Properties

Label 197.4.a.b.1.27
Level $197$
Weight $4$
Character 197.1
Self dual yes
Analytic conductor $11.623$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.27
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.29462 q^{2} +2.94855 q^{3} +20.0330 q^{4} -9.33457 q^{5} +15.6115 q^{6} +18.0311 q^{7} +63.7099 q^{8} -18.3060 q^{9} -49.4229 q^{10} -4.05739 q^{11} +59.0683 q^{12} +69.1707 q^{13} +95.4676 q^{14} -27.5235 q^{15} +177.056 q^{16} -71.9052 q^{17} -96.9234 q^{18} -14.1894 q^{19} -186.999 q^{20} +53.1656 q^{21} -21.4823 q^{22} -42.4299 q^{23} +187.852 q^{24} -37.8659 q^{25} +366.233 q^{26} -133.587 q^{27} +361.216 q^{28} -71.4476 q^{29} -145.726 q^{30} +80.1079 q^{31} +427.764 q^{32} -11.9634 q^{33} -380.710 q^{34} -168.312 q^{35} -366.724 q^{36} -42.2617 q^{37} -75.1275 q^{38} +203.954 q^{39} -594.705 q^{40} -378.750 q^{41} +281.492 q^{42} -157.510 q^{43} -81.2815 q^{44} +170.879 q^{45} -224.650 q^{46} +286.857 q^{47} +522.059 q^{48} -17.8803 q^{49} -200.485 q^{50} -212.016 q^{51} +1385.70 q^{52} +543.696 q^{53} -707.293 q^{54} +37.8740 q^{55} +1148.76 q^{56} -41.8382 q^{57} -378.288 q^{58} -709.668 q^{59} -551.377 q^{60} +697.029 q^{61} +424.141 q^{62} -330.077 q^{63} +848.398 q^{64} -645.679 q^{65} -63.3418 q^{66} -148.766 q^{67} -1440.47 q^{68} -125.107 q^{69} -891.149 q^{70} -120.024 q^{71} -1166.28 q^{72} +1099.31 q^{73} -223.759 q^{74} -111.650 q^{75} -284.256 q^{76} -73.1591 q^{77} +1079.86 q^{78} +641.422 q^{79} -1652.74 q^{80} +100.373 q^{81} -2005.34 q^{82} -1036.30 q^{83} +1065.06 q^{84} +671.203 q^{85} -833.956 q^{86} -210.667 q^{87} -258.496 q^{88} +1308.32 q^{89} +904.738 q^{90} +1247.22 q^{91} -849.997 q^{92} +236.203 q^{93} +1518.80 q^{94} +132.452 q^{95} +1261.29 q^{96} +1133.62 q^{97} -94.6693 q^{98} +74.2747 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q + 4 q^{2} + 32 q^{3} + 128 q^{4} + 29 q^{5} + 36 q^{6} + 122 q^{7} + 27 q^{8} + 287 q^{9} + 127 q^{10} + 98 q^{11} + 256 q^{12} + 193 q^{13} + 113 q^{14} + 194 q^{15} + 672 q^{16} + 124 q^{17} + 61 q^{18}+ \cdots + 1940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.29462 1.87193 0.935965 0.352094i \(-0.114530\pi\)
0.935965 + 0.352094i \(0.114530\pi\)
\(3\) 2.94855 0.567450 0.283725 0.958906i \(-0.408430\pi\)
0.283725 + 0.958906i \(0.408430\pi\)
\(4\) 20.0330 2.50412
\(5\) −9.33457 −0.834909 −0.417454 0.908698i \(-0.637078\pi\)
−0.417454 + 0.908698i \(0.637078\pi\)
\(6\) 15.6115 1.06223
\(7\) 18.0311 0.973587 0.486793 0.873517i \(-0.338166\pi\)
0.486793 + 0.873517i \(0.338166\pi\)
\(8\) 63.7099 2.81561
\(9\) −18.3060 −0.678001
\(10\) −49.4229 −1.56289
\(11\) −4.05739 −0.111214 −0.0556068 0.998453i \(-0.517709\pi\)
−0.0556068 + 0.998453i \(0.517709\pi\)
\(12\) 59.0683 1.42096
\(13\) 69.1707 1.47573 0.737866 0.674947i \(-0.235834\pi\)
0.737866 + 0.674947i \(0.235834\pi\)
\(14\) 95.4676 1.82249
\(15\) −27.5235 −0.473769
