −1.54421 −0.772103 0.635498i \(-0.780795\pi\)
−0.772103 + 0.635498i \(0.780795\pi\)
\(348\) −5.30559 −0.284410
\(349\) −3.72460 −0.199374 −0.0996868 0.995019i \(-0.531784\pi\)
−0.0996868 + 0.995019i \(0.531784\pi\)
\(350\) 0 0
\(351\) 93.5704 4.99442
\(352\) 6.05611 0.322792
\(353\) −9.44475 −0.502693 −0.251347 0.967897i \(-0.580873\pi\)
−0.251347 + 0.967897i \(0.580873\pi\)
\(354\) −77.8260 −4.13641
\(355\) 0 0
\(356\) 21.0495 1.11562
\(357\) −11.3469 −0.600539
\(358\) 7.27275 0.384377
\(359\) 2.19917 0.116068 0.0580340 0.998315i \(-0.481517\pi\)
0.0580340 + 0.998315i \(0.481517\pi\)
\(360\) 0 0
\(361\) −6.60771 −0.347774
\(362\) −14.9994 −0.788349
\(363\) −33.8449 −1.77639
\(364\) 10.7090 0.561302
\(365\) 0 0
\(366\) −51.8705 −2.71132
\(367\) −2.37829 −0.124146 −0.0620729 0.998072i \(-0.519771\pi\)
−0.0620729 + 0.998072i \(0.519771\pi\)
\(368\) −11.7637 −0.613227
\(369\) −79.6857 −4.14827
\(370\) 0 0
\(371\) −2.94280 −0.152782
\(372\) 33.5746 1.74076
\(373\) 1.62799 0.0842943 0.0421471 0.999111i \(-0.486580\pi\)
0.0421471 + 0.999111i \(0.486580\pi\)
\(374\) 9.44104 0.488185
\(375\) 0 0
\(376\) −4.29980 −0.221745
\(377\) −3.63926 −0.187431
\(378\) 21.3528 1.09827
\(379\) 5.76391 0.296072 0.148036 0.988982i \(-0.452705\pi\)
0.148036 + 0.988982i \(0.452705\pi\)
\(380\) 0 0
\(381\) −59.5083 −3.04870
\(382\) −50.9756 −2.60814
\(383\) 5.45665 0.278822 0.139411 0.990235i \(-0.455479\pi\)
0.139411 + 0.990235i \(0.455479\pi\)
\(384\) −38.6521 −1.97246
\(385\) 0 0
\(386\) −36.1977 −1.84242
\(387\) −13.9979 −0.711555
\(388\) 36.5891 1.85753
\(389\) −4.78289 −0.242502 −0.121251 0.992622i \(-0.538691\pi\)
−0.121251 + 0.992622i \(0.538691\pi\)
\(390\) 0 0
\(391\) −31.6016 −1.59816
\(392\) −10.4305 −0.526820
\(393\) −7.07062 −0.356666
\(394\) 2.17442 0.109546
\(395\) 0 0
\(396\) −16.8206 −0.845266
\(397\) −10.8528 −0.544686 −0.272343 0.962200i \(-0.587799\pi\)
−0.272343 + 0.962200i \(0.587799\pi\)
\(398\) 42.6309 2.13689
\(399\) −7.38442 −0.369683
\(400\) 0 0
\(401\) 30.0690 1.50157 0.750787 0.660544i \(-0.229674\pi\)
0.750787 + 0.660544i \(0.229674\pi\)
\(402\) 22.9668 1.14548
\(403\) 23.0298 1.14720
\(404\) 17.0584 0.848685
\(405\) 0 0
\(406\) −0.830480 −0.0412160
\(407\) −6.62858 −0.328567
\(408\) −27.9896 −1.38569
\(409\) 7.23621 0.357807 0.178904 0.983867i \(-0.442745\pi\)
0.178904 + 0.983867i \(0.442745\pi\)
\(410\) 0 0
\(411\) −14.7183 −0.726001
\(412\) 50.3364 2.47990
\(413\) −7.02903 −0.345876
\(414\) 97.5788 4.79574
\(415\) 0 0
\(416\) −46.1433 −2.26236
\(417\) −9.48220 −0.464346
\(418\) 6.14413 0.300519
\(419\) −18.3265 −0.895310 −0.447655 0.894206i \(-0.647741\pi\)
−0.447655 + 0.894206i \(0.647741\pi\)
\(420\) 0 0
\(421\) 11.3063 0.551035 0.275517 0.961296i \(-0.411151\pi\)
0.275517 + 0.961296i \(0.411151\pi\)
\(422\) −46.1314 −2.24564
\(423\) −20.8610 −1.01430
\(424\) −7.25908 −0.352532
\(425\) 0 0
