Properties

Label 197.3.c.a.14.2
Level $197$
Weight $3$
Character 197.14
Analytic conductor $5.368$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,3,Mod(14,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36786120790\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 14.2
Character \(\chi\) \(=\) 197.14
Dual form 197.3.c.a.183.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.60079 + 2.60079i) q^{2} +(-0.624484 + 0.624484i) q^{3} -9.52825i q^{4} +(1.64362 - 1.64362i) q^{5} -3.24831i q^{6} -8.36970i q^{7} +(14.3778 + 14.3778i) q^{8} +8.22004i q^{9} +8.54942i q^{10} +(-2.58710 + 2.58710i) q^{11} +(5.95024 + 5.95024i) q^{12} +(-14.4989 + 14.4989i) q^{13} +(21.7679 + 21.7679i) q^{14} +2.05283i q^{15} -36.6745 q^{16} +(8.22478 + 8.22478i) q^{17} +(-21.3786 - 21.3786i) q^{18} +10.8311i q^{19} +(-15.6608 - 15.6608i) q^{20} +(5.22675 + 5.22675i) q^{21} -13.4570i q^{22} +15.9629 q^{23} -17.9574 q^{24} +19.5970i q^{25} -75.4170i q^{26} +(-10.7536 - 10.7536i) q^{27} -79.7486 q^{28} +8.00527 q^{29} +(-5.33897 - 5.33897i) q^{30} +(-15.9401 + 15.9401i) q^{31} +(37.8715 - 37.8715i) q^{32} -3.23120i q^{33} -42.7819 q^{34} +(-13.7566 - 13.7566i) q^{35} +78.3226 q^{36} -30.3859 q^{37} +(-28.1695 - 28.1695i) q^{38} -18.1086i q^{39} +47.2633 q^{40} +30.8557i q^{41} -27.1874 q^{42} -27.3922i q^{43} +(24.6505 + 24.6505i) q^{44} +(13.5106 + 13.5106i) q^{45} +(-41.5163 + 41.5163i) q^{46} +76.2072i q^{47} +(22.9027 - 22.9027i) q^{48} -21.0519 q^{49} +(-50.9679 - 50.9679i) q^{50} -10.2725 q^{51} +(138.149 + 138.149i) q^{52} -70.0440 q^{53} +55.9360 q^{54} +8.50439i q^{55} +(120.338 - 120.338i) q^{56} +(-6.76387 - 6.76387i) q^{57} +(-20.8201 + 20.8201i) q^{58} +74.9056 q^{59} +19.5598 q^{60} +93.1420 q^{61} -82.9136i q^{62} +68.7993 q^{63} +50.2938i q^{64} +47.6611i q^{65} +(8.40368 + 8.40368i) q^{66} +(-58.1423 + 58.1423i) q^{67} +(78.3677 - 78.3677i) q^{68} +(-9.96859 + 9.96859i) q^{69} +71.5561 q^{70} +(53.8173 + 53.8173i) q^{71} +(-118.186 + 118.186i) q^{72} +(-91.4298 + 91.4298i) q^{73} +(79.0274 - 79.0274i) q^{74} +(-12.2380 - 12.2380i) q^{75} +103.202 q^{76} +(21.6532 + 21.6532i) q^{77} +(47.0967 + 47.0967i) q^{78} +(-8.09237 - 8.09237i) q^{79} +(-60.2789 + 60.2789i) q^{80} -60.5494 q^{81} +(-80.2493 - 80.2493i) q^{82} -114.980i q^{83} +(49.8017 - 49.8017i) q^{84} +27.0368 q^{85} +(71.2414 + 71.2414i) q^{86} +(-4.99917 + 4.99917i) q^{87} -74.3936 q^{88} +(-91.1938 - 91.1938i) q^{89} -70.2765 q^{90} +(121.351 + 121.351i) q^{91} -152.099i q^{92} -19.9086i q^{93} +(-198.199 - 198.199i) q^{94} +(17.8022 + 17.8022i) q^{95} +47.3003i q^{96} -86.1359i q^{97} +(54.7516 - 54.7516i) q^{98} +(-21.2660 - 21.2660i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 2 q^{2} - 2 q^{3} - 10 q^{5} - 6 q^{8} + 10 q^{11} + 68 q^{12} + 2 q^{13} - 2 q^{14} - 280 q^{16} - 30 q^{17} - 68 q^{18} + 114 q^{20} - 20 q^{21} + 48 q^{23} + 60 q^{24} + 22 q^{27} + 392 q^{28}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.60079 + 2.60079i −1.30040 + 1.30040i −0.372273 + 0.928123i \(0.621422\pi\)
−0.928123 + 0.372273i \(0.878578\pi\)
\(3\) −0.624484 + 0.624484i −0.208161 + 0.208161i −0.803486 0.595324i \(-0.797024\pi\)
0.595324 + 0.803486i \(0.297024\pi\)
\(4\) 9.52825i 2.38206i
\(5\) 1.64362 1.64362i 0.328723 0.328723i −0.523377 0.852101i \(-0.675328\pi\)
0.852101 + 0.523377i \(0.175328\pi\)
\(6\) 3.24831i 0.541385i
\(7\) 8.36970i 1.19567i −0.801619 0.597836i \(-0.796027\pi\)
0.801619 0.597836i \(-0.203973\pi\)
\(8\) 14.3778 + 14.3778i 1.79723 + 1.79723i
\(9\) 8.22004i 0.913338i
\(10\) 8.54942i 0.854942i
\(11\) −2.58710 + 2.58710i −0.235191 + 0.235191i −0.814855 0.579665i \(-0.803184\pi\)
0.579665 + 0.814855i \(0.303184\pi\)
\(12\) 5.95024 + 5.95024i 0.495853 + 0.495853i
\(13\) −14.4989 + 14.4989i −1.11530 + 1.11530i −0.122874 + 0.992422i \(0.539211\pi\)
−0.992422 + 0.122874i \(0.960789\pi\)
\(14\) 21.7679 + 21.7679i 1.55485 + 1.55485i
\(15\) 2.05283i 0.136855i
\(16\) −36.6745 −2.29216
\(17\) 8.22478 + 8.22478i 0.483810 + 0.483810i 0.906346 0.422536i \(-0.138860\pi\)
−0.422536 + 0.906346i \(0.638860\pi\)
\(18\) −21.3786 21.3786i −1.18770 1.18770i
\(19\) 10.8311i 0.570060i 0.958519 + 0.285030i \(0.0920035\pi\)
−0.958519 + 0.285030i \(0.907997\pi\)
\(20\) −15.6608 15.6608i −0.783040 0.783040i
\(21\) 5.22675 + 5.22675i 0.248893 + 0.248893i
\(22\) 13.4570i 0.611682i
\(23\) 15.9629 0.694040 0.347020 0.937858i \(-0.387194\pi\)
0.347020 + 0.937858i \(0.387194\pi\)
\(24\) −17.9574 −0.748227
\(25\) 19.5970i 0.783882i
\(26\) 75.4170i 2.90065i
\(27\) −10.7536 10.7536i −0.398283 0.398283i
\(28\) −79.7486 −2.84816
\(29\) 8.00527 0.276044 0.138022 0.990429i \(-0.455926\pi\)
0.138022 + 0.990429i \(0.455926\pi\)
\(30\) −5.33897 5.33897i −0.177966 0.177966i
\(31\) −15.9401 + 15.9401i −0.514195 + 0.514195i −0.915809 0.401614i \(-0.868449\pi\)
0.401614 + 0.915809i \(0.368449\pi\)
\(32\) 37.8715 37.8715i 1.18348 1.18348i
\(33\) 3.23120i 0.0979152i
\(34\) −42.7819 −1.25829
\(35\) −13.7566 13.7566i −0.393045 0.393045i
\(36\) 78.3226 2.17563
\(37\) −30.3859 −0.821240 −0.410620 0.911807i \(-0.634688\pi\)
−0.410620 + 0.911807i \(0.634688\pi\)
\(38\) −28.1695 28.1695i −0.741303 0.741303i
\(39\) 18.1086i 0.464323i
\(40\) 47.2633 1.18158
\(41\) 30.8557i 0.752579i 0.926502 + 0.376289i \(0.122800\pi\)
−0.926502 + 0.376289i \(0.877200\pi\)
\(42\) −27.1874 −0.647318
\(43\) 27.3922i 0.637028i −0.947918 0.318514i \(-0.896816\pi\)
0.947918 0.318514i \(-0.103184\pi\)
\(44\) 24.6505 + 24.6505i 0.560238 + 0.560238i
\(45\) 13.5106 + 13.5106i 0.300236 + 0.300236i
\(46\) −41.5163 + 41.5163i −0.902527 + 0.902527i
\(47\) 76.2072i 1.62143i 0.585441 + 0.810715i \(0.300921\pi\)
−0.585441 + 0.810715i \(0.699079\pi\)
\(48\) 22.9027 22.9027i 0.477139 0.477139i
\(49\) −21.0519 −0.429631
\(50\) −50.9679 50.9679i −1.01936 1.01936i
\(51\) −10.2725 −0.201421
\(52\) 138.149 + 138.149i 2.65670 + 2.65670i
\(53\) −70.0440 −1.32158 −0.660792 0.750569i \(-0.729779\pi\)
−0.660792 + 0.750569i \(0.729779\pi\)
\(54\) 55.9360 1.03585
\(55\) 8.50439i 0.154625i
\(56\) 120.338 120.338i 2.14890 2.14890i
\(57\) −6.76387 6.76387i −0.118664 0.118664i
\(58\) −20.8201 + 20.8201i −0.358966 + 0.358966i
\(59\) 74.9056 1.26959 0.634793 0.772682i \(-0.281085\pi\)
0.634793 + 0.772682i \(0.281085\pi\)
\(60\) 19.5598 0.325997
\(61\) 93.1420 1.52692 0.763459 0.645856i \(-0.223500\pi\)
0.763459 + 0.645856i \(0.223500\pi\)
\(62\) 82.9136i 1.33732i
\(63\) 68.7993 1.09205
\(64\) 50.2938i 0.785841i
\(65\) 47.6611i 0.733248i
\(66\) 8.40368 + 8.40368i 0.127329 + 0.127329i