\(16\) 177.056 2.76650
\(17\) −71.9052 −1.02586 −0.512928 0.858431i \(-0.671439\pi\)
−0.512928 + 0.858431i \(0.671439\pi\)
\(18\) −96.9234 −1.26917
\(19\) −14.1894 −0.171330 −0.0856651 0.996324i \(-0.527302\pi\)
−0.0856651 + 0.996324i \(0.527302\pi\)
\(20\) −186.999 −2.09071
\(21\) 53.1656 0.552461
\(22\) −21.4823 −0.208184
\(23\) −42.4299 −0.384663 −0.192332 0.981330i \(-0.561605\pi\)
−0.192332 + 0.981330i \(0.561605\pi\)
\(24\) 187.852 1.59772
\(25\) −37.8659 −0.302927
\(26\) 366.233 2.76247
\(27\) −133.587 −0.952181
\(28\) 361.216 2.43798
\(29\) −71.4476 −0.457500 −0.228750 0.973485i \(-0.573464\pi\)
−0.228750 + 0.973485i \(0.573464\pi\)
\(30\) −145.726 −0.886862
\(31\) 80.1079 0.464123 0.232061 0.972701i \(-0.425453\pi\)
0.232061 + 0.972701i \(0.425453\pi\)
\(32\) 427.764 2.36308
\(33\) −11.9634 −0.0631081
\(34\) −380.710 −1.92033
\(35\) −168.312 −0.812856
\(36\) −366.724 −1.69780
\(37\) −42.2617 −0.187778 −0.0938889 0.995583i \(-0.529930\pi\)
−0.0938889 + 0.995583i \(0.529930\pi\)
\(38\) −75.1275 −0.320718
\(39\) 203.954 0.837403
\(40\) −594.705 −2.35078
\(41\) −378.750 −1.44270 −0.721351 0.692569i \(-0.756479\pi\)
−0.721351 + 0.692569i \(0.756479\pi\)
\(42\) 281.492 1.03417
\(43\) −157.510 −0.558606 −0.279303 0.960203i \(-0.590103\pi\)
−0.279303 + 0.960203i \(0.590103\pi\)
\(44\) −81.2815 −0.278492
\(45\) 170.879 0.566069
\(46\) −224.650 −0.720062
\(47\) 286.857 0.890263 0.445132 0.895465i \(-0.353157\pi\)
0.445132 + 0.895465i \(0.353157\pi\)
\(48\) 522.059 1.56985
\(49\) −17.8803 −0.0521291
\(50\) −200.485 −0.567058
\(51\) −212.016 −0.582122
\(52\) 1385.70 3.69541
\(53\) 543.696 1.40910 0.704551 0.709654i \(-0.251149\pi\)
0.704551 + 0.709654i \(0.251149\pi\)
\(54\) −707.293 −1.78242
\(55\) 37.8740 0.0928532
\(56\) 1148.76 2.74124
\(57\) −41.8382 −0.0972212
\(58\) −378.288 −0.856407
\(59\) −709.668 −1.56595 −0.782974 0.622055i \(-0.786298\pi\)
−0.782974 + 0.622055i \(0.786298\pi\)
\(60\) −551.377 −1.18637
\(61\) 697.029 1.46304 0.731520 0.681820i \(-0.238811\pi\)
0.731520 + 0.681820i \(0.238811\pi\)
\(62\) 424.141 0.868805
\(63\) −330.077 −0.660093
\(64\) 848.398 1.65703
\(65\) −645.679 −1.23210
\(66\) −63.3418 −0.118134
\(67\) −148.766 −0.271263 −0.135632 0.990759i \(-0.543306\pi\)
−0.135632 + 0.990759i \(0.543306\pi\)
\(68\) −1440.47 −2.56887
\(69\) −125.107 −0.218277
\(70\) −891.149 −1.52161
\(71\) −120.024 −0.200623 −0.100312 0.994956i \(-0.531984\pi\)
−0.100312 + 0.994956i \(0.531984\pi\)
\(72\) −1166.28 −1.90898
\(73\) 1099.31 1.76253 0.881263 0.472626i \(-0.156694\pi\)
0.881263 + 0.472626i \(0.156694\pi\)
\(74\) −223.759 −0.351507
\(75\) −111.650 −0.171896
\(76\) −284.256 −0.429031
\(77\) −73.1591 −0.108276
\(78\) 1079.86 1.56756
\(79\) 641.422 0.913489 0.456745 0.889598i \(-0.349015\pi\)
0.456745 + 0.889598i \(0.349015\pi\)
\(80\) −1652.74 −2.30977
\(81\) 100.373 0.137686
\(82\) −2005.34 −2.70064