\(426\) −45.5946 −2.20906
\(427\) −4.68480 −0.226714
\(428\) −17.9072 −0.865576
\(429\) −16.0439 −0.774605
\(430\) 0 0
\(431\) 17.3670 0.836541 0.418271 0.908322i \(-0.362636\pi\)
0.418271 + 0.908322i \(0.362636\pi\)
\(432\) −30.8073 −1.48222
\(433\) 11.0939 0.533140 0.266570 0.963816i \(-0.414110\pi\)
0.266570 + 0.963816i \(0.414110\pi\)
\(434\) 5.25541 0.252268
\(435\) 0 0
\(436\) 34.0014 1.62837
\(437\) −20.5660 −0.983806
\(438\) −13.5718 −0.648484
\(439\) 17.6727 0.843473 0.421737 0.906718i \(-0.361421\pi\)
0.421737 + 0.906718i \(0.361421\pi\)
\(440\) 0 0
\(441\) −50.6050 −2.40976
\(442\) −71.9341 −3.42156
\(443\) −14.9026 −0.708044 −0.354022 0.935237i \(-0.615186\pi\)
−0.354022 + 0.935237i \(0.615186\pi\)
\(444\) 73.6304 3.49434
\(445\) 0 0
\(446\) −10.6694 −0.505212
\(447\) 14.5805 0.689633
\(448\) −7.94512 −0.375372
\(449\) −26.5481 −1.25288 −0.626442 0.779468i \(-0.715489\pi\)
−0.626442 + 0.779468i \(0.715489\pi\)
\(450\) 0 0
\(451\) 8.32691 0.392099
\(452\) −12.2105 −0.574332
\(453\) 15.2934 0.718549
\(454\) 18.9368 0.888747
\(455\) 0 0
\(456\) −18.2154 −0.853013
\(457\) −1.72034 −0.0804741 −0.0402371 0.999190i \(-0.512811\pi\)
−0.0402371 + 0.999190i \(0.512811\pi\)
\(458\) 11.6371 0.543765
\(459\) −82.7595 −3.86288
\(460\) 0 0
\(461\) 1.68192 0.0783350 0.0391675 0.999233i \(-0.487529\pi\)
0.0391675 + 0.999233i \(0.487529\pi\)
\(462\) −3.66121 −0.170335
\(463\) 26.6832 1.24007 0.620037 0.784573i \(-0.287118\pi\)
0.620037 + 0.784573i \(0.287118\pi\)
\(464\) 1.19820 0.0556249
\(465\) 0 0
\(466\) 56.9815 2.63962
\(467\) 15.9830 0.739607 0.369804 0.929110i \(-0.379425\pi\)
0.369804 + 0.929110i \(0.379425\pi\)
\(468\) 128.161 5.92425
\(469\) 2.07430 0.0957823
\(470\) 0 0
\(471\) 23.7696 1.09525
\(472\) −17.3387 −0.798079
\(473\) 1.46274 0.0672569
\(474\) 95.3258 4.37846
\(475\) 0 0
\(476\) −9.47168 −0.434134
\(477\) −35.2184 −1.61254
\(478\) −29.1258 −1.33218
\(479\) 2.44625 0.111772 0.0558860 0.998437i \(-0.482202\pi\)
0.0558860 + 0.998437i \(0.482202\pi\)
\(480\) 0 0
\(481\) 50.5052 2.30284
\(482\) −66.0146 −3.00688
\(483\) 12.2550 0.557624
\(484\) −28.2517 −1.28417
\(485\) 0 0
\(486\) 91.7802 4.16323
\(487\) 15.2624 0.691608 0.345804 0.938307i \(-0.387606\pi\)
0.345804 + 0.938307i \(0.387606\pi\)
\(488\) −11.5561 −0.523122
\(489\) −30.7089 −1.38871
\(490\) 0 0
\(491\) 7.46380 0.336837 0.168418 0.985716i \(-0.446134\pi\)
0.168418 + 0.985716i \(0.446134\pi\)
\(492\) −92.4954 −4.17002
\(493\) 3.21879 0.144967
\(494\) −46.8140 −2.10626
\(495\) 0 0
\(496\) −7.58238 −0.340459
\(497\) −4.11798 −0.184716
\(498\) −8.92482 −0.399931
\(499\) 18.1973 0.814623 0.407311 0.913289i \(-0.366466\pi\)
0.407311 + 0.913289i \(0.366466\pi\)
\(500\) 0 0
\(501\) −1.58628 −0.0708700
\(502\) 38.9061 1.73646
\(503\) −22.5496 −1.00544 −0.502718 0.864451i \(-0.667667\pi\)
−0.502718 + 0.864451i \(0.667667\pi\)