\(67\) −58.1423 + 58.1423i −0.867795 + 0.867795i −0.992228 0.124433i \(-0.960289\pi\)
0.124433 + 0.992228i \(0.460289\pi\)
\(68\) 78.3677 78.3677i 1.15247 1.15247i
\(69\) −9.96859 + 9.96859i −0.144472 + 0.144472i
\(70\) 71.5561 1.02223
\(71\) 53.8173 + 53.8173i 0.757990 + 0.757990i 0.975956 0.217966i \(-0.0699423\pi\)
−0.217966 + 0.975956i \(0.569942\pi\)
\(72\) −118.186 + 118.186i −1.64148 + 1.64148i
\(73\) −91.4298 + 91.4298i −1.25246 + 1.25246i −0.297850 + 0.954613i \(0.596270\pi\)
−0.954613 + 0.297850i \(0.903730\pi\)
\(74\) 79.0274 79.0274i 1.06794 1.06794i
\(75\) −12.2380 12.2380i −0.163174 0.163174i
\(76\) 103.202 1.35792
\(77\) 21.6532 + 21.6532i 0.281211 + 0.281211i
\(78\) 47.0967 + 47.0967i 0.603804 + 0.603804i
\(79\) −8.09237 8.09237i −0.102435 0.102435i 0.654032 0.756467i \(-0.273076\pi\)
−0.756467 + 0.654032i \(0.773076\pi\)
\(80\) −60.2789 + 60.2789i −0.753486 + 0.753486i
\(81\) −60.5494 −0.747523
\(82\) −80.2493 80.2493i −0.978651 0.978651i
\(83\) 114.980i 1.38531i −0.721271 0.692653i \(-0.756442\pi\)
0.721271 0.692653i \(-0.243558\pi\)
\(84\) 49.8017 49.8017i 0.592878 0.592878i
\(85\) 27.0368 0.318080
\(86\) 71.2414 + 71.2414i 0.828389 + 0.828389i
\(87\) −4.99917 + 4.99917i −0.0574617 + 0.0574617i
\(88\) −74.3936 −0.845382
\(89\) −91.1938 91.1938i −1.02465 1.02465i −0.999688 0.0249612i \(-0.992054\pi\)
−0.0249612 0.999688i \(-0.507946\pi\)
\(90\) −70.2765 −0.780850
\(91\) 121.351 + 121.351i 1.33353 + 1.33353i
\(92\) 152.099i 1.65325i
\(93\) 19.9086i 0.214071i
\(94\) −198.199 198.199i −2.10850 2.10850i
\(95\) 17.8022 + 17.8022i 0.187392 + 0.187392i
\(96\) 47.3003i 0.492712i
\(97\) 86.1359i 0.887999i −0.896027 0.443999i \(-0.853559\pi\)
0.896027 0.443999i \(-0.146441\pi\)
\(98\) 54.7516 54.7516i 0.558690 0.558690i
\(99\) −21.2660 21.2660i −0.214808 0.214808i
\(100\) 186.725 1.86725
\(101\) 60.5394 0.599400 0.299700 0.954033i \(-0.403113\pi\)
0.299700 + 0.954033i \(0.403113\pi\)
\(102\) 26.7166 26.7166i 0.261928 0.261928i
\(103\) −3.27564 + 3.27564i −0.0318024 + 0.0318024i −0.722829 0.691027i \(-0.757159\pi\)
0.691027 + 0.722829i \(0.257159\pi\)
\(104\) −416.924 −4.00888
\(105\) 17.1815 0.163634
\(106\) 182.170 182.170i 1.71858 1.71858i
\(107\) 98.0644i 0.916490i 0.888826 + 0.458245i \(0.151522\pi\)
−0.888826 + 0.458245i \(0.848478\pi\)
\(108\) −102.463 + 102.463i −0.948735 + 0.948735i
\(109\) 164.617i 1.51025i −0.655582 0.755124i \(-0.727577\pi\)
0.655582 0.755124i \(-0.272423\pi\)
\(110\) −22.1182 22.1182i −0.201074 0.201074i
\(111\) 18.9755 18.9755i 0.170950 0.170950i
\(112\) 306.955i 2.74067i
\(113\) −59.8495 59.8495i −0.529642 0.529642i 0.390824 0.920466i \(-0.372190\pi\)
−0.920466 + 0.390824i \(0.872190\pi\)
\(114\) 35.1828 0.308621
\(115\) 26.2369 26.2369i 0.228147 0.228147i
\(116\) 76.2762i 0.657554i
\(117\) −119.181 119.181i −1.01864 1.01864i
\(118\) −194.814 + 194.814i −1.65097 + 1.65097i
\(119\) 68.8389 68.8389i 0.578478 0.578478i
\(120\) −29.5152 + 29.5152i −0.245960 + 0.245960i
\(121\) 107.614i 0.889371i
\(122\) −242.243 + 242.243i −1.98560 + 1.98560i
\(123\) −19.2689 19.2689i −0.156658 0.156658i
\(124\) 151.881 + 151.881i 1.22485 + 1.22485i
\(125\) 73.3005 + 73.3005i 0.586404 + 0.586404i
\(126\) −178.933 + 178.933i −1.42010 + 1.42010i
\(127\) 79.5090i 0.626055i 0.949744 + 0.313028i \(0.101343\pi\)
−0.949744 + 0.313028i \(0.898657\pi\)
\(128\) 20.6822 + 20.6822i 0.161579 + 0.161579i
\(129\) 17.1060 + 17.1060i 0.132605 + 0.132605i
\(130\) −123.957 123.957i −0.953513 0.953513i
\(131\) 58.1594 58.1594i 0.443965 0.443965i −0.449377 0.893342i \(-0.648354\pi\)
0.893342 + 0.449377i \(0.148354\pi\)
\(132\) −30.7877 −0.233240
\(133\) 90.6533 0.681604
\(134\) 302.432i 2.25696i
\(135\) −35.3497 −0.261850
\(136\) 236.509i 1.73904i
\(137\) 93.6626i 0.683669i 0.939760 + 0.341834i \(0.111048\pi\)
−0.939760 + 0.341834i \(0.888952\pi\)
\(138\) 51.8525i 0.375743i
\(139\) 75.3266 + 75.3266i 0.541918 + 0.541918i 0.924091 0.382173i \(-0.124824\pi\)
−0.382173 + 0.924091i \(0.624824\pi\)
\(140\) −131.076 + 131.076i −0.936258 + 0.936258i
\(141\) −47.5902 47.5902i −0.337519 0.337519i
\(142\) −279.935 −1.97137
\(143\) 75.0198i 0.524614i
\(144\) 301.466i 2.09351i
\(145\) 13.1576 13.1576i 0.0907421 0.0907421i
\(146\) 475.580i 3.25740i
\(147\) 13.1466 13.1466i 0.0894325 0.0894325i
\(148\) 289.524i 1.95625i
\(149\) 99.4605 + 99.4605i 0.667520 + 0.667520i 0.957141 0.289621i \(-0.0935294\pi\)
−0.289621 + 0.957141i \(0.593529\pi\)
\(150\) 63.6572 0.424382
\(151\) 94.6068 + 94.6068i 0.626535 + 0.626535i 0.947195 0.320659i \(-0.103904\pi\)
−0.320659 + 0.947195i \(0.603904\pi\)
\(152\) −155.728 + 155.728i −1.02453 + 1.02453i
\(153\) −67.6080 + 67.6080i −0.441882 + 0.441882i
\(154\) −112.631 −0.731371
\(155\) 52.3987i 0.338056i
\(156\) −172.543 −1.10605
\(157\) 97.5493i 0.621333i −0.950519 0.310666i \(-0.899448\pi\)
0.950519 0.310666i \(-0.100552\pi\)
\(158\) 42.0932 0.266412
\(159\) 43.7413 43.7413i 0.275103 0.275103i
\(160\) 124.493i 0.778078i
\(161\) 133.605i 0.829844i
\(162\) 157.476 157.476i 0.972077 0.972077i
\(163\) 198.133i 1.21554i −0.794112 0.607771i \(-0.792064\pi\)
0.794112 0.607771i \(-0.207936\pi\)
\(164\) 294.001 1.79269
\(165\) −5.31086 5.31086i −0.0321870 0.0321870i
\(166\) 299.040 + 299.040i 1.80145 + 1.80145i
\(167\) 130.385 130.385i 0.780746 0.780746i −0.199211 0.979957i \(-0.563838\pi\)
0.979957 + 0.199211i \(0.0638379\pi\)
\(168\) 150.298i 0.894634i
\(169\) 251.433i 1.48777i
\(170\) −70.3171 + 70.3171i −0.413630 + 0.413630i
\(171\) −89.0323 −0.520657
\(172\) −261.000 −1.51744
\(173\) 37.4801i 0.216648i 0.994116 + 0.108324i \(0.0345484\pi\)
−0.994116 + 0.108324i \(0.965452\pi\)
\(174\) 26.0036i 0.149446i
\(175\) 164.021 0.937265
\(176\) 94.8805 94.8805i 0.539094 0.539094i
\(177\) −46.7774 + 46.7774i −0.264279 + 0.264279i
\(178\) 474.352 2.66490
\(179\) 2.00525 2.00525i 0.0112025 0.0112025i −0.701483 0.712686i \(-0.747479\pi\)
0.712686 + 0.701483i \(0.247479\pi\)
\(180\) 128.732 128.732i 0.715180 0.715180i
\(181\) 195.358i 1.07933i −0.841881 0.539663i \(-0.818552\pi\)
0.841881 0.539663i \(-0.181448\pi\)
\(182\) −631.218 −3.46823
\(183\) −58.1657 + 58.1657i −0.317845 + 0.317845i
\(184\) 229.512 + 229.512i 1.24735 + 1.24735i
\(185\) −49.9428 + 49.9428i −0.269961 + 0.269961i
\(186\) 51.7782 + 51.7782i 0.278377 + 0.278377i
\(187\) −42.5566 −0.227575
\(188\) 726.121 3.86235
\(189\) −90.0048 + 90.0048i −0.476216 + 0.476216i
\(190\) −92.5998 −0.487368
\(191\) 79.9152 0.418404 0.209202 0.977872i \(-0.432913\pi\)
0.209202 + 0.977872i \(0.432913\pi\)
\(192\) −31.4077 31.4077i −0.163582 0.163582i