\(83\) −1036.30 −1.37046 −0.685232 0.728325i \(-0.740299\pi\)
−0.685232 + 0.728325i \(0.740299\pi\)
\(84\) 1065.06 1.38343
\(85\) 671.203 0.856497
\(86\) −833.956 −1.04567
\(87\) −210.667 −0.259608
\(88\) −258.496 −0.313134
\(89\) 1308.32 1.55822 0.779112 0.626885i \(-0.215670\pi\)
0.779112 + 0.626885i \(0.215670\pi\)
\(90\) 904.738 1.05964
\(91\) 1247.22 1.43675
\(92\) −849.997 −0.963243
\(93\) 236.203 0.263366
\(94\) 1518.80 1.66651
\(95\) 132.452 0.143045
\(96\) 1261.29 1.34093
\(97\) 1133.62 1.18662 0.593310 0.804974i \(-0.297821\pi\)
0.593310 + 0.804974i \(0.297821\pi\)
\(98\) −94.6693 −0.0975821
\(99\) 74.2747 0.0754029
\(100\) −758.566 −0.758566
\(101\) −620.803 −0.611606 −0.305803 0.952095i \(-0.598925\pi\)
−0.305803 + 0.952095i \(0.598925\pi\)
\(102\) −1122.54 −1.08969
\(103\) 150.910 0.144365 0.0721824 0.997391i \(-0.477004\pi\)
0.0721824 + 0.997391i \(0.477004\pi\)
\(104\) 4406.86 4.15508
\(105\) −496.278 −0.461255
\(106\) 2878.66 2.63774
\(107\) −1234.84 −1.11567 −0.557835 0.829952i \(-0.688368\pi\)
−0.557835 + 0.829952i \(0.688368\pi\)
\(108\) −2676.15 −2.38438
\(109\) −1255.65 −1.10339 −0.551694 0.834047i \(-0.686018\pi\)
−0.551694 + 0.834047i \(0.686018\pi\)
\(110\) 200.528 0.173815
\(111\) −124.611 −0.106554
\(112\) 3192.51 2.69343
\(113\) 793.103 0.660256 0.330128 0.943936i \(-0.392908\pi\)
0.330128 + 0.943936i \(0.392908\pi\)
\(114\) −221.517 −0.181991
\(115\) 396.065 0.321159
\(116\) −1431.31 −1.14563
\(117\) −1266.24 −1.00055
\(118\) −3757.42 −2.93134
\(119\) −1296.53 −0.998760
\(120\) −1753.52 −1.33395
\(121\) −1314.54 −0.987632
\(122\) 3690.50 2.73871
\(123\) −1116.77 −0.818661
\(124\) 1604.80 1.16222
\(125\) 1520.28 1.08783
\(126\) −1747.63 −1.23565
\(127\) −462.966 −0.323477 −0.161738 0.986834i \(-0.551710\pi\)
−0.161738 + 0.986834i \(0.551710\pi\)
\(128\) 1069.83 0.738755
\(129\) −464.427 −0.316981
\(130\) −3418.62 −2.30641
\(131\) 1012.79 0.675480 0.337740 0.941240i \(-0.390338\pi\)
0.337740 + 0.941240i \(0.390338\pi\)
\(132\) −239.663 −0.158030
\(133\) −255.850 −0.166805
\(134\) −787.658 −0.507786
\(135\) 1246.98 0.794984
\(136\) −4581.07 −2.88841
\(137\) −228.045 −0.142213 −0.0711066 0.997469i \(-0.522653\pi\)
−0.0711066 + 0.997469i \(0.522653\pi\)
\(138\) −662.394 −0.408599
\(139\) 3185.35 1.94373 0.971864 0.235543i \(-0.0756867\pi\)
0.971864 + 0.235543i \(0.0756867\pi\)
\(140\) −3371.79 −2.03549
\(141\) 845.813 0.505180
\(142\) −635.482 −0.375553
\(143\) −280.653 −0.164121
\(144\) −3241.19 −1.87569
\(145\) 666.932 0.381971
\(146\) 5820.42 3.29933
\(147\) −52.7210 −0.0295807
\(148\) −846.627 −0.470218
\(149\) 3379.30 1.85801 0.929003 0.370071i \(-0.120667\pi\)
0.929003 + 0.370071i \(0.120667\pi\)
\(150\) −591.142 −0.321777
\(151\) −668.749 −0.360411 −0.180205 0.983629i \(-0.557676\pi\)
−0.180205 + 0.983629i \(0.557676\pi\)
\(152\) −904.006 −0.482399
\(153\) 1316.30 0.695532
\(154\) −387.349 −0.202685
