Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,2,Mod(6,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([13]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.6");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.e (of order \(14\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.57305291982\) |
Analytic rank: | \(0\) |
Dimension: | \(90\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.1 | −2.63359 | + | 0.601099i | −2.91456 | − | 0.665230i | 4.77252 | − | 2.29832i | −1.31218 | + | 2.72478i | 8.07562 | −0.552295 | + | 2.41976i | −6.96337 | + | 5.55310i | 5.34923 | + | 2.57605i | 1.81789 | − | 7.96469i | ||
6.2 | −2.62401 | + | 0.598912i | 0.715047 | + | 0.163205i | 4.72478 | − | 2.27533i | 1.15577 | − | 2.39998i | −1.97403 | 0.549496 | − | 2.40750i | −6.82654 | + | 5.44398i | −2.21825 | − | 1.06825i | −1.59537 | + | 6.98976i | ||
6.3 | −1.94832 | + | 0.444691i | 2.93408 | + | 0.669685i | 1.79626 | − | 0.865034i | 0.116141 | − | 0.241169i | −6.01433 | −0.836257 | + | 3.66388i | 0.00984237 | − | 0.00784903i | 5.45745 | + | 2.62817i | −0.119034 | + | 0.521521i | ||
6.4 | −1.86511 | + | 0.425700i | −0.519018 | − | 0.118463i | 1.49550 | − | 0.720193i | −0.0420268 | + | 0.0872695i | 1.01846 | 0.0269378 | − | 0.118022i | 0.508728 | − | 0.405697i | −2.44756 | − | 1.17868i | 0.0412341 | − | 0.180658i | ||
6.5 | −1.51063 | + | 0.344792i | 0.198794 | + | 0.0453735i | 0.361186 | − | 0.173938i | −1.59912 | + | 3.32061i | −0.315949 | 0.203799 | − | 0.892902i | 1.93722 | − | 1.54488i | −2.66545 | − | 1.28361i | 1.27076 | − | 5.56758i | ||
6.6 | −0.999333 | + | 0.228091i | 2.16685 | + | 0.494570i | −0.855297 | + | 0.411890i | 0.808978 | − | 1.67986i | −2.27822 | 0.918600 | − | 4.02465i | 2.36358 | − | 1.88490i | 1.74775 | + | 0.841672i | −0.425277 | + | 1.86326i | ||
6.7 | −0.540806 | + | 0.123436i | −2.94459 | − | 0.672083i | −1.52470 | + | 0.734258i | −0.282052 | + | 0.585688i | 1.67541 | 0.165956 | − | 0.727101i | 1.60132 | − | 1.27701i | 5.51599 | + | 2.65636i | 0.0802411 | − | 0.351559i | ||
6.8 | 0.113305 | − | 0.0258612i | −1.20266 | − | 0.274499i | −1.78977 | + | 0.861907i | 0.228077 | − | 0.473606i | −0.143367 | 0.759053 | − | 3.32563i | −0.362229 | + | 0.288868i | −1.33187 | − | 0.641394i | 0.0135943 | − | 0.0595605i | ||
6.9 | 0.219262 | − | 0.0500452i | −0.121858 | − | 0.0278132i | −1.75637 | + | 0.845821i | −0.403983 | + | 0.838879i | −0.0281107 | −0.928396 | + | 4.06757i | −0.694445 | + | 0.553801i | −2.68883 | − | 1.29487i | −0.0465963 | + | 0.204152i | ||
6.10 | 0.375832 | − | 0.0857812i | 2.55923 | + | 0.584128i | −1.66805 | + | 0.803289i | −1.18481 | + | 2.46028i | 1.01195 | 0.0979929 | − | 0.429335i | −1.16079 | + | 0.925696i | 3.50556 | + | 1.68819i | −0.234243 | + | 1.02629i | ||