\(193\) −222.184 −1.15121 −0.575606 0.817727i \(-0.695234\pi\)
−0.575606 + 0.817727i \(0.695234\pi\)
\(194\) 224.022 + 224.022i 1.15475 + 1.15475i
\(195\) −29.7636 29.7636i −0.152634 0.152634i
\(196\) 200.588i 1.02341i
\(197\) 113.539 + 160.990i 0.576341 + 0.817210i
\(198\) 110.617 0.558672
\(199\) −159.724 + 159.724i −0.802633 + 0.802633i −0.983506 0.180874i \(-0.942108\pi\)
0.180874 + 0.983506i \(0.442108\pi\)
\(200\) −281.763 + 281.763i −1.40881 + 1.40881i
\(201\) 72.6179i 0.361283i
\(202\) −157.451 + 157.451i −0.779458 + 0.779458i
\(203\) 67.0017i 0.330058i
\(204\) 97.8788i 0.479798i
\(205\) 50.7150 + 50.7150i 0.247390 + 0.247390i
\(206\) 17.0385i 0.0827114i
\(207\) 131.216i 0.633893i
\(208\) 531.738 531.738i 2.55643 2.55643i
\(209\) −28.0212 28.0212i −0.134073 0.134073i
\(210\) −44.6856 + 44.6856i −0.212789 + 0.212789i
\(211\) −279.107 279.107i −1.32278 1.32278i −0.911516 0.411265i \(-0.865087\pi\)
−0.411265 0.911516i \(-0.634913\pi\)
\(212\) 667.396i 3.14810i
\(213\) −67.2161 −0.315568
\(214\) −255.045 255.045i −1.19180 1.19180i
\(215\) −45.0223 45.0223i −0.209406 0.209406i
\(216\) 309.228i 1.43161i
\(217\) 133.414 + 133.414i 0.614809 + 0.614809i
\(218\) 428.135 + 428.135i 1.96392 + 1.96392i
\(219\) 114.193i 0.521429i
\(220\) 81.0320 0.368327
\(221\) −238.500 −1.07918
\(222\) 98.7027i 0.444607i
\(223\) 270.794i 1.21432i −0.794578 0.607162i \(-0.792308\pi\)
0.794578 0.607162i \(-0.207692\pi\)
\(224\) −316.973 316.973i −1.41506 1.41506i
\(225\) −161.088 −0.715949
\(226\) 311.313 1.37749
\(227\) 230.378 + 230.378i 1.01488 + 1.01488i 0.999888 + 0.0149918i \(0.00477222\pi\)
0.0149918 + 0.999888i \(0.495228\pi\)
\(228\) −64.4478 + 64.4478i −0.282666 + 0.282666i
\(229\) −50.3697 + 50.3697i −0.219955 + 0.219955i −0.808480 0.588524i \(-0.799709\pi\)
0.588524 + 0.808480i \(0.299709\pi\)
\(230\) 136.474i 0.593364i
\(231\) −27.0442 −0.117074
\(232\) 115.098 + 115.098i 0.496114 + 0.496114i
\(233\) 265.569 1.13978 0.569890 0.821721i \(-0.306986\pi\)
0.569890 + 0.821721i \(0.306986\pi\)
\(234\) 619.931 2.64928
\(235\) 125.256 + 125.256i 0.533002 + 0.533002i
\(236\) 713.719i 3.02423i
\(237\) 10.1071 0.0426460
\(238\) 358.072i 1.50450i
\(239\) 296.870 1.24213 0.621067 0.783757i \(-0.286699\pi\)
0.621067 + 0.783757i \(0.286699\pi\)
\(240\) 75.2864i 0.313693i
\(241\) 116.921 + 116.921i 0.485148 + 0.485148i 0.906771 0.421623i \(-0.138540\pi\)
−0.421623 + 0.906771i \(0.638540\pi\)
\(242\) −279.881 279.881i −1.15653 1.15653i
\(243\) 134.595 134.595i 0.553888 0.553888i
\(244\) 887.480i 3.63721i
\(245\) −34.6013 + 34.6013i −0.141230 + 0.141230i
\(246\) 100.229 0.407434
\(247\) −157.039 157.039i −0.635785 0.635785i
\(248\) −458.367 −1.84825
\(249\) 71.8034 + 71.8034i 0.288367 + 0.288367i
\(250\) −381.279 −1.52511
\(251\) −144.851 −0.577098 −0.288549 0.957465i \(-0.593173\pi\)
−0.288549 + 0.957465i \(0.593173\pi\)
\(252\) 655.537i 2.60134i
\(253\) −41.2976 + 41.2976i −0.163232 + 0.163232i
\(254\) −206.787 206.787i −0.814120 0.814120i
\(255\) −16.8840 + 16.8840i −0.0662119 + 0.0662119i
\(256\) −308.755 −1.20608
\(257\) −478.146 −1.86049 −0.930246 0.366937i \(-0.880406\pi\)
−0.930246 + 0.366937i \(0.880406\pi\)
\(258\) −88.9783 −0.344877
\(259\) 254.321i 0.981934i
\(260\) 454.127 1.74664
\(261\) 65.8037i 0.252121i
\(262\) 302.521i 1.15466i
\(263\) −211.841 211.841i −0.805477 0.805477i 0.178468 0.983946i \(-0.442886\pi\)
−0.983946 + 0.178468i \(0.942886\pi\)
\(264\) 46.4576 46.4576i 0.175976 0.175976i
\(265\) −115.125 + 115.125i −0.434436 + 0.434436i
\(266\) −235.771 + 235.771i −0.886355 + 0.886355i
\(267\) 113.898 0.426585
\(268\) 553.994 + 553.994i 2.06714 + 2.06714i
\(269\) −138.078 + 138.078i −0.513300 + 0.513300i −0.915536 0.402236i \(-0.868233\pi\)
0.402236 + 0.915536i \(0.368233\pi\)
\(270\) 91.9373 91.9373i 0.340509 0.340509i
\(271\) −5.74612 + 5.74612i −0.0212034 + 0.0212034i −0.717629 0.696426i \(-0.754773\pi\)
0.696426 + 0.717629i \(0.254773\pi\)
\(272\) −301.640 301.640i −1.10897 1.10897i
\(273\) −151.564 −0.555178
\(274\) −243.597 243.597i −0.889041 0.889041i
\(275\) −50.6994 50.6994i −0.184362 0.184362i
\(276\) 94.9832 + 94.9832i 0.344142 + 0.344142i
\(277\) 310.633 310.633i 1.12142 1.12142i 0.129889 0.991529i \(-0.458538\pi\)
0.991529 0.129889i \(-0.0414621\pi\)
\(278\) −391.818 −1.40942
\(279\) −131.028 131.028i −0.469634 0.469634i
\(280\) 395.580i 1.41278i
\(281\) −276.302 + 276.302i −0.983283 + 0.983283i −0.999863 0.0165796i \(-0.994722\pi\)
0.0165796 + 0.999863i \(0.494722\pi\)
\(282\) 247.545 0.877817
\(283\) −51.4173 51.4173i −0.181686 0.181686i 0.610404 0.792090i \(-0.291007\pi\)
−0.792090 + 0.610404i \(0.791007\pi\)
\(284\) 512.784 512.784i 1.80558 1.80558i
\(285\) −22.2344 −0.0780155
\(286\) 195.111 + 195.111i 0.682207 + 0.682207i
\(287\) 258.253 0.899837
\(288\) 311.305 + 311.305i 1.08092 + 1.08092i
\(289\) 153.706i 0.531855i
\(290\) 68.4404i 0.236001i
\(291\) 53.7905 + 53.7905i 0.184847 + 0.184847i
\(292\) 871.166 + 871.166i 2.98344 + 2.98344i
\(293\) 342.169i 1.16781i 0.811821 + 0.583906i \(0.198476\pi\)
−0.811821 + 0.583906i \(0.801524\pi\)
\(294\) 68.3831i 0.232595i
\(295\) 123.116 123.116i 0.417343 0.417343i
\(296\) −436.883 436.883i −1.47596 1.47596i
\(297\) 55.6414 0.187345
\(298\) −517.352 −1.73608
\(299\) −231.444 + 231.444i −0.774060 + 0.774060i
\(300\) −116.607 + 116.607i −0.388690 + 0.388690i
\(301\) −229.265 −0.761676
\(302\) −492.106 −1.62949
\(303\) −37.8059 + 37.8059i −0.124772 + 0.124772i
\(304\) 397.226i 1.30667i
\(305\) 153.090 153.090i 0.501934 0.501934i
\(306\) 351.669i 1.14924i
\(307\) −256.870 256.870i −0.836708 0.836708i 0.151716 0.988424i \(-0.451520\pi\)
−0.988424 + 0.151716i \(0.951520\pi\)
\(308\) 206.317 206.317i 0.669861 0.669861i
\(309\) 4.09118i 0.0132401i
\(310\) −136.278 136.278i −0.439607 0.439607i
\(311\) 335.465 1.07866 0.539332 0.842093i \(-0.318677\pi\)
0.539332 + 0.842093i \(0.318677\pi\)
\(312\) 260.362 260.362i 0.834495 0.834495i
\(313\) 121.029i 0.386674i 0.981132 + 0.193337i \(0.0619311\pi\)
−0.981132 + 0.193337i \(0.938069\pi\)
\(314\) 253.705 + 253.705i 0.807979 + 0.807979i
\(315\) 113.080 113.080i 0.358983 0.358983i
\(316\) −77.1061 + 77.1061i −0.244007 + 0.244007i
\(317\) −105.696 + 105.696i −0.333426 + 0.333426i −0.853886 0.520460i \(-0.825761\pi\)
0.520460 + 0.853886i \(0.325761\pi\)
\(318\) 227.524i 0.715485i
\(319\) −20.7104 + 20.7104i −0.0649229 + 0.0649229i
\(320\) 82.6638 + 82.6638i 0.258324 + 0.258324i
\(321\) −61.2396 61.2396i −0.190778 0.190778i
\(322\) 347.479 + 347.479i 1.07913 + 1.07913i