\(155\) −747.773 −0.387500
\(156\) 4085.80 2.09696
\(157\) −1534.41 −0.779997 −0.389999 0.920815i \(-0.627525\pi\)
−0.389999 + 0.920815i \(0.627525\pi\)
\(158\) 3396.09 1.70999
\(159\) 1603.12 0.799594
\(160\) −3992.99 −1.97296
\(161\) −765.057 −0.374503
\(162\) 531.438 0.257739
\(163\) −3198.04 −1.53675 −0.768374 0.640001i \(-0.778934\pi\)
−0.768374 + 0.640001i \(0.778934\pi\)
\(164\) −7587.49 −3.61270
\(165\) 111.673 0.0526895
\(166\) −5486.80 −2.56541
\(167\) 2983.50 1.38245 0.691227 0.722637i \(-0.257070\pi\)
0.691227 + 0.722637i \(0.257070\pi\)
\(168\) 3387.18 1.55551
\(169\) 2587.59 1.17778
\(170\) 3553.76 1.60330
\(171\) 259.752 0.116162
\(172\) −3155.40 −1.39882
\(173\) −554.568 −0.243717 −0.121859 0.992547i \(-0.538885\pi\)
−0.121859 + 0.992547i \(0.538885\pi\)
\(174\) −1115.40 −0.485968
\(175\) −682.763 −0.294926
\(176\) −718.385 −0.307672
\(177\) −2092.50 −0.888596
\(178\) 6927.07 2.91689
\(179\) −288.419 −0.120433 −0.0602163 0.998185i \(-0.519179\pi\)
−0.0602163 + 0.998185i \(0.519179\pi\)
\(180\) 3423.21 1.41751
\(181\) −556.784 −0.228649 −0.114324 0.993443i \(-0.536470\pi\)
−0.114324 + 0.993443i \(0.536470\pi\)
\(182\) 6603.57 2.68950
\(183\) 2055.23 0.830201
\(184\) −2703.21 −1.08306
\(185\) 394.494 0.156777
\(186\) 1250.60 0.493003
\(187\) 291.747 0.114089
\(188\) 5746.59 2.22933
\(189\) −2408.72 −0.927031
\(190\) 701.282 0.267770
\(191\) 3369.03 1.27631 0.638153 0.769910i \(-0.279699\pi\)
0.638153 + 0.769910i \(0.279699\pi\)
\(192\) 2501.55 0.940280
\(193\) 1299.26 0.484574 0.242287 0.970205i \(-0.422102\pi\)
0.242287 + 0.970205i \(0.422102\pi\)
\(194\) 6002.11 2.22127
\(195\) −1903.82 −0.699156
\(196\) −358.195 −0.130538
\(197\) −197.000 −0.0712470
\(198\) 393.256 0.141149
\(199\) 5005.03 1.78290 0.891451 0.453118i \(-0.149688\pi\)
0.891451 + 0.453118i \(0.149688\pi\)
\(200\) −2412.43 −0.852924
\(201\) −438.644 −0.153928
\(202\) −3286.91 −1.14488
\(203\) −1288.28 −0.445415
\(204\) −4247.31 −1.45770
\(205\) 3535.47 1.20453
\(206\) 799.009 0.270241
\(207\) 776.723 0.260802
\(208\) 12247.1 4.08261
\(209\) 57.5719 0.0190542
\(210\) −2627.60 −0.863437
\(211\) 2362.15 0.770698 0.385349 0.922771i \(-0.374081\pi\)
0.385349 + 0.922771i \(0.374081\pi\)
\(212\) 10891.8 3.52856
\(213\) −353.898 −0.113844
\(214\) −6538.01 −2.08845
\(215\) 1470.29 0.466385
\(216\) −8510.84 −2.68097
\(217\) 1444.43 0.451864
\(218\) −6648.18 −2.06546
\(219\) 3241.37 1.00014
\(220\) 758.728 0.232516
\(221\) −4973.73 −1.51389
\(222\) −659.767 −0.199462
\(223\) 2327.09 0.698806 0.349403 0.936973i \(-0.386384\pi\)
0.349403 + 0.936973i \(0.386384\pi\)
\(224\) 7713.04 2.30067
\(225\) 693.174 0.205385
\(226\) 4199.18 1.23595
\(227\) 4923.79 1.43966 0.719832 0.694148i \(-0.244219\pi\)
0.719832 + 0.694148i \(0.244219\pi\)
\(228\) −838.144 −0.243454
\(229\) −499.330 −0.144090 −0.0720451 0.997401i \(-0.522953\pi\)
−0.0720451 + 0.997401i \(0.522953\pi\)