\(504\) 7.80574 0.347695
\(505\) 0 0
\(506\) −10.1967 −0.453298
\(507\) 79.7560 3.54209
\(508\) −49.6739 −2.20392
\(509\) 11.6759 0.517526 0.258763 0.965941i \(-0.416685\pi\)
0.258763 + 0.965941i \(0.416685\pi\)
\(510\) 0 0
\(511\) −1.22576 −0.0542246
\(512\) 21.5684 0.953196
\(513\) −53.8590 −2.37793
\(514\) −15.3258 −0.675990
\(515\) 0 0
\(516\) −16.2482 −0.715285
\(517\) 2.17991 0.0958725
\(518\) 11.5253 0.506393
\(519\) −5.66552 −0.248689
\(520\) 0 0
\(521\) 1.29227 0.0566153 0.0283076 0.999599i \(-0.490988\pi\)
0.0283076 + 0.999599i \(0.490988\pi\)
\(522\) −9.93890 −0.435014
\(523\) 12.2632 0.536232 0.268116 0.963387i \(-0.413599\pi\)
0.268116 + 0.963387i \(0.413599\pi\)
\(524\) −5.90213 −0.257836
\(525\) 0 0
\(526\) −49.4839 −2.15760
\(527\) −20.3690 −0.887287
\(528\) 5.28231 0.229883
\(529\) 11.1310 0.483955
\(530\) 0 0
\(531\) −84.1210 −3.65054
\(532\) −6.16407 −0.267246
\(533\) −63.4452 −2.74812
\(534\) 54.8322 2.37282
\(535\) 0 0
\(536\) 5.11674 0.221009
\(537\) 10.9312 0.471715
\(538\) −13.0216 −0.561399
\(539\) 5.28806 0.227773
\(540\) 0 0
\(541\) −28.2751 −1.21564 −0.607821 0.794074i \(-0.707956\pi\)
−0.607821 + 0.794074i \(0.707956\pi\)
\(542\) −3.30350 −0.141897
\(543\) −22.5445 −0.967478
\(544\) 40.8121 1.74980
\(545\) 0 0
\(546\) 27.8959 1.19383
\(547\) 24.0615 1.02880 0.514398 0.857552i \(-0.328015\pi\)
0.514398 + 0.857552i \(0.328015\pi\)
\(548\) −12.2860 −0.524831
\(549\) −56.0661 −2.39284
\(550\) 0 0
\(551\) 2.09475 0.0892395
\(552\) 30.2299 1.28667
\(553\) 8.60956 0.366116
\(554\) 51.7130 2.19707
\(555\) 0 0
\(556\) −7.91517 −0.335678
\(557\) 21.7650 0.922212 0.461106 0.887345i \(-0.347453\pi\)
0.461106 + 0.887345i \(0.347453\pi\)
\(558\) 62.8949 2.66255
\(559\) −11.1451 −0.471386
\(560\) 0 0
\(561\) 14.1902 0.599110
\(562\) 37.8811 1.59792
\(563\) −8.19217 −0.345259 −0.172629 0.984987i \(-0.555226\pi\)
−0.172629 + 0.984987i \(0.555226\pi\)
\(564\) −24.2145 −1.01962
\(565\) 0 0
\(566\) −16.2686 −0.683821
\(567\) 17.3034 0.726673
\(568\) −10.1579 −0.426217
\(569\) 16.8191 0.705092 0.352546 0.935795i \(-0.385316\pi\)
0.352546 + 0.935795i \(0.385316\pi\)
\(570\) 0 0
\(571\) 23.6048 0.987831 0.493916 0.869510i \(-0.335565\pi\)
0.493916 + 0.869510i \(0.335565\pi\)
\(572\) −13.3924 −0.559966
\(573\) −76.6179 −3.20076
\(574\) −14.4782 −0.604310
\(575\) 0 0
\(576\) −95.0845 −3.96185
\(577\) 12.8776 0.536102 0.268051 0.963405i \(-0.413620\pi\)
0.268051 + 0.963405i \(0.413620\pi\)
\(578\) 26.6579 1.10882
\(579\) −54.4064 −2.26105
\(580\) 0 0
\(581\) −0.806065 −0.0334412
\(582\) 95.3115 3.95079
\(583\) 3.68021 0.152419
\(584\) −3.02363 −0.125119
\(585\) 0 0
\(586\) −27.6754 −1.14326
\(587\) 40.9492 1.69015 0.845077 0.534644i \(-0.179554\pi\)
0.845077 + 0.534644i \(0.179554\pi\)
\(588\) −58.7399 −2.42239
\(589\) −13.2559 −0.546201
\(590\) 0 0
\(591\) 3.26823 0.134437
\(592\) −16.6284 −0.683424