\(323\) −89.0836 + 89.0836i −0.275801 + 0.275801i
\(324\) 576.930i 1.78065i
\(325\) −284.135 284.135i −0.874260 0.874260i
\(326\) 515.304 + 515.304i 1.58069 + 1.58069i
\(327\) 102.801 + 102.801i 0.314375 + 0.314375i
\(328\) −443.638 + 443.638i −1.35256 + 1.35256i
\(329\) 637.832 1.93870
\(330\) 27.6249 0.0837118
\(331\) 100.952i 0.304990i 0.988304 + 0.152495i \(0.0487309\pi\)
−0.988304 + 0.152495i \(0.951269\pi\)
\(332\) −1095.56 −3.29988
\(333\) 249.773i 0.750070i
\(334\) 678.206i 2.03056i
\(335\) 191.127i 0.570529i
\(336\) −191.688 191.688i −0.570501 0.570501i
\(337\) −374.454 + 374.454i −1.11114 + 1.11114i −0.118142 + 0.992997i \(0.537694\pi\)
−0.992997 + 0.118142i \(0.962306\pi\)
\(338\) 653.926 + 653.926i 1.93469 + 1.93469i
\(339\) 74.7502 0.220502
\(340\) 257.613i 0.757686i
\(341\) 82.4769i 0.241868i
\(342\) 231.555 231.555i 0.677060 0.677060i
\(343\) 233.917i 0.681974i
\(344\) 393.840 393.840i 1.14488 1.14488i
\(345\) 32.7691i 0.0949829i
\(346\) −97.4779 97.4779i −0.281728 0.281728i
\(347\) 550.050 1.58516 0.792580 0.609769i \(-0.208738\pi\)
0.792580 + 0.609769i \(0.208738\pi\)
\(348\) 47.6333 + 47.6333i 0.136877 + 0.136877i
\(349\) −41.6734 + 41.6734i −0.119408 + 0.119408i −0.764286 0.644878i \(-0.776908\pi\)
0.644878 + 0.764286i \(0.276908\pi\)
\(350\) −426.586 + 426.586i −1.21882 + 1.21882i
\(351\) 311.831 0.888407
\(352\) 195.954i 0.556689i
\(353\) −435.069 −1.23249 −0.616245 0.787554i \(-0.711347\pi\)
−0.616245 + 0.787554i \(0.711347\pi\)
\(354\) 243.316i 0.687335i
\(355\) 176.910 0.498338
\(356\) −868.917 + 868.917i −2.44078 + 2.44078i
\(357\) 85.9776i 0.240834i
\(358\) 10.4305i 0.0291354i
\(359\) 121.931 121.931i 0.339642 0.339642i −0.516591 0.856232i \(-0.672799\pi\)
0.856232 + 0.516591i \(0.172799\pi\)
\(360\) 388.506i 1.07918i
\(361\) 243.687 0.675032
\(362\) 508.086 + 508.086i 1.40355 + 1.40355i
\(363\) −67.2031 67.2031i −0.185133 0.185133i
\(364\) 1156.26 1156.26i 3.17655 3.17655i
\(365\) 300.551i 0.823428i
\(366\) 302.554i 0.826650i
\(367\) 191.381 191.381i 0.521473 0.521473i −0.396543 0.918016i \(-0.629790\pi\)
0.918016 + 0.396543i \(0.129790\pi\)
\(368\) −585.432 −1.59085
\(369\) −253.635 −0.687358
\(370\) 259.782i 0.702112i
\(371\) 586.247i 1.58018i
\(372\) −189.694 −0.509931
\(373\) 368.016 368.016i 0.986638 0.986638i −0.0132741 0.999912i \(-0.504225\pi\)
0.999912 + 0.0132741i \(0.00422539\pi\)
\(374\) 110.681 110.681i 0.295938 0.295938i
\(375\) −91.5500 −0.244133
\(376\) −1095.69 + 1095.69i −2.91408 + 2.91408i
\(377\) −116.067 + 116.067i −0.307871 + 0.307871i
\(378\) 468.167i 1.23854i
\(379\) −661.843 −1.74629 −0.873143 0.487463i \(-0.837922\pi\)
−0.873143 + 0.487463i \(0.837922\pi\)
\(380\) 169.624 169.624i 0.446379 0.446379i
\(381\) −49.6521 49.6521i −0.130321 0.130321i
\(382\) −207.843 + 207.843i −0.544091 + 0.544091i
\(383\) 50.4348 + 50.4348i 0.131683 + 0.131683i 0.769876 0.638193i \(-0.220318\pi\)
−0.638193 + 0.769876i \(0.720318\pi\)
\(384\) −25.8314 −0.0672692
\(385\) 71.1792 0.184881
\(386\) 577.854 577.854i 1.49703 1.49703i
\(387\) 225.165 0.581822
\(388\) −820.724 −2.11527
\(389\) −241.121 241.121i −0.619848 0.619848i 0.325645 0.945492i \(-0.394419\pi\)
−0.945492 + 0.325645i \(0.894419\pi\)
\(390\) 154.818 0.396969
\(391\) 131.292 + 131.292i 0.335784 + 0.335784i
\(392\) −302.681 302.681i −0.772145 0.772145i
\(393\) 72.6393i 0.184833i
\(394\) −713.994 123.411i −1.81217 0.313225i
\(395\) −26.6015 −0.0673456
\(396\) −202.628 + 202.628i −0.511687 + 0.511687i
\(397\) −59.0299 + 59.0299i −0.148690 + 0.148690i −0.777533 0.628843i \(-0.783529\pi\)
0.628843 + 0.777533i \(0.283529\pi\)
\(398\) 830.818i 2.08748i
\(399\) −56.6116 + 56.6116i −0.141884 + 0.141884i
\(400\) 718.712i 1.79678i
\(401\) 272.517i 0.679592i 0.940499 + 0.339796i \(0.110358\pi\)
−0.940499 + 0.339796i \(0.889642\pi\)
\(402\) 188.864 + 188.864i 0.469811 + 0.469811i
\(403\) 462.225i 1.14696i
\(404\) 576.835i 1.42781i
\(405\) −99.5200 + 99.5200i −0.245728 + 0.245728i
\(406\) 174.258 + 174.258i 0.429206 + 0.429206i
\(407\) 78.6112 78.6112i 0.193148 0.193148i
\(408\) −147.696 147.696i −0.362000 0.362000i
\(409\) 450.039i 1.10034i −0.835053 0.550170i \(-0.814563\pi\)
0.835053 0.550170i \(-0.185437\pi\)
\(410\) −263.798 −0.643411
\(411\) −58.4908 58.4908i −0.142313 0.142313i
\(412\) 31.2112 + 31.2112i 0.0757552 + 0.0757552i
\(413\) 626.938i 1.51801i
\(414\) −341.265 341.265i −0.824312 0.824312i
\(415\) −188.984 188.984i −0.455382 0.455382i
\(416\) 1098.19i 2.63987i
\(417\) −94.0806 −0.225613
\(418\) 145.755 0.348695
\(419\) 287.457i 0.686056i −0.939325 0.343028i \(-0.888547\pi\)
0.939325 0.343028i \(-0.111453\pi\)
\(420\) 163.710i 0.389786i
\(421\) 570.167 + 570.167i 1.35432 + 1.35432i 0.880768 + 0.473548i \(0.157027\pi\)
0.473548 + 0.880768i \(0.342973\pi\)
\(422\) 1451.80 3.44028
\(423\) −626.426 −1.48091
\(424\) −1007.08 1007.08i −2.37519 2.37519i
\(425\) −161.181 + 161.181i −0.379250 + 0.379250i
\(426\) 174.815 174.815i 0.410364 0.410364i
\(427\) 779.571i 1.82569i
\(428\) 934.382 2.18313
\(429\) 46.8487 + 46.8487i 0.109204 + 0.109204i
\(430\) 234.187 0.544622
\(431\) −256.098 −0.594194 −0.297097 0.954847i \(-0.596019\pi\)
−0.297097 + 0.954847i \(0.596019\pi\)
\(432\) 394.385 + 394.385i 0.912927 + 0.912927i
\(433\) 596.148i 1.37678i −0.725338 0.688392i \(-0.758317\pi\)
0.725338 0.688392i \(-0.241683\pi\)
\(434\) −693.962 −1.59899
\(435\) 16.4334i 0.0377780i
\(436\) −1568.51 −3.59750
\(437\) 172.897i 0.395644i
\(438\) 296.992 + 296.992i 0.678064 + 0.678064i
\(439\) 508.878 + 508.878i 1.15918 + 1.15918i 0.984653 + 0.174522i \(0.0558381\pi\)
0.174522 + 0.984653i \(0.444162\pi\)
\(440\) −122.275 + 122.275i −0.277897 + 0.277897i
\(441\) 173.047i 0.392398i
\(442\) 620.288 620.288i 1.40337 1.40337i
\(443\) 710.347 1.60349 0.801746 0.597664i \(-0.203904\pi\)
0.801746 + 0.597664i \(0.203904\pi\)
\(444\) −180.803 180.803i −0.407215 0.407215i
\(445\) −299.775 −0.673653
\(446\) 704.280 + 704.280i 1.57910 + 1.57910i
\(447\) −124.223 −0.277904
\(448\) 420.944 0.939608
\(449\) 575.824i 1.28246i 0.767349 + 0.641229i \(0.221575\pi\)
−0.767349 + 0.641229i \(0.778425\pi\)
\(450\) 418.958 418.958i 0.931017 0.931017i
\(451\) −79.8267 79.8267i −0.176999 0.176999i
\(452\) −570.261 + 570.261i −1.26164 + 1.26164i
\(453\) −118.161 −0.260841
\(454\) −1198.33 −2.63949
\(455\) 398.909 0.876724
\(456\) 194.499i 0.426534i
\(457\) 550.354 1.20428 0.602138 0.798392i \(-0.294316\pi\)
0.602138 + 0.798392i \(0.294316\pi\)
\(458\) 262.002i 0.572058i
\(459\) 176.893i 0.385387i
\(460\) −249.992 249.992i −0.543461 0.543461i