\(230\) 2097.01 0.601187
\(231\) −215.714 −0.0614412
\(232\) −4551.92 −1.28814
\(233\) −5763.06 −1.62039 −0.810195 0.586161i \(-0.800639\pi\)
−0.810195 + 0.586161i \(0.800639\pi\)
\(234\) −6704.26 −1.87295
\(235\) −2677.68 −0.743289
\(236\) −14216.8 −3.92132
\(237\) 1891.27 0.518359
\(238\) −6864.61 −1.86961
\(239\) 1756.24 0.475320 0.237660 0.971348i \(-0.423620\pi\)
0.237660 + 0.971348i \(0.423620\pi\)
\(240\) −4873.20 −1.31068
\(241\) −3771.03 −1.00794 −0.503970 0.863721i \(-0.668128\pi\)
−0.503970 + 0.863721i \(0.668128\pi\)
\(242\) −6959.97 −1.84878
\(243\) 3902.81 1.03031
\(244\) 13963.6 3.66363
\(245\) 166.905 0.0435231
\(246\) −5912.84 −1.53248
\(247\) −981.492 −0.252837
\(248\) 5103.67 1.30679
\(249\) −3055.58 −0.777669
\(250\) 8049.31 2.03633
\(251\) −1425.89 −0.358572 −0.179286 0.983797i \(-0.557379\pi\)
−0.179286 + 0.983797i \(0.557379\pi\)
\(252\) −6612.43 −1.65295
\(253\) 172.155 0.0427798
\(254\) −2451.23 −0.605526
\(255\) 1979.08 0.486019
\(256\) −1122.84 −0.274130
\(257\) −693.244 −0.168262 −0.0841311 0.996455i \(-0.526811\pi\)
−0.0841311 + 0.996455i \(0.526811\pi\)
\(258\) −2458.96 −0.593366
\(259\) −762.023 −0.182818
\(260\) −12934.9 −3.08533
\(261\) 1307.92 0.310185
\(262\) 5362.33 1.26445
\(263\) −4031.93 −0.945321 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(264\) −762.190 −0.177688
\(265\) −5075.17 −1.17647
\(266\) −1354.63 −0.312247
\(267\) 3857.66 0.884213
\(268\) −2980.22 −0.679276
\(269\) 6789.40 1.53887 0.769437 0.638723i \(-0.220537\pi\)
0.769437 + 0.638723i \(0.220537\pi\)
\(270\) 6602.28 1.48815
\(271\) −8700.77 −1.95031 −0.975155 0.221524i \(-0.928897\pi\)
−0.975155 + 0.221524i \(0.928897\pi\)
\(272\) −12731.2 −2.83803
\(273\) 3677.51 0.815285
\(274\) −1207.41 −0.266213
\(275\) 153.637 0.0336896
\(276\) −2506.26 −0.546592
\(277\) −7379.87 −1.60077 −0.800385 0.599486i \(-0.795372\pi\)
−0.800385 + 0.599486i \(0.795372\pi\)
\(278\) 16865.2 3.63852
\(279\) −1466.46 −0.314676
\(280\) −10723.2 −2.28868
\(281\) −1700.09 −0.360921 −0.180461 0.983582i \(-0.557759\pi\)
−0.180461 + 0.983582i \(0.557759\pi\)
\(282\) 4478.26 0.945661
\(283\) 6412.86 1.34701 0.673507 0.739181i \(-0.264787\pi\)
0.673507 + 0.739181i \(0.264787\pi\)
\(284\) −2404.44 −0.502385
\(285\) 390.542 0.0811709
\(286\) −1485.95 −0.307224
\(287\) −6829.27 −1.40460
\(288\) −7830.66 −1.60217
\(289\) 257.351 0.0523816
\(290\) 3531.15 0.715022
\(291\) 3342.55 0.673347
\(292\) 22022.4 4.41358
\(293\) 5779.05 1.15227 0.576136 0.817354i \(-0.304560\pi\)
0.576136 + 0.817354i \(0.304560\pi\)
\(294\) −279.138 −0.0553729
\(295\) 6624.44 1.30742
\(296\) −2692.49 −0.528708
\(297\) 542.016 0.105895
\(298\) 17892.1 3.47806
\(299\) −2934.91 −0.567660
\(300\) −2236.67 −0.430448
\(301\) −2840.08 −0.543852
\(302\) −3540.77 −0.674663
\(303\) −1830.47 −0.347055
\(304\) −2512.32 −0.473985
\(305\) −6506.46 −1.22151
\(306\) 6969.29 1.30199