\(593\) 5.07212 0.208287 0.104144 0.994562i \(-0.466790\pi\)
0.104144 + 0.994562i \(0.466790\pi\)
\(594\) −26.7035 −1.09566
\(595\) 0 0
\(596\) 12.1709 0.498540
\(597\) 64.0756 2.62244
\(598\) 77.6916 3.17705
\(599\) 11.4068 0.466071 0.233036 0.972468i \(-0.425134\pi\)
0.233036 + 0.972468i \(0.425134\pi\)
\(600\) 0 0
\(601\) −13.6218 −0.555644 −0.277822 0.960633i \(-0.589612\pi\)
−0.277822 + 0.960633i \(0.589612\pi\)
\(602\) −2.54331 −0.103658
\(603\) 24.8245 1.01093
\(604\) 12.7661 0.519443
\(605\) 0 0
\(606\) 44.4355 1.80507
\(607\) 14.4219 0.585366 0.292683 0.956210i \(-0.405452\pi\)
0.292683 + 0.956210i \(0.405452\pi\)
\(608\) 26.5601 1.07715
\(609\) −1.24824 −0.0505812
\(610\) 0 0
\(611\) −16.6094 −0.671945
\(612\) −113.354 −4.58205
\(613\) −4.64089 −0.187444 −0.0937219 0.995598i \(-0.529876\pi\)
−0.0937219 + 0.995598i \(0.529876\pi\)
\(614\) 57.1949 2.30820
\(615\) 0 0
\(616\) −0.815675 −0.0328645
\(617\) 48.4293 1.94969 0.974845 0.222884i \(-0.0715470\pi\)
0.974845 + 0.222884i \(0.0715470\pi\)
\(618\) 131.122 5.27450
\(619\) −16.5262 −0.664243 −0.332122 0.943237i \(-0.607764\pi\)
−0.332122 + 0.943237i \(0.607764\pi\)
\(620\) 0 0
\(621\) 89.3834 3.58683
\(622\) 19.5248 0.782874
\(623\) 4.95229 0.198409
\(624\) −40.2476 −1.61119
\(625\) 0 0
\(626\) 20.4341 0.816712
\(627\) 9.23483 0.368804
\(628\) 19.8415 0.791760
\(629\) −44.6699 −1.78111
\(630\) 0 0
\(631\) 20.0375 0.797679 0.398840 0.917021i \(-0.369413\pi\)
0.398840 + 0.917021i \(0.369413\pi\)
\(632\) 21.2375 0.844781
\(633\) −69.3371 −2.75590
\(634\) −48.0331 −1.90764
\(635\) 0 0
\(636\) −40.8798 −1.62099
\(637\) −40.2913 −1.59640
\(638\) 1.03858 0.0411180
\(639\) −49.2825 −1.94959
\(640\) 0 0
\(641\) 16.2197 0.640639 0.320319 0.947310i \(-0.396210\pi\)
0.320319 + 0.947310i \(0.396210\pi\)
\(642\) −46.6466 −1.84100
\(643\) 34.7519 1.37048 0.685241 0.728316i \(-0.259697\pi\)
0.685241 + 0.728316i \(0.259697\pi\)
\(644\) 10.2298 0.403110
\(645\) 0 0
\(646\) 41.4052 1.62907
\(647\) −29.5762 −1.16276 −0.581381 0.813631i \(-0.697487\pi\)
−0.581381 + 0.813631i \(0.697487\pi\)
\(648\) 42.6827 1.67673
\(649\) 8.79039 0.345053
\(650\) 0 0
\(651\) 7.89905 0.309588
\(652\) −25.6340 −1.00390
\(653\) 15.3265 0.599774 0.299887 0.953975i \(-0.403051\pi\)
0.299887 + 0.953975i \(0.403051\pi\)
\(654\) 88.5707 3.46339
\(655\) 0 0
\(656\) 20.8889 0.815573
\(657\) −14.6695 −0.572313
\(658\) −3.79028 −0.147760
\(659\) 9.67569 0.376911 0.188456 0.982082i \(-0.439652\pi\)
0.188456 + 0.982082i \(0.439652\pi\)
\(660\) 0 0
\(661\) 2.68152 0.104299 0.0521496 0.998639i \(-0.483393\pi\)
0.0521496 + 0.998639i \(0.483393\pi\)
\(662\) −15.9674 −0.620591
\(663\) −108.119 −4.19901
\(664\) −1.98834 −0.0771627
\(665\) 0 0
\(666\) 137.931 5.34471
\(667\) −3.47641 −0.134607
\(668\) −1.32414 −0.0512323
\(669\) −16.0365 −0.620006
\(670\) 0 0
\(671\) 5.85874 0.226174