6.11 | 1.05771 | − | 0.241414i | 2.20553 | + | 0.503397i | −0.741477 | + | 0.357077i | 1.41127 | − | 2.93053i | 2.45432 | −0.324895 | + | 1.42346i | −2.39449 | + | 1.90954i | 1.90803 | + | 0.918858i | 0.785234 | − | 3.44033i | ||
6.12 | 1.50872 | − | 0.344355i | −1.34485 | − | 0.306954i | 0.355708 | − | 0.171300i | 1.40968 | − | 2.92723i | −2.13471 | 0.549058 | − | 2.40558i | −1.94212 | + | 1.54879i | −0.988495 | − | 0.476034i | 1.11880 | − | 4.90178i | ||
6.13 | 1.99054 | − | 0.454329i | 1.08804 | + | 0.248338i | 1.95391 | − | 0.940954i | −0.647835 | + | 1.34524i | 2.27862 | 0.529429 | − | 2.31958i | 0.269259 | − | 0.214727i | −1.58074 | − | 0.761246i | −0.678362 | + | 2.97210i | ||
6.14 | 2.27480 | − | 0.519209i | 0.0683280 | + | 0.0155954i | 3.10321 | − | 1.49443i | −0.134017 | + | 0.278288i | 0.163530 | −0.594171 | + | 2.60323i | 2.63477 | − | 2.10116i | −2.69848 | − | 1.29952i | −0.160371 | + | 0.702633i | ||
6.15 | 2.68066 | − | 0.611843i | −2.88837 | − | 0.659251i | 5.00965 | − | 2.41252i | −0.109337 | + | 0.227041i | −8.14609 | 0.435692 | − | 1.90889i | 7.65363 | − | 6.10356i | 5.20516 | + | 2.50667i | −0.154182 | + | 0.675516i | ||
19.1 | −2.12061 | + | 1.69113i | 2.59668 | + | 2.07078i | 1.19203 | − | 5.22263i | 0.988538 | − | 0.225627i | −9.00853 | 1.90869 | − | 2.39342i | 3.95062 | + | 8.20355i | 1.78704 | + | 7.82955i | −1.71474 | + | 2.15022i | ||
19.2 | −1.94361 | + | 1.54998i | −1.98096 | − | 1.57976i | 0.930147 | − | 4.07524i | −0.192469 | + | 0.0439299i | 6.29880 | 0.548213 | − | 0.687438i | 2.35144 | + | 4.88282i | 0.760986 | + | 3.33410i | 0.305995 | − | 0.383705i | ||
19.3 | −1.63334 | + | 1.30255i | −0.0124583 | − | 0.00993517i | 0.526135 | − | 2.30515i | 1.56168 | − | 0.356443i | 0.0332897 | 0.877717 | − | 1.10062i | 0.330331 | + | 0.685939i | −0.667506 | − | 2.92454i | −2.08647 | + | 2.61635i | ||
19.4 | −1.49452 | + | 1.19184i | 0.834842 | + | 0.665764i | 0.368062 | − | 1.61258i | −2.72869 | + | 0.622806i | −2.04117 | −0.654078 | + | 0.820188i | −0.286925 | − | 0.595806i | −0.413844 | − | 1.81317i | 3.33579 | − | 4.18295i | ||
19.5 | −0.994678 | + | 0.793229i | −1.61766 | − | 1.29004i | −0.0848704 | + | 0.371841i | 1.17096 | − | 0.267264i | 2.63234 | −0.391521 | + | 0.490952i | −1.31455 | − | 2.72968i | 0.285053 | + | 1.24890i | −0.952726 | + | 1.19468i | ||
See all 90 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.e | even | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.2.e.b | ✓ | 90 |
197.e | even | 14 | 1 | inner | 197.2.e.b | ✓ | 90 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.2.e.b | ✓ | 90 | 1.a | even | 1 | 1 | trivial |
197.2.e.b | ✓ | 90 | 197.e | even | 14 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{90} + 7 T_{2}^{89} - 3 T_{2}^{88} - 126 T_{2}^{87} - 72 T_{2}^{86} + 1589 T_{2}^{85} + \cdots + 199927 \) acting on \(S_{2}^{\mathrm{new}}(197, [\chi])\).