\(307\) −6036.78 −1.12227 −0.561136 0.827724i \(-0.689635\pi\)
−0.561136 + 0.827724i \(0.689635\pi\)
\(308\) −1465.59 −0.271136
\(309\) 444.965 0.0819197
\(310\) −3959.17 −0.725373
\(311\) −3061.92 −0.558281 −0.279141 0.960250i \(-0.590050\pi\)
−0.279141 + 0.960250i \(0.590050\pi\)
\(312\) 12993.9 2.35780
\(313\) −4879.17 −0.881108 −0.440554 0.897726i \(-0.645218\pi\)
−0.440554 + 0.897726i \(0.645218\pi\)
\(314\) −8124.13 −1.46010
\(315\) 3081.13 0.551117
\(316\) 12849.6 2.28749
\(317\) −10748.1 −1.90433 −0.952165 0.305585i \(-0.901148\pi\)
−0.952165 + 0.305585i \(0.901148\pi\)
\(318\) 8487.89 1.49678
\(319\) 289.891 0.0508801
\(320\) −7919.43 −1.38347
\(321\) −3641.00 −0.633086
\(322\) −4050.69 −0.701043
\(323\) 1020.29 0.175760
\(324\) 2010.77 0.344783
\(325\) −2619.21 −0.447039
\(326\) −16932.4 −2.87668
\(327\) −3702.35 −0.626117
\(328\) −24130.1 −4.06209
\(329\) 5172.34 0.866748
\(330\) 591.268 0.0986310
\(331\) 7559.89 1.25538 0.627688 0.778465i \(-0.284001\pi\)
0.627688 + 0.778465i \(0.284001\pi\)
\(332\) −20760.1 −3.43181
\(333\) 773.643 0.127313
\(334\) 15796.5 2.58786
\(335\) 1388.66 0.226480
\(336\) 9413.29 1.52838
\(337\) −5154.75 −0.833227 −0.416613 0.909084i \(-0.636783\pi\)
−0.416613 + 0.909084i \(0.636783\pi\)
\(338\) 13700.3 2.20473
\(339\) 2338.51 0.374662
\(340\) 13446.2 2.14477
\(341\) −325.029 −0.0516167
\(342\) 1375.29 0.217447
\(343\) −6507.06 −1.02434
\(344\) −10035.0 −1.57282
\(345\) 1167.82 0.182241
\(346\) −2936.23 −0.456221
\(347\) −10446.8 −1.61618 −0.808092 0.589057i \(-0.799499\pi\)
−0.808092 + 0.589057i \(0.799499\pi\)
\(348\) −4220.29 −0.650090
\(349\) 842.221 0.129178 0.0645889 0.997912i \(-0.479426\pi\)
0.0645889 + 0.997912i \(0.479426\pi\)
\(350\) −3614.97 −0.552080
\(351\) −9240.33 −1.40516
\(352\) −1735.60 −0.262807
\(353\) −3595.84 −0.542174 −0.271087 0.962555i \(-0.587383\pi\)
−0.271087 + 0.962555i \(0.587383\pi\)
\(354\) −11079.0 −1.66339
\(355\) 1120.37 0.167502
\(356\) 26209.6 3.90198
\(357\) −3822.88 −0.566746
\(358\) −1527.07 −0.225441
\(359\) −8095.55 −1.19016 −0.595079 0.803667i \(-0.702879\pi\)
−0.595079 + 0.803667i \(0.702879\pi\)
\(360\) 10886.7 1.59383
\(361\) −6657.66 −0.970646
\(362\) −2947.96 −0.428014
\(363\) −3875.99 −0.560431
\(364\) 24985.6 3.59780
\(365\) −10261.6 −1.47155
\(366\) 10881.6 1.55408
\(367\) −5170.03 −0.735350 −0.367675 0.929954i \(-0.619846\pi\)
−0.367675 + 0.929954i \(0.619846\pi\)
\(368\) −7512.47 −1.06417
\(369\) 6933.41 0.978154
\(370\) 2088.70 0.293476
\(371\) 9803.42 1.37188
\(372\) 4731.84 0.659501
\(373\) 5606.06 0.778205 0.389103 0.921194i \(-0.372785\pi\)
0.389103 + 0.921194i \(0.372785\pi\)
\(374\) 1544.69 0.213567
\(375\) 4482.64 0.617286
\(376\) 18275.6 2.50663
\(377\) −4942.08 −0.675147
\(378\) −12753.3 −1.73534
\(379\) 5523.87 0.748659 0.374330 0.927296i \(-0.377873\pi\)
0.374330 + 0.927296i \(0.377873\pi\)
\(380\) 2653.41 0.358202