\(672\) −15.8268 −0.610533
\(673\) 20.1020 0.774876 0.387438 0.921896i \(-0.373360\pi\)
0.387438 + 0.921896i \(0.373360\pi\)
\(674\) −53.8099 −2.07268
\(675\) 0 0
\(676\) 66.5755 2.56060
\(677\) −26.3355 −1.01216 −0.506078 0.862488i \(-0.668905\pi\)
−0.506078 + 0.862488i \(0.668905\pi\)
\(678\) −31.8072 −1.22155
\(679\) 8.60827 0.330355
\(680\) 0 0
\(681\) 28.4626 1.09069
\(682\) −6.57232 −0.251667
\(683\) 50.1081 1.91733 0.958667 0.284531i \(-0.0918379\pi\)
0.958667 + 0.284531i \(0.0918379\pi\)
\(684\) −73.7694 −2.82065
\(685\) 0 0
\(686\) −18.9640 −0.724047
\(687\) 17.4909 0.667320
\(688\) 3.66943 0.139896
\(689\) −28.0406 −1.06826
\(690\) 0 0
\(691\) −42.3958 −1.61281 −0.806407 0.591362i \(-0.798591\pi\)
−0.806407 + 0.591362i \(0.798591\pi\)
\(692\) −4.72923 −0.179778
\(693\) −3.95735 −0.150327
\(694\) −62.5481 −2.37429
\(695\) 0 0
\(696\) −3.07907 −0.116712
\(697\) 56.1150 2.12551
\(698\) −8.09887 −0.306547
\(699\) 85.6451 3.23940
\(700\) 0 0
\(701\) −1.56980 −0.0592906 −0.0296453 0.999560i \(-0.509438\pi\)
−0.0296453 + 0.999560i \(0.509438\pi\)
\(702\) 203.462 7.67917
\(703\) −29.0707 −1.09642
\(704\) 9.93603 0.374478
\(705\) 0 0
\(706\) −20.5369 −0.772917
\(707\) 4.01329 0.150935
\(708\) −97.6438 −3.66968
\(709\) −23.0787 −0.866739 −0.433369 0.901216i \(-0.642675\pi\)
−0.433369 + 0.901216i \(0.642675\pi\)
\(710\) 0 0
\(711\) 103.036 3.86416
\(712\) 12.2160 0.457813
\(713\) 21.9993 0.823880
\(714\) −24.6729 −0.923360
\(715\) 0 0
\(716\) 9.12469 0.341006
\(717\) −43.7770 −1.63488
\(718\) 4.78194 0.178460
\(719\) −27.8449 −1.03844 −0.519220 0.854641i \(-0.673777\pi\)
−0.519220 + 0.854641i \(0.673777\pi\)
\(720\) 0 0
\(721\) 11.8426 0.441040
\(722\) −14.3680 −0.534721
\(723\) −99.2222 −3.69011
\(724\) −18.8188 −0.699396
\(725\) 0 0
\(726\) −73.5931 −2.73130
\(727\) 4.15211 0.153993 0.0769966 0.997031i \(-0.475467\pi\)
0.0769966 + 0.997031i \(0.475467\pi\)
\(728\) 6.21488 0.230339
\(729\) 57.0718 2.11377
\(730\) 0 0
\(731\) 9.85740 0.364589
\(732\) −65.0789 −2.40539
\(733\) 29.8478 1.10245 0.551226 0.834356i \(-0.314160\pi\)
0.551226 + 0.834356i \(0.314160\pi\)
\(734\) −5.17142 −0.190881
\(735\) 0 0
\(736\) −44.0786 −1.62476
\(737\) −2.59408 −0.0955543
\(738\) −173.271 −6.37818
\(739\) −0.294754 −0.0108427 −0.00542135 0.999985i \(-0.501726\pi\)
−0.00542135 + 0.999985i \(0.501726\pi\)
\(740\) 0 0
\(741\) −70.3630 −2.58485
\(742\) −6.39889 −0.234911
\(743\) 29.7164 1.09019 0.545095 0.838374i \(-0.316493\pi\)
0.545095 + 0.838374i \(0.316493\pi\)
\(744\) 19.4848 0.714348
\(745\) 0 0
\(746\) 3.53995 0.129607
\(747\) −9.64671 −0.352955
\(748\) 11.8451 0.433100
\(749\) −4.21299 −0.153939
\(750\) 0 0
\(751\) −0.823196 −0.0300389 −0.0150194 0.999887i \(-0.504781\pi\)
−0.0150194 + 0.999887i \(0.504781\pi\)
\(752\) 5.46852 0.199417
\(753\) 58.4772 2.13103
\(754\) −7.91329 −0.288185
\(755\) 0 0
\(756\) 26.7901 0.974347