\(461\) −76.7874 + 76.7874i −0.166567 + 0.166567i −0.785469 0.618902i \(-0.787578\pi\)
0.618902 + 0.785469i \(0.287578\pi\)
\(462\) 70.3363 70.3363i 0.152243 0.152243i
\(463\) −309.182 + 309.182i −0.667780 + 0.667780i −0.957202 0.289422i \(-0.906537\pi\)
0.289422 + 0.957202i \(0.406537\pi\)
\(464\) −293.589 −0.632736
\(465\) −32.7222 32.7222i −0.0703702 0.0703702i
\(466\) −690.689 + 690.689i −1.48217 + 1.48217i
\(467\) 237.080 237.080i 0.507666 0.507666i −0.406143 0.913810i \(-0.633127\pi\)
0.913810 + 0.406143i \(0.133127\pi\)
\(468\) −1135.59 + 1135.59i −2.42647 + 2.42647i
\(469\) 486.634 + 486.634i 1.03760 + 1.03760i
\(470\) −651.527 −1.38623
\(471\) 60.9180 + 60.9180i 0.129337 + 0.129337i
\(472\) 1076.98 + 1076.98i 2.28174 + 2.28174i
\(473\) 70.8663 + 70.8663i 0.149823 + 0.149823i
\(474\) −26.2865 + 26.2865i −0.0554568 + 0.0554568i
\(475\) −212.258 −0.446859
\(476\) −655.914 655.914i −1.37797 1.37797i
\(477\) 575.764i 1.20705i
\(478\) −772.097 + 772.097i −1.61527 + 1.61527i
\(479\) −606.416 −1.26600 −0.633002 0.774150i \(-0.718177\pi\)
−0.633002 + 0.774150i \(0.718177\pi\)
\(480\) 77.7436 + 77.7436i 0.161966 + 0.161966i
\(481\) 440.560 440.560i 0.915926 0.915926i
\(482\) −608.173 −1.26177
\(483\) 83.4341 + 83.4341i 0.172741 + 0.172741i
\(484\) 1025.37 2.11854
\(485\) −141.574 141.574i −0.291906 0.291906i
\(486\) 700.107i 1.44055i
\(487\) 459.304i 0.943129i 0.881832 + 0.471565i \(0.156311\pi\)
−0.881832 + 0.471565i \(0.843689\pi\)
\(488\) 1339.18 + 1339.18i 2.74422 + 2.74422i
\(489\) 123.731 + 123.731i 0.253029 + 0.253029i
\(490\) 179.981i 0.367309i
\(491\) 109.257i 0.222518i 0.993791 + 0.111259i \(0.0354884\pi\)
−0.993791 + 0.111259i \(0.964512\pi\)
\(492\) −183.599 + 183.599i −0.373169 + 0.373169i
\(493\) 65.8416 + 65.8416i 0.133553 + 0.133553i
\(494\) 816.852 1.65355
\(495\) −69.9064 −0.141225
\(496\) 584.594 584.594i 1.17862 1.17862i
\(497\) 450.435 450.435i 0.906307 0.906307i
\(498\) −373.492 −0.749983
\(499\) 410.164 0.821972 0.410986 0.911642i \(-0.365184\pi\)
0.410986 + 0.911642i \(0.365184\pi\)
\(500\) 698.425 698.425i 1.39685 1.39685i
\(501\) 162.846i 0.325042i
\(502\) 376.729 376.729i 0.750456 0.750456i
\(503\) 361.862i 0.719408i −0.933066 0.359704i \(-0.882878\pi\)
0.933066 0.359704i \(-0.117122\pi\)
\(504\) 989.184 + 989.184i 1.96267 + 1.96267i
\(505\) 99.5037 99.5037i 0.197037 0.197037i
\(506\) 214.813i 0.424532i
\(507\) 157.016 + 157.016i 0.309696 + 0.309696i
\(508\) 757.582 1.49130
\(509\) 222.334 222.334i 0.436806 0.436806i −0.454130 0.890936i \(-0.650050\pi\)
0.890936 + 0.454130i \(0.150050\pi\)
\(510\) 87.8238i 0.172203i
\(511\) 765.240 + 765.240i 1.49753 + 1.49753i
\(512\) 720.280 720.280i 1.40680 1.40680i
\(513\) 116.474 116.474i 0.227045 0.227045i
\(514\) 1243.56 1243.56i 2.41938 2.41938i
\(515\) 10.7678i 0.0209084i
\(516\) 162.990 162.990i 0.315872 0.315872i
\(517\) −197.155 197.155i −0.381345 0.381345i
\(518\) −661.436 661.436i −1.27690 1.27690i
\(519\) −23.4057 23.4057i −0.0450977 0.0450977i
\(520\) −685.263 + 685.263i −1.31781 + 1.31781i
\(521\) 573.279i 1.10034i −0.835051 0.550172i \(-0.814562\pi\)
0.835051 0.550172i \(-0.185438\pi\)
\(522\) −171.142 171.142i −0.327858 0.327858i
\(523\) 429.041 + 429.041i 0.820347 + 0.820347i 0.986158 0.165811i \(-0.0530242\pi\)
−0.165811 + 0.986158i \(0.553024\pi\)
\(524\) −554.157 554.157i −1.05755 1.05755i
\(525\) −102.429 + 102.429i −0.195102 + 0.195102i
\(526\) 1101.91 2.09488
\(527\) −262.207 −0.497546
\(528\) 118.503i 0.224437i
\(529\) −274.185 −0.518308
\(530\) 598.835i 1.12988i
\(531\) 615.727i 1.15956i
\(532\) 863.767i 1.62362i
\(533\) −447.373 447.373i −0.839348 0.839348i
\(534\) −296.226 + 296.226i −0.554730 + 0.554730i
\(535\) 161.180 + 161.180i 0.301272 + 0.301272i
\(536\) −1671.92 −3.11925
\(537\) 2.50449i 0.00466386i
\(538\) 718.223i 1.33499i
\(539\) 54.4633 54.4633i 0.101045 0.101045i
\(540\) 336.821i 0.623743i
\(541\) −223.673 + 223.673i −0.413444 + 0.413444i −0.882936 0.469493i \(-0.844437\pi\)
0.469493 + 0.882936i \(0.344437\pi\)
\(542\) 29.8889i 0.0551456i
\(543\) 121.998 + 121.998i 0.224674 + 0.224674i
\(544\) 622.969 1.14516
\(545\) −270.567 270.567i −0.496454 0.496454i
\(546\) 394.186 394.186i 0.721952 0.721952i
\(547\) −199.839 + 199.839i −0.365337 + 0.365337i −0.865773 0.500436i \(-0.833173\pi\)
0.500436 + 0.865773i \(0.333173\pi\)
\(548\) 892.441 1.62854
\(549\) 765.631i 1.39459i
\(550\) 263.717 0.479486
\(551\) 86.7062i 0.157361i
\(552\) −286.653 −0.519300
\(553\) −67.7307 + 67.7307i −0.122479 + 0.122479i
\(554\) 1615.78i 2.91657i
\(555\) 62.3769i 0.112391i
\(556\) 717.731 717.731i 1.29088 1.29088i
\(557\) 200.211i 0.359445i −0.983717 0.179723i \(-0.942480\pi\)
0.983717 0.179723i \(-0.0575200\pi\)
\(558\) 681.553 1.22142
\(559\) 397.155 + 397.155i 0.710475 + 0.710475i
\(560\) 504.516 + 504.516i 0.900922 + 0.900922i
\(561\) 26.5759 26.5759i 0.0473724 0.0473724i
\(562\) 1437.21i 2.55732i
\(563\) 789.788i 1.40282i −0.712758 0.701410i \(-0.752554\pi\)
0.712758 0.701410i \(-0.247446\pi\)
\(564\) −453.451 + 453.451i −0.803992 + 0.803992i
\(565\) −196.739 −0.348211
\(566\) 267.451 0.472529
\(567\) 506.780i 0.893793i
\(568\) 1547.55i 2.72456i
\(569\) 643.352 1.13067 0.565335 0.824861i \(-0.308747\pi\)
0.565335 + 0.824861i \(0.308747\pi\)
\(570\) 57.8271 57.8271i 0.101451 0.101451i
\(571\) 72.6494 72.6494i 0.127232 0.127232i −0.640623 0.767855i \(-0.721324\pi\)
0.767855 + 0.640623i \(0.221324\pi\)
\(572\) −714.808 −1.24966
\(573\) −49.9058 + 49.9058i −0.0870956 + 0.0870956i
\(574\) −671.663 + 671.663i −1.17014 + 1.17014i
\(575\) 312.826i 0.544045i
\(576\) −413.417 −0.717738
\(577\) −383.926 + 383.926i −0.665384 + 0.665384i −0.956644 0.291260i \(-0.905925\pi\)
0.291260 + 0.956644i \(0.405925\pi\)
\(578\) 399.758 + 399.758i 0.691622 + 0.691622i
\(579\) 138.750 138.750i 0.239638 0.239638i
\(580\) −125.369 125.369i −0.216153 0.216153i
\(581\) −962.351 −1.65637
\(582\) −279.796 −0.480749
\(583\) 181.210 181.210i 0.310824 0.310824i
\(584\) −2629.12 −4.50192
\(585\) −391.776 −0.669703
\(586\) −889.911 889.911i −1.51862 1.51862i
\(587\) 881.823 1.50225 0.751127 0.660158i \(-0.229511\pi\)
0.751127 + 0.660158i \(0.229511\pi\)
\(588\) −125.264 125.264i −0.213034 0.213034i
\(589\) −172.649 172.649i −0.293122 0.293122i
\(590\) 640.399i 1.08542i
\(591\) −171.439 29.6325i −0.290083 0.0501396i
\(592\) 1114.39 1.88241
\(593\) −569.208 + 569.208i −0.959879 + 0.959879i −0.999226 0.0393467i \(-0.987472\pi\)
0.0393467 + 0.999226i \(0.487472\pi\)
\(594\) −144.712 + 144.712i −0.243623 + 0.243623i