\(381\) −1365.08 −0.183557
\(382\) 17837.7 2.38915
\(383\) −9491.97 −1.26636 −0.633182 0.774003i \(-0.718251\pi\)
−0.633182 + 0.774003i \(0.718251\pi\)
\(384\) 3154.46 0.419206
\(385\) 682.908 0.0904006
\(386\) 6879.08 0.907088
\(387\) 2883.38 0.378736
\(388\) 22709.9 2.97144
\(389\) 8344.60 1.08763 0.543815 0.839205i \(-0.316979\pi\)
0.543815 + 0.839205i \(0.316979\pi\)
\(390\) −10080.0 −1.30877
\(391\) 3050.93 0.394609
\(392\) −1139.15 −0.146775
\(393\) 2986.27 0.383301
\(394\) −1043.04 −0.133369
\(395\) −5987.40 −0.762680
\(396\) 1487.94 0.188818
\(397\) 2024.81 0.255975 0.127988 0.991776i \(-0.459148\pi\)
0.127988 + 0.991776i \(0.459148\pi\)
\(398\) 26499.7 3.33747
\(399\) −754.389 −0.0946533
\(400\) −6704.38 −0.838047
\(401\) −4974.85 −0.619532 −0.309766 0.950813i \(-0.600251\pi\)
−0.309766 + 0.950813i \(0.600251\pi\)
\(402\) −2322.45 −0.288143
\(403\) 5541.12 0.684921
\(404\) −12436.5 −1.53153
\(405\) −936.941 −0.114955
\(406\) −6820.93 −0.833786
\(407\) 171.472 0.0208834
\(408\) −13507.5 −1.63903
\(409\) −1716.52 −0.207522 −0.103761 0.994602i \(-0.533088\pi\)
−0.103761 + 0.994602i \(0.533088\pi\)
\(410\) 18718.9 2.25479
\(411\) −672.403 −0.0806988
\(412\) 3023.17 0.361507
\(413\) −12796.1 −1.52459
\(414\) 4112.45 0.488203
\(415\) 9673.39 1.14421
\(416\) 29588.7 3.48728
\(417\) 9392.19 1.10297
\(418\) 304.821 0.0356682
\(419\) −6697.71 −0.780918 −0.390459 0.920620i \(-0.627684\pi\)
−0.390459 + 0.920620i \(0.627684\pi\)
\(420\) −9941.92 −1.15504
\(421\) 9411.47 1.08952 0.544759 0.838593i \(-0.316621\pi\)
0.544759 + 0.838593i \(0.316621\pi\)
\(422\) 12506.7 1.44269
\(423\) −5251.21 −0.603599
\(424\) 34638.8 3.96748
\(425\) 2722.75 0.310760
\(426\) −1873.75 −0.213107
\(427\) 12568.2 1.42440
\(428\) −24737.5 −2.79377
\(429\) −827.520 −0.0931306
\(430\) 7784.62 0.873041
\(431\) 1139.75 0.127378 0.0636892 0.997970i \(-0.479713\pi\)
0.0636892 + 0.997970i \(0.479713\pi\)
\(432\) −23652.4 −2.63421
\(433\) 537.848 0.0596936 0.0298468 0.999554i \(-0.490498\pi\)
0.0298468 + 0.999554i \(0.490498\pi\)
\(434\) 7647.71 0.845857
\(435\) 1966.49 0.216749
\(436\) −25154.4 −2.76302
\(437\) 602.056 0.0659044
\(438\) 17161.8 1.87220
\(439\) −2870.16 −0.312039 −0.156020 0.987754i \(-0.549866\pi\)
−0.156020 + 0.987754i \(0.549866\pi\)
\(440\) 2412.95 0.261438
\(441\) 327.317 0.0353436
\(442\) −26334.0 −2.83389
\(443\) 7916.90 0.849082 0.424541 0.905409i \(-0.360436\pi\)
0.424541 + 0.905409i \(0.360436\pi\)
\(444\) −2496.32 −0.266825
\(445\) −12212.6 −1.30097
\(446\) 12321.1 1.30812
\(447\) 9964.05 1.05433
\(448\) 15297.5 1.61326
\(449\) −13391.9 −1.40758 −0.703792 0.710407i \(-0.748511\pi\)
−0.703792 + 0.710407i \(0.748511\pi\)
\(450\) 3670.09 0.384466
\(451\) 1536.74 0.160448
\(452\) 15888.2 1.65336
\(453\) −1971.84 −0.204515
\(454\) 26069.6 2.69495
\(455\) −11642.3 −1.19956
\(456\) −2665.51 −0.273737
\(457\) 3193.74 0.326908 0.163454 0.986551i \(-0.447736\pi\)