\(757\) −26.5876 −0.966342 −0.483171 0.875526i \(-0.660515\pi\)
−0.483171 + 0.875526i \(0.660515\pi\)
\(758\) 12.5332 0.455226
\(759\) −15.3260 −0.556297
\(760\) 0 0
\(761\) 15.4789 0.561109 0.280555 0.959838i \(-0.409482\pi\)
0.280555 + 0.959838i \(0.409482\pi\)
\(762\) −129.396 −4.68753
\(763\) 7.99946 0.289600
\(764\) −63.9560 −2.31385
\(765\) 0 0
\(766\) 11.8651 0.428702
\(767\) −66.9766 −2.41839
\(768\) −3.13362 −0.113075
\(769\) −14.5671 −0.525302 −0.262651 0.964891i \(-0.584597\pi\)
−0.262651 + 0.964891i \(0.584597\pi\)
\(770\) 0 0
\(771\) −23.0351 −0.829589
\(772\) −45.4152 −1.63453
\(773\) 46.6724 1.67869 0.839344 0.543601i \(-0.182939\pi\)
0.839344 + 0.543601i \(0.182939\pi\)
\(774\) −30.4375 −1.09405
\(775\) 0 0
\(776\) 21.2343 0.762266
\(777\) 17.3229 0.621456
\(778\) −10.4000 −0.372859
\(779\) 36.5190 1.30843
\(780\) 0 0
\(781\) 5.14987 0.184277
\(782\) −68.7154 −2.45726
\(783\) −9.10416 −0.325356
\(784\) 13.2656 0.473772
\(785\) 0 0
\(786\) −15.3745 −0.548391
\(787\) −20.3538 −0.725535 −0.362768 0.931880i \(-0.618168\pi\)
−0.362768 + 0.931880i \(0.618168\pi\)
\(788\) 2.72812 0.0971854
\(789\) −74.3759 −2.64785
\(790\) 0 0
\(791\) −2.87274 −0.102143
\(792\) −9.76172 −0.346868
\(793\) −44.6395 −1.58519
\(794\) −23.5986 −0.837482
\(795\) 0 0
\(796\) 53.4865 1.89578
\(797\) 15.9131 0.563669 0.281835 0.959463i \(-0.409057\pi\)
0.281835 + 0.959463i \(0.409057\pi\)
\(798\) −16.0569 −0.568407
\(799\) 14.6904 0.519710
\(800\) 0 0
\(801\) 59.2673 2.09411
\(802\) 65.3828 2.30875
\(803\) 1.53292 0.0540956
\(804\) 28.8151 1.01623
\(805\) 0 0
\(806\) 50.0765 1.76387
\(807\) −19.5718 −0.688961
\(808\) 9.89971 0.348271
\(809\) 4.20699 0.147910 0.0739550 0.997262i \(-0.476438\pi\)
0.0739550 + 0.997262i \(0.476438\pi\)
\(810\) 0 0
\(811\) −24.1310 −0.847355 −0.423678 0.905813i \(-0.639261\pi\)
−0.423678 + 0.905813i \(0.639261\pi\)
\(812\) −1.04195 −0.0365654
\(813\) −4.96527 −0.174139
\(814\) −14.4133 −0.505188
\(815\) 0 0
\(816\) 35.5975 1.24616
\(817\) 6.41510 0.224436
\(818\) 15.7346 0.550147
\(819\) 30.1523 1.05361
\(820\) 0 0
\(821\) 24.0770 0.840294 0.420147 0.907456i \(-0.361978\pi\)
0.420147 + 0.907456i \(0.361978\pi\)
\(822\) −32.0039 −1.11626
\(823\) 32.1941 1.12222 0.561108 0.827743i \(-0.310375\pi\)
0.561108 + 0.827743i \(0.310375\pi\)
\(824\) 29.2124 1.01766
\(825\) 0 0
\(826\) −15.2841 −0.531802
\(827\) −41.6832 −1.44947 −0.724733 0.689030i \(-0.758037\pi\)
−0.724733 + 0.689030i \(0.758037\pi\)
\(828\) 122.426 4.25461
\(829\) 6.67442 0.231812 0.115906 0.993260i \(-0.463023\pi\)
0.115906 + 0.993260i \(0.463023\pi\)
\(830\) 0 0
\(831\) 77.7263 2.69630
\(832\) −75.7057 −2.62462
\(833\) 35.6362 1.23472
\(834\) −20.6183 −0.713955
\(835\) 0 0
\(836\) 7.70868 0.266610
\(837\) 57.6125 1.99138
\(838\) −39.8497 −1.37658
\(839\) −38.9406 −1.34438 −0.672189 0.740380i \(-0.734646\pi\)