\(595\) 226.290i 0.380319i
\(596\) 947.684 947.684i 1.59007 1.59007i
\(597\) 199.490i 0.334154i
\(598\) 1203.88i 2.01317i
\(599\) 466.304 + 466.304i 0.778471 + 0.778471i 0.979571 0.201100i \(-0.0644517\pi\)
−0.201100 + 0.979571i \(0.564452\pi\)
\(600\) 351.913i 0.586522i
\(601\) 852.861i 1.41907i 0.704670 + 0.709535i \(0.251095\pi\)
−0.704670 + 0.709535i \(0.748905\pi\)
\(602\) 596.270 596.270i 0.990481 0.990481i
\(603\) −477.932 477.932i −0.792590 0.792590i
\(604\) 901.437 901.437i 1.49245 1.49245i
\(605\) 176.876 + 176.876i 0.292357 + 0.292357i
\(606\) 196.651i 0.324506i
\(607\) 650.935 1.07238 0.536190 0.844097i \(-0.319863\pi\)
0.536190 + 0.844097i \(0.319863\pi\)
\(608\) 410.191 + 410.191i 0.674657 + 0.674657i
\(609\) 41.8415 + 41.8415i 0.0687053 + 0.0687053i
\(610\) 796.310i 1.30543i
\(611\) −1104.92 1104.92i −1.80838 1.80838i
\(612\) 644.186 + 644.186i 1.05259 + 1.05259i
\(613\) 170.873i 0.278749i −0.990240 0.139374i \(-0.955491\pi\)
0.990240 0.139374i \(-0.0445092\pi\)
\(614\) 1336.13 2.17611
\(615\) −63.3414 −0.102994
\(616\) 622.653i 1.01080i
\(617\) 645.317i 1.04589i 0.852365 + 0.522947i \(0.175168\pi\)
−0.852365 + 0.522947i \(0.824832\pi\)
\(618\) 10.6403 + 10.6403i 0.0172173 + 0.0172173i
\(619\) −911.412 −1.47239 −0.736197 0.676767i \(-0.763381\pi\)
−0.736197 + 0.676767i \(0.763381\pi\)
\(620\) 499.268 0.805271
\(621\) −171.660 171.660i −0.276424 0.276424i
\(622\) −872.474 + 872.474i −1.40269 + 1.40269i
\(623\) −763.265 + 763.265i −1.22514 + 1.22514i
\(624\) 664.124i 1.06430i
\(625\) −248.970 −0.398352
\(626\) −314.771 314.771i −0.502830 0.502830i
\(627\) 34.9976 0.0558175
\(628\) −929.473 −1.48005
\(629\) −249.917 249.917i −0.397325 0.397325i
\(630\) 588.194i 0.933641i
\(631\) −8.88970 −0.0140883 −0.00704414 0.999975i \(-0.502242\pi\)
−0.00704414 + 0.999975i \(0.502242\pi\)
\(632\) 232.701i 0.368198i
\(633\) 348.595 0.550704
\(634\) 549.787i 0.867173i
\(635\) 130.682 + 130.682i 0.205799 + 0.205799i
\(636\) −416.778 416.778i −0.655312 0.655312i
\(637\) 305.228 305.228i 0.479165 0.479165i
\(638\) 107.727i 0.168851i
\(639\) −442.380 + 442.380i −0.692301 + 0.692301i
\(640\) 67.9871 0.106230
\(641\) 313.502 + 313.502i 0.489083 + 0.489083i 0.908017 0.418934i \(-0.137596\pi\)
−0.418934 + 0.908017i \(0.637596\pi\)
\(642\) 318.543 0.496173
\(643\) 199.335 + 199.335i 0.310008 + 0.310008i 0.844913 0.534904i \(-0.179652\pi\)
−0.534904 + 0.844913i \(0.679652\pi\)
\(644\) −1273.02 −1.97674
\(645\) 56.2314 0.0871805
\(646\) 463.376i 0.717301i
\(647\) −701.905 + 701.905i −1.08486 + 1.08486i −0.0888129 + 0.996048i \(0.528307\pi\)
−0.996048 + 0.0888129i \(0.971693\pi\)
\(648\) −870.569 870.569i −1.34347 1.34347i
\(649\) −193.788 + 193.788i −0.298595 + 0.298595i
\(650\) 1477.95 2.27377
\(651\) −166.629 −0.255959
\(652\) −1887.86 −2.89550
\(653\) 812.556i 1.24434i 0.782881 + 0.622172i \(0.213749\pi\)
−0.782881 + 0.622172i \(0.786251\pi\)
\(654\) −534.727 −0.817625
\(655\) 191.184i 0.291883i
\(656\) 1131.62i 1.72503i
\(657\) −751.556 751.556i −1.14392 1.14392i
\(658\) −1658.87 + 1658.87i −2.52108 + 2.52108i
\(659\) 327.628 327.628i 0.497160 0.497160i −0.413393 0.910553i \(-0.635656\pi\)
0.910553 + 0.413393i \(0.135656\pi\)
\(660\) −50.6032 + 50.6032i −0.0766715 + 0.0766715i
\(661\) 894.445 1.35317 0.676584 0.736365i \(-0.263459\pi\)
0.676584 + 0.736365i \(0.263459\pi\)
\(662\) −262.555 262.555i −0.396608 0.396608i
\(663\) 148.939 148.939i 0.224644 0.224644i
\(664\) 1653.17 1653.17i 2.48971 2.48971i
\(665\) 148.999 148.999i 0.224059 0.224059i
\(666\) 649.608 + 649.608i 0.975388 + 0.975388i
\(667\) 127.788 0.191586
\(668\) −1242.34 1242.34i −1.85978 1.85978i
\(669\) 169.107 + 169.107i 0.252776 + 0.252776i
\(670\) −497.083 497.083i −0.741914 0.741914i
\(671\) −240.967 + 240.967i −0.359117 + 0.359117i
\(672\) 395.889 0.589121
\(673\) 855.939 + 855.939i 1.27183 + 1.27183i 0.945129 + 0.326697i \(0.105936\pi\)
0.326697 + 0.945129i \(0.394064\pi\)
\(674\) 1947.75i 2.88984i
\(675\) 210.740 210.740i 0.312207 0.312207i
\(676\) −2395.72 −3.54396
\(677\) 80.3325 + 80.3325i 0.118659 + 0.118659i 0.763943 0.645284i \(-0.223261\pi\)
−0.645284 + 0.763943i \(0.723261\pi\)
\(678\) −194.410 + 194.410i −0.286740 + 0.286740i
\(679\) −720.932 −1.06176
\(680\) 388.730 + 388.730i 0.571662 + 0.571662i
\(681\) −287.734 −0.422517
\(682\) 214.505 + 214.505i 0.314524 + 0.314524i
\(683\) 478.188i 0.700129i 0.936726 + 0.350064i \(0.113840\pi\)
−0.936726 + 0.350064i \(0.886160\pi\)
\(684\) 848.322i 1.24024i
\(685\) 153.946 + 153.946i 0.224738 + 0.224738i
\(686\) 608.370 + 608.370i 0.886837 + 0.886837i
\(687\) 62.9102i 0.0915723i
\(688\) 1004.60i 1.46017i
\(689\) 1015.56 1015.56i 1.47396 1.47396i
\(690\) −85.2256 85.2256i −0.123515 0.123515i
\(691\) −17.1704 −0.0248486 −0.0124243 0.999923i \(-0.503955\pi\)
−0.0124243 + 0.999923i \(0.503955\pi\)
\(692\) 357.119 0.516068
\(693\) −177.990 + 177.990i −0.256840 + 0.256840i
\(694\) −1430.57 + 1430.57i −2.06134 + 2.06134i
\(695\) 247.616 0.356283
\(696\) −143.754 −0.206543
\(697\) −253.781 + 253.781i −0.364105 + 0.364105i
\(698\) 216.768i 0.310555i
\(699\) −165.843 + 165.843i −0.237258 + 0.237258i
\(700\) 1562.84i 2.23262i
\(701\) 88.9119 + 88.9119i 0.126836 + 0.126836i 0.767675 0.640839i \(-0.221413\pi\)
−0.640839 + 0.767675i \(0.721413\pi\)
\(702\) −811.007 + 811.007i −1.15528 + 1.15528i
\(703\) 329.114i 0.468156i
\(704\) −130.115 130.115i −0.184822 0.184822i
\(705\) −156.440 −0.221901
\(706\) 1131.52 1131.52i 1.60273 1.60273i
\(707\) 506.697i 0.716686i
\(708\) 445.706 + 445.706i 0.629529 + 0.629529i
\(709\) −371.332 + 371.332i −0.523740 + 0.523740i −0.918699 0.394958i \(-0.870759\pi\)
0.394958 + 0.918699i \(0.370759\pi\)
\(710\) −460.106 + 460.106i −0.648037 + 0.648037i
\(711\) 66.5196 66.5196i 0.0935578 0.0935578i
\(712\) 2622.34i 3.68306i
\(713\) −254.450 + 254.450i −0.356872 + 0.356872i
\(714\) −223.610 223.610i −0.313179 0.313179i
\(715\) −123.304 123.304i −0.172453 0.172453i
\(716\) −19.1065 19.1065i −0.0266851 0.0266851i
\(717\) −185.391 + 185.391i −0.258564 + 0.258564i
\(718\) 634.236i 0.883338i
\(719\) 169.844 + 169.844i 0.236222 + 0.236222i 0.815284 0.579062i \(-0.196581\pi\)
−0.579062 + 0.815284i \(0.696581\pi\)
\(720\) −495.495 495.495i −0.688187 0.688187i
\(721\) 27.4162 + 27.4162i 0.0380252 + 0.0380252i
\(722\) −633.778 + 633.778i −0.877809 + 0.877809i
\(723\) −146.030 −0.201978
\(724\) −1861.42 −2.57102
\(725\) 156.880i 0.216386i
\(726\) 349.563 0.481492
\(727\) 245.746i 0.338028i −0.985614 0.169014i \(-0.945942\pi\)
0.985614 0.169014i \(-0.0540583\pi\)