0.163454 + 0.986551i \(0.447736\pi\)
\(458\) −2643.76 −0.269727
\(459\) 9605.61 0.976801
\(460\) 7934.36 0.804220
\(461\) 10163.1 1.02677 0.513387 0.858157i \(-0.328390\pi\)
0.513387 + 0.858157i \(0.328390\pi\)
\(462\) −1142.12 −0.115014
\(463\) −16399.4 −1.64610 −0.823051 0.567968i \(-0.807730\pi\)
−0.823051 + 0.567968i \(0.807730\pi\)
\(464\) −12650.2 −1.26567
\(465\) −2204.85 −0.219887
\(466\) −30513.2 −3.03325
\(467\) −2083.20 −0.206422 −0.103211 0.994659i \(-0.532912\pi\)
−0.103211 + 0.994659i \(0.532912\pi\)
\(468\) −25366.6 −2.50549
\(469\) −2682.41 −0.264098
\(470\) −14177.3 −1.39138
\(471\) −4524.30 −0.442609
\(472\) −45212.9 −4.40909
\(473\) 639.080 0.0621246
\(474\) 10013.5 0.970332
\(475\) 537.294 0.0519005
\(476\) −25973.3 −2.50102
\(477\) −9952.91 −0.955372
\(478\) 9298.60 0.889766
\(479\) −1493.90 −0.142501 −0.0712503 0.997458i \(-0.522699\pi\)
−0.0712503 + 0.997458i \(0.522699\pi\)
\(480\) −11773.5 −1.11956
\(481\) −2923.27 −0.277110
\(482\) −19966.2 −1.88679
\(483\) −2255.81 −0.212512
\(484\) −26334.1 −2.47315
\(485\) −10581.9 −0.990720
\(486\) 20663.9 1.92867
\(487\) 14720.7 1.36973 0.684865 0.728670i \(-0.259861\pi\)
0.684865 + 0.728670i \(0.259861\pi\)
\(488\) 44407.7 4.11935
\(489\) −9429.60 −0.872027
\(490\) 883.697 0.0814721
\(491\) 11111.7 1.02131 0.510656 0.859785i \(-0.329402\pi\)
0.510656 + 0.859785i \(0.329402\pi\)
\(492\) −22372.1 −2.05003
\(493\) 5137.45 0.469329
\(494\) −5196.62 −0.473294
\(495\) −693.322 −0.0629545
\(496\) 14183.6 1.28400
\(497\) −2164.17 −0.195324
\(498\) −16178.1 −1.45574
\(499\) 6406.98 0.574781 0.287390 0.957814i \(-0.407212\pi\)
0.287390 + 0.957814i \(0.407212\pi\)
\(500\) 30455.8 2.72405
\(501\) 8797.00 0.784473
\(502\) −7549.56 −0.671222
\(503\) 16931.4 1.50086 0.750432 0.660947i \(-0.229845\pi\)
0.750432 + 0.660947i \(0.229845\pi\)
\(504\) −21029.2 −1.85856
\(505\) 5794.92 0.510635
\(506\) 911.493 0.0800807
\(507\) 7629.66 0.668333
\(508\) −9274.57 −0.810025
\(509\) −1272.26 −0.110789 −0.0553947 0.998465i \(-0.517642\pi\)
−0.0553947 + 0.998465i \(0.517642\pi\)
\(510\) 10478.5 0.909793
\(511\) 19821.7 1.71597
\(512\) −14503.6 −1.25191
\(513\) 1895.52 0.163137
\(514\) −3670.46 −0.314975
\(515\) −1408.68 −0.120531
\(516\) −9303.86 −0.793759
\(517\) −1163.89 −0.0990093
\(518\) −4034.62 −0.342222
\(519\) −1635.18 −0.138297
\(520\) −41136.2 −3.46911
\(521\) 5329.98 0.448197 0.224099 0.974566i \(-0.428056\pi\)
0.224099 + 0.974566i \(0.428056\pi\)
\(522\) 6924.94 0.580645
\(523\) −2352.66 −0.196701 −0.0983506 0.995152i \(-0.531357\pi\)
−0.0983506 + 0.995152i \(0.531357\pi\)
\(524\) 20289.2 1.69148
\(525\) −2013.16 −0.167355
\(526\) −21347.5 −1.76957
\(527\) −5760.17 −0.476123
\(528\) −2118.20 −0.174588
\(529\) −10366.7 −0.852034
\(530\) −26871.1 −2.20227
\(531\) 12991.2 1.06171
\(532\) −5125.44 −0.417699
\(533\) −26198.4 −2.12904
\(534\) 20424