−0.672189 + 0.740380i \(0.734646\pi\)
\(840\) 0 0
\(841\) −28.6459 −0.987790
\(842\) 24.5847 0.847244
\(843\) 56.9365 1.96100
\(844\) −57.8784 −1.99226
\(845\) 0 0
\(846\) −45.3608 −1.55953
\(847\) −6.64672 −0.228384
\(848\) 9.23216 0.317034
\(849\) −24.4523 −0.839199
\(850\) 0 0
\(851\) 48.2452 1.65383
\(852\) −57.2049 −1.95981
\(853\) 36.9545 1.26530 0.632649 0.774438i \(-0.281967\pi\)
0.632649 + 0.774438i \(0.281967\pi\)
\(854\) −10.1868 −0.348583
\(855\) 0 0
\(856\) −10.3923 −0.355202
\(857\) −24.2311 −0.827719 −0.413859 0.910341i \(-0.635820\pi\)
−0.413859 + 0.910341i \(0.635820\pi\)
\(858\) −34.8862 −1.19099
\(859\) 56.9012 1.94144 0.970721 0.240209i \(-0.0772159\pi\)
0.970721 + 0.240209i \(0.0772159\pi\)
\(860\) 0 0
\(861\) −21.7613 −0.741622
\(862\) 37.7633 1.28622
\(863\) −23.7648 −0.808964 −0.404482 0.914546i \(-0.632548\pi\)
−0.404482 + 0.914546i \(0.632548\pi\)
\(864\) −115.435 −3.92717
\(865\) 0 0
\(866\) 24.1229 0.819730
\(867\) 40.0676 1.36077
\(868\) 6.59365 0.223803
\(869\) −10.7670 −0.365245
\(870\) 0 0
\(871\) 19.7651 0.669715
\(872\) 19.7325 0.668227
\(873\) 103.021 3.48673
\(874\) −44.7192 −1.51265
\(875\) 0 0
\(876\) −17.0277 −0.575313
\(877\) −57.8679 −1.95406 −0.977030 0.213101i \(-0.931644\pi\)
−0.977030 + 0.213101i \(0.931644\pi\)
\(878\) 38.4280 1.29688
\(879\) −41.5971 −1.40303
\(880\) 0 0
\(881\) −0.710312 −0.0239310 −0.0119655 0.999928i \(-0.503809\pi\)
−0.0119655 + 0.999928i \(0.503809\pi\)
\(882\) −110.037 −3.70513
\(883\) −51.0213 −1.71700 −0.858501 0.512811i \(-0.828604\pi\)
−0.858501 + 0.512811i \(0.828604\pi\)
\(884\) −90.2516 −3.03549
\(885\) 0 0
\(886\) −32.4046 −1.08865
\(887\) 45.0994 1.51429 0.757145 0.653247i \(-0.226594\pi\)
0.757145 + 0.653247i \(0.226594\pi\)
\(888\) 42.7309 1.43396
\(889\) −11.6867 −0.391960
\(890\) 0 0
\(891\) −21.6393 −0.724943
\(892\) −13.3863 −0.448206
\(893\) 9.56037 0.319926
\(894\) 31.7042 1.06035
\(895\) 0 0
\(896\) −7.59081 −0.253591
\(897\) 116.773 3.89894
\(898\) −57.7269 −1.92637
\(899\) −2.24074 −0.0747329
\(900\) 0 0
\(901\) 24.8009 0.826238
\(902\) 18.1062 0.602872
\(903\) −3.82268 −0.127211
\(904\) −7.08627 −0.235686
\(905\) 0 0
\(906\) 33.2545 1.10481
\(907\) 24.6849 0.819647 0.409824 0.912165i \(-0.365590\pi\)
0.409824 + 0.912165i \(0.365590\pi\)
\(908\) 23.7589 0.788466
\(909\) 48.0297 1.59304
\(910\) 0 0
\(911\) −38.9583 −1.29075 −0.645374 0.763867i \(-0.723298\pi\)
−0.645374 + 0.763867i \(0.723298\pi\)
\(912\) 23.1665 0.767118
\(913\) 1.00805 0.0333616
\(914\) −3.74075 −0.123733
\(915\) 0 0
\(916\) 14.6004 0.482410
\(917\) −1.38858 −0.0458551
\(918\) −179.954 −5.93938
\(919\) 20.7203 0.683499 0.341749 0.939791i \(-0.388981\pi\)
0.341749 + 0.939791i \(0.388981\pi\)
\(920\) 0 0
\(921\) 85.9659 2.83267
\(922\) 3.65722 0.120444
\(923\) −39.2384 −1.29155
\(924\) −4.59351 −0.151115
\(925\) 0 0
\(926\) 58.0206 1.90668