\(728\) 3489.53i 4.79331i
\(729\) 376.840i 0.516927i
\(730\) −781.671 781.671i −1.07078 1.07078i
\(731\) 225.295 225.295i 0.308201 0.308201i
\(732\) 554.217 + 554.217i 0.757127 + 0.757127i
\(733\) −22.8694 −0.0311997 −0.0155999 0.999878i \(-0.504966\pi\)
−0.0155999 + 0.999878i \(0.504966\pi\)
\(734\) 995.483i 1.35624i
\(735\) 43.2159i 0.0587971i
\(736\) 604.540 604.540i 0.821386 0.821386i
\(737\) 300.839i 0.408195i
\(738\) 659.653 659.653i 0.893838 0.893838i
\(739\) 1401.39i 1.89633i −0.317772 0.948167i \(-0.602935\pi\)
0.317772 0.948167i \(-0.397065\pi\)
\(740\) 475.867 + 475.867i 0.643064 + 0.643064i
\(741\) 196.137 0.264692
\(742\) −1524.71 1524.71i −2.05486 2.05486i
\(743\) 261.028 261.028i 0.351316 0.351316i −0.509283 0.860599i \(-0.670089\pi\)
0.860599 + 0.509283i \(0.170089\pi\)
\(744\) 286.243 286.243i 0.384735 0.384735i
\(745\) 326.950 0.438859
\(746\) 1914.27i 2.56604i
\(747\) 945.143 1.26525
\(748\) 405.490i 0.542098i
\(749\) 820.770 1.09582
\(750\) 238.102 238.102i 0.317470 0.317470i
\(751\) 907.944i 1.20898i 0.796612 + 0.604490i \(0.206623\pi\)
−0.796612 + 0.604490i \(0.793377\pi\)
\(752\) 2794.86i 3.71657i
\(753\) 90.4574 90.4574i 0.120129 0.120129i
\(754\) 603.734i 0.800708i
\(755\) 310.995 0.411914
\(756\) 857.588 + 857.588i 1.13438 + 1.13438i
\(757\) 800.922 + 800.922i 1.05802 + 1.05802i 0.998210 + 0.0598115i \(0.0190500\pi\)
0.0598115 + 0.998210i \(0.480950\pi\)
\(758\) 1721.32 1721.32i 2.27087 2.27087i
\(759\) 51.5794i 0.0679571i
\(760\) 511.915i 0.673572i
\(761\) 487.128 487.128i 0.640115 0.640115i −0.310469 0.950584i \(-0.600486\pi\)
0.950584 + 0.310469i \(0.100486\pi\)
\(762\) 258.270 0.338937
\(763\) −1377.79 −1.80576
\(764\) 761.452i 0.996664i
\(765\) 222.243i 0.290514i
\(766\) −262.341 −0.342481
\(767\) −1086.05 + 1086.05i −1.41597 + 1.41597i
\(768\) 192.813 192.813i 0.251058 0.251058i
\(769\) 1342.31 1.74553 0.872763 0.488144i \(-0.162326\pi\)
0.872763 + 0.488144i \(0.162326\pi\)
\(770\) −185.122 + 185.122i −0.240419 + 0.240419i
\(771\) 298.595 298.595i 0.387282 0.387282i
\(772\) 2117.02i 2.74226i
\(773\) −590.878 −0.764397 −0.382198 0.924080i \(-0.624833\pi\)
−0.382198 + 0.924080i \(0.624833\pi\)
\(774\) −585.607 + 585.607i −0.756599 + 0.756599i
\(775\) −312.378 312.378i −0.403068 0.403068i
\(776\) 1238.45 1238.45i 1.59594 1.59594i
\(777\) −158.819 158.819i −0.204401 0.204401i
\(778\) 1254.21 1.61210
\(779\) −334.202 −0.429015
\(780\) −283.595 + 283.595i −0.363583 + 0.363583i
\(781\) −278.461 −0.356544
\(782\) −682.924 −0.873304
\(783\) −86.0858 86.0858i −0.109944 0.109944i
\(784\) 772.068 0.984781
\(785\) −160.334 160.334i −0.204247 0.204247i
\(786\) −188.920 188.920i −0.240356 0.240356i
\(787\) 573.444i 0.728645i −0.931273 0.364323i \(-0.881301\pi\)
0.931273 0.364323i \(-0.118699\pi\)
\(788\) 1533.96 1081.83i 1.94664 1.37288i
\(789\) 264.582 0.335339
\(790\) 69.1850 69.1850i 0.0875760 0.0875760i
\(791\) −500.923 + 500.923i −0.633278 + 0.633278i
\(792\) 611.519i 0.772120i
\(793\) −1350.45 + 1350.45i −1.70297 + 1.70297i
\(794\) 307.049i 0.386712i
\(795\) 143.788i 0.180865i
\(796\) 1521.89 + 1521.89i 1.91192 + 1.91192i
\(797\) 29.6984i 0.0372627i −0.999826 0.0186314i \(-0.994069\pi\)
0.999826 0.0186314i \(-0.00593089\pi\)
\(798\) 294.470i 0.369010i
\(799\) −626.788 + 626.788i −0.784465 + 0.784465i
\(800\) 742.170 + 742.170i 0.927712 + 0.927712i
\(801\) 749.617 749.617i 0.935851 0.935851i
\(802\) −708.759 708.759i −0.883740 0.883740i
\(803\) 473.075i 0.589135i
\(804\) −691.921 −0.860598
\(805\) −219.595 219.595i −0.272789 0.272789i
\(806\) 1202.15 + 1202.15i 1.49150 + 1.49150i
\(807\) 172.455i 0.213698i
\(808\) 870.426 + 870.426i 1.07726 + 1.07726i
\(809\) 509.263 + 509.263i 0.629496 + 0.629496i 0.947941 0.318445i \(-0.103161\pi\)
−0.318445 + 0.947941i \(0.603161\pi\)
\(810\) 517.662i 0.639089i
\(811\) 411.509 0.507410 0.253705 0.967282i \(-0.418351\pi\)
0.253705 + 0.967282i \(0.418351\pi\)
\(812\) −638.409 −0.786218
\(813\) 7.17672i 0.00882745i
\(814\) 408.903i 0.502338i
\(815\) −325.656 325.656i −0.399577 0.399577i
\(816\) 376.738 0.461689
\(817\) 296.689 0.363144
\(818\) 1170.46 + 1170.46i 1.43088 + 1.43088i
\(819\) −997.510 + 997.510i −1.21796 + 1.21796i
\(820\) 483.225 483.225i 0.589299 0.589299i
\(821\) 770.794i 0.938848i −0.882973 0.469424i \(-0.844462\pi\)
0.882973 0.469424i \(-0.155538\pi\)
\(822\) 304.245 0.370128
\(823\) 835.461 + 835.461i 1.01514 + 1.01514i 0.999884 + 0.0152574i \(0.00485676\pi\)
0.0152574 + 0.999884i \(0.495143\pi\)
\(824\) −94.1933 −0.114312
\(825\) 63.3220 0.0767539
\(826\) 1630.53 + 1630.53i 1.97401 + 1.97401i
\(827\) 1464.44i 1.77079i 0.464840 + 0.885395i \(0.346112\pi\)
−0.464840 + 0.885395i \(0.653888\pi\)
\(828\) 1250.26 1.50997
\(829\) 121.690i 0.146791i 0.997303 + 0.0733956i \(0.0233836\pi\)
−0.997303 + 0.0733956i \(0.976616\pi\)
\(830\) 983.015 1.18436
\(831\) 387.970i 0.466872i
\(832\) −729.203 729.203i −0.876446 0.876446i
\(833\) −173.147 173.147i −0.207860 0.207860i
\(834\) 244.684 244.684i 0.293386 0.293386i
\(835\) 428.605i 0.513299i
\(836\) −266.993 + 266.993i −0.319369 + 0.319369i
\(837\) 342.827 0.409591
\(838\) 747.617 + 747.617i 0.892145 + 0.892145i
\(839\) −1218.77 −1.45265 −0.726324 0.687353i \(-0.758773\pi\)
−0.726324 + 0.687353i \(0.758773\pi\)
\(840\) 247.033 + 247.033i 0.294087 + 0.294087i
\(841\) −776.916 −0.923800
\(842\) −2965.77 −3.52230
\(843\) 345.093i 0.409363i
\(844\) −2659.40 + 2659.40i −3.15095 + 3.15095i
\(845\) −413.260 413.260i −0.489065 0.489065i
\(846\) 1629.21 1629.21i 1.92577 1.92577i
\(847\) 900.696 1.06340
\(848\) 2568.83 3.02928
\(849\) 64.2185 0.0756402
\(850\) 838.399i 0.986351i
\(851\) −485.048 −0.569974
\(852\) 640.451i 0.751703i
\(853\) 348.356i 0.408389i 0.978930 + 0.204194i \(0.0654575\pi\)
−0.978930 + 0.204194i \(0.934543\pi\)
\(854\) 2027.50 + 2027.50i 2.37412 + 2.37412i
\(855\) −146.335 + 146.335i −0.171152 + 0.171152i
\(856\) −1409.95 + 1409.95i −1.64714 + 1.64714i
\(857\) 942.949 942.949i 1.10029 1.10029i 0.105916 0.994375i \(-0.466223\pi\)
0.994375 0.105916i \(-0.0337775\pi\)
\(858\) −243.688 −0.284018
\(859\) −804.358 804.358i −0.936389 0.936389i 0.0617058 0.998094i \(-0.480346\pi\)
−0.998094 + 0.0617058i \(0.980346\pi\)
\(860\) −428.984 + 428.984i −0.498818 + 0.498818i
\(861\) −161.275 + 161.275i −0.187311 + 0.187311i
\(862\) 666.057 666.057i 0.772688 0.772688i
\(863\) 280.823 + 280.823i 0.325403 + 0.325403i 0.850835 0.525432i \(-0.176096\pi\)
−0.525432 + 0.850835i \(0.676096\pi\)
\(864\) −814.513 −0.942724
\(865\) 61.6029 + 61.6029i 0.0712172 + 0.0712172i