\(927\) 141.728 4.65495
\(928\) 4.48963 0.147379
\(929\) −28.9907 −0.951154 −0.475577 0.879674i \(-0.657761\pi\)
−0.475577 + 0.879674i \(0.657761\pi\)
\(930\) 0 0
\(931\) 23.1917 0.760076
\(932\) 71.4914 2.34178
\(933\) 29.3464 0.960759
\(934\) 34.7539 1.13718
\(935\) 0 0
\(936\) 74.3775 2.43111
\(937\) −48.8231 −1.59498 −0.797490 0.603332i \(-0.793840\pi\)
−0.797490 + 0.603332i \(0.793840\pi\)
\(938\) 4.51041 0.147270
\(939\) 30.7132 1.00229
\(940\) 0 0
\(941\) 16.5106 0.538230 0.269115 0.963108i \(-0.413269\pi\)
0.269115 + 0.963108i \(0.413269\pi\)
\(942\) 51.6853 1.68400
\(943\) −60.6063 −1.97361
\(944\) 22.0515 0.717716
\(945\) 0 0
\(946\) 3.18062 0.103411
\(947\) 4.92047 0.159894 0.0799469 0.996799i \(-0.474525\pi\)
0.0799469 + 0.996799i \(0.474525\pi\)
\(948\) 119.600 3.88442
\(949\) −11.6798 −0.379142
\(950\) 0 0
\(951\) −72.1953 −2.34109
\(952\) −5.49683 −0.178153
\(953\) 31.0718 1.00651 0.503257 0.864137i \(-0.332135\pi\)
0.503257 + 0.864137i \(0.332135\pi\)
\(954\) −76.5797 −2.47936
\(955\) 0 0
\(956\) −36.5424 −1.18187
\(957\) 1.56103 0.0504608
\(958\) 5.31918 0.171855
\(959\) −2.89050 −0.0933392
\(960\) 0 0
\(961\) −16.8203 −0.542589
\(962\) 109.820 3.54073
\(963\) −50.4197 −1.62475
\(964\) −82.8247 −2.66760
\(965\) 0 0
\(966\) 26.6477 0.857375
\(967\) 19.1582 0.616085 0.308042 0.951373i \(-0.400326\pi\)
0.308042 + 0.951373i \(0.400326\pi\)
\(968\) −16.3957 −0.526977
\(969\) 62.2334 1.99923
\(970\) 0 0
\(971\) 32.5259 1.04380 0.521902 0.853005i \(-0.325223\pi\)
0.521902 + 0.853005i \(0.325223\pi\)
\(972\) 115.151 3.69348
\(973\) −1.86219 −0.0596991
\(974\) 33.1870 1.06338
\(975\) 0 0
\(976\) 14.6972 0.470446
\(977\) −32.4844 −1.03927 −0.519633 0.854389i \(-0.673931\pi\)
−0.519633 + 0.854389i \(0.673931\pi\)
\(978\) −66.7743 −2.13521
\(979\) −6.19325 −0.197937
\(980\) 0 0
\(981\) 95.7348 3.05658
\(982\) 16.2295 0.517903
\(983\) 23.8026 0.759184 0.379592 0.925154i \(-0.376064\pi\)
0.379592 + 0.925154i \(0.376064\pi\)
\(984\) −53.6791 −1.71123
\(985\) 0 0
\(986\) 6.99901 0.222894
\(987\) −5.69691 −0.181335
\(988\) −58.7348 −1.86860
\(989\) −10.6464 −0.338535
\(990\) 0 0
\(991\) 33.2089 1.05492 0.527458 0.849581i \(-0.323145\pi\)
0.527458 + 0.849581i \(0.323145\pi\)
\(992\) −28.4111 −0.902052
\(993\) −23.9995 −0.761602
\(994\) −8.95423 −0.284011
\(995\) 0 0
\(996\) −11.1975 −0.354805
\(997\) −41.3000 −1.30799 −0.653993 0.756501i \(-0.726907\pi\)
−0.653993 + 0.756501i \(0.726907\pi\)
\(998\) 39.5686 1.25252
\(999\) 126.346 3.99742
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.h.1.5 5
5.4 even 2 197.2.a.b.1.1 5
15.14 odd 2 1773.2.a.e.1.5 5
20.19 odd 2 3152.2.a.j.1.4 5
35.34 odd 2 9653.2.a.h.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.2.a.b.1.1 5 5.4 even 2
1773.2.a.e.1.5 5 15.14 odd 2
3152.2.a.j.1.4 5 20.19 odd 2
4925.2.a.h.1.5 5 1.1 even 1 trivial
9653.2.a.h.1.1 5 35.34 odd 2