\(866\) 1550.46 + 1550.46i 1.79037 + 1.79037i
\(867\) 95.9870 + 95.9870i 0.110712 + 0.110712i
\(868\) 1271.20 1271.20i 1.46451 1.46451i
\(869\) 41.8715 0.0481835
\(870\) −42.7399 42.7399i −0.0491264 0.0491264i
\(871\) 1685.99i 1.93570i
\(872\) 2366.83 2366.83i 2.71426 2.71426i
\(873\) 708.040 0.811043
\(874\) −449.668 449.668i −0.514494 0.514494i
\(875\) 613.503 613.503i 0.701146 0.701146i
\(876\) −1088.06 −1.24208
\(877\) 193.365 + 193.365i 0.220485 + 0.220485i 0.808703 0.588218i \(-0.200170\pi\)
−0.588218 + 0.808703i \(0.700170\pi\)
\(878\) −2646.97 −3.01478
\(879\) −213.679 213.679i −0.243093 0.243093i
\(880\) 311.894i 0.354425i
\(881\) 186.947i 0.212199i 0.994356 + 0.106099i \(0.0338362\pi\)
−0.994356 + 0.106099i \(0.966164\pi\)
\(882\) 450.061 + 450.061i 0.510273 + 0.510273i
\(883\) −969.474 969.474i −1.09793 1.09793i −0.994652 0.103280i \(-0.967066\pi\)
−0.103280 0.994652i \(-0.532934\pi\)
\(884\) 2272.48i 2.57068i
\(885\) 153.768i 0.173749i
\(886\) −1847.47 + 1847.47i −2.08518 + 2.08518i
\(887\) −268.392 268.392i −0.302584 0.302584i 0.539440 0.842024i \(-0.318636\pi\)
−0.842024 + 0.539440i \(0.818636\pi\)
\(888\) 545.653 0.614474
\(889\) 665.467 0.748557
\(890\) 779.654 779.654i 0.876016 0.876016i
\(891\) 156.647 156.647i 0.175810 0.175810i
\(892\) −2580.20 −2.89260
\(893\) −825.411 −0.924312
\(894\) 323.078 323.078i 0.361385 0.361385i
\(895\) 6.59173i 0.00736506i
\(896\) 173.104 173.104i 0.193196 0.193196i
\(897\) 289.066i 0.322259i
\(898\) −1497.60 1497.60i −1.66770 1.66770i
\(899\) −127.604 + 127.604i −0.141940 + 0.141940i
\(900\) 1534.89i 1.70543i
\(901\) −576.096 576.096i −0.639396 0.639396i
\(902\) 415.226 0.460339
\(903\) 143.172 143.172i 0.158552 0.158552i
\(904\) 1721.01i 1.90378i
\(905\) −321.094 321.094i −0.354800 0.354800i
\(906\) 307.312 307.312i 0.339197 0.339197i
\(907\) 458.963 458.963i 0.506024 0.506024i −0.407280 0.913303i \(-0.633523\pi\)
0.913303 + 0.407280i \(0.133523\pi\)
\(908\) 2195.10 2195.10i 2.41751 2.41751i
\(909\) 497.637i 0.547455i
\(910\) −1037.48 + 1037.48i −1.14009 + 1.14009i
\(911\) 282.359 + 282.359i 0.309944 + 0.309944i 0.844888 0.534944i \(-0.179667\pi\)
−0.534944 + 0.844888i \(0.679667\pi\)
\(912\) 248.062 + 248.062i 0.271997 + 0.271997i
\(913\) 297.465 + 297.465i 0.325811 + 0.325811i
\(914\) −1431.36 + 1431.36i −1.56604 + 1.56604i
\(915\) 191.204i 0.208966i
\(916\) 479.935 + 479.935i 0.523947 + 0.523947i
\(917\) −486.777 486.777i −0.530836 0.530836i
\(918\) 460.061 + 460.061i 0.501156 + 0.501156i
\(919\) 982.147 982.147i 1.06871 1.06871i 0.0712547 0.997458i \(-0.477300\pi\)
0.997458 0.0712547i \(-0.0227003\pi\)
\(920\) 754.460 0.820066
\(921\) 320.822 0.348341
\(922\) 399.416i 0.433206i
\(923\) −1560.58 −1.69077
\(924\) 257.684i 0.278878i
\(925\) 595.474i 0.643755i
\(926\) 1608.24i 1.73676i
\(927\) −26.9259 26.9259i −0.0290463 0.0290463i
\(928\) 303.172 303.172i 0.326694 0.326694i
\(929\) −741.619 741.619i −0.798298 0.798298i 0.184529 0.982827i \(-0.440924\pi\)
−0.982827 + 0.184529i \(0.940924\pi\)
\(930\) 170.207 0.183018
\(931\) 228.016i 0.244915i
\(932\) 2530.41i 2.71503i
\(933\) −209.492 + 209.492i −0.224536 + 0.224536i
\(934\) 1233.19i 1.32034i
\(935\) −69.9467 + 69.9467i −0.0748093 + 0.0748093i
\(936\) 3427.13i 3.66146i
\(937\) 800.634 + 800.634i 0.854466 + 0.854466i 0.990679 0.136214i \(-0.0434934\pi\)
−0.136214 + 0.990679i \(0.543493\pi\)
\(938\) −2531.27 −2.69858
\(939\) −75.5807 75.5807i −0.0804906 0.0804906i
\(940\) 1193.47 1193.47i 1.26964 1.26964i
\(941\) 680.519 680.519i 0.723187 0.723187i −0.246066 0.969253i \(-0.579138\pi\)
0.969253 + 0.246066i \(0.0791381\pi\)
\(942\) −316.870 −0.336380
\(943\) 492.548i 0.522320i
\(944\) −2747.13 −2.91009
\(945\) 295.867i 0.313087i
\(946\) −368.617 −0.389658
\(947\) −835.262 + 835.262i −0.882009 + 0.882009i −0.993739 0.111730i \(-0.964361\pi\)
0.111730 + 0.993739i \(0.464361\pi\)
\(948\) 96.3031i 0.101586i
\(949\) 2651.25i 2.79373i
\(950\) 552.040 552.040i 0.581094 0.581094i
\(951\) 132.011i 0.138813i
\(952\) 1979.51 2.07932
\(953\) −622.090 622.090i −0.652770 0.652770i 0.300889 0.953659i \(-0.402717\pi\)
−0.953659 + 0.300889i \(0.902717\pi\)
\(954\) 1497.44 + 1497.44i 1.56965 + 1.56965i
\(955\) 131.350 131.350i 0.137539 0.137539i
\(956\) 2828.65i 2.95884i
\(957\) 25.8666i 0.0270289i
\(958\) 1577.16 1577.16i 1.64631 1.64631i
\(959\) 783.928 0.817444
\(960\) −103.244 −0.107546
\(961\) 452.829i 0.471206i
\(962\) 2291.61i 2.38213i
\(963\) −806.093 −0.837064
\(964\) 1114.05 1114.05i 1.15565 1.15565i
\(965\) −365.185 + 365.185i −0.378430 + 0.378430i
\(966\) −433.990 −0.449265
\(967\) −527.505 + 527.505i −0.545507 + 0.545507i −0.925138 0.379631i \(-0.876051\pi\)
0.379631 + 0.925138i \(0.376051\pi\)
\(968\) −1547.25 + 1547.25i −1.59840 + 1.59840i
\(969\) 111.263i 0.114822i
\(970\) 736.412 0.759187
\(971\) 760.995 760.995i 0.783723 0.783723i −0.196734 0.980457i \(-0.563034\pi\)
0.980457 + 0.196734i \(0.0630335\pi\)
\(972\) −1282.45 1282.45i −1.31940 1.31940i
\(973\) 630.462 630.462i 0.647956 0.647956i
\(974\) −1194.55 1194.55i −1.22644 1.22644i
\(975\) 354.875 0.363974
\(976\) −3415.94 −3.49994
\(977\) −182.319 + 182.319i −0.186611 + 0.186611i −0.794229 0.607618i \(-0.792125\pi\)
0.607618 + 0.794229i \(0.292125\pi\)
\(978\) −643.598 −0.658076
\(979\) 471.854 0.481976
\(980\) 329.689 + 329.689i 0.336418 + 0.336418i
\(981\) 1353.16 1.37937
\(982\) −284.154 284.154i −0.289362 0.289362i
\(983\) −23.0869 23.0869i −0.0234862 0.0234862i 0.695266 0.718752i \(-0.255286\pi\)
−0.718752 + 0.695266i \(0.755286\pi\)
\(984\) 554.090i 0.563100i
\(985\) 451.221 + 77.9915i 0.458093 + 0.0791792i
\(986\) −342.481 −0.347343
\(987\) −398.316 + 398.316i −0.403562 + 0.403562i
\(988\) −1496.31 + 1496.31i −1.51448 + 1.51448i
\(989\) 437.260i 0.442123i
\(990\) 181.812 181.812i 0.183649 0.183649i
\(991\) 962.512i 0.971253i 0.874166 + 0.485627i \(0.161409\pi\)
−0.874166 + 0.485627i \(0.838591\pi\)
\(992\) 1207.35i 1.21708i
\(993\) −63.0428 63.0428i −0.0634872 0.0634872i
\(994\) 2342.97i 2.35712i
\(995\) 525.050i 0.527688i
\(996\) 684.161 684.161i 0.686908 0.686908i
\(997\) −209.635 209.635i −0.210266 0.210266i 0.594114 0.804380i \(-0.297503\pi\)
−0.804380 + 0.594114i \(0.797503\pi\)
\(998\) −1066.75 + 1066.75i −1.06889 + 1.06889i
\(999\) 326.759 + 326.759i 0.327086 + 0.327086i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.3.c.a.14.2 64
197.183 odd 4 inner 197.3.c.a.183.2 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.3.c.a.14.2 64 1.1 even 1 trivial
197.3.c.a.183.2 yes 64 197.183 odd 4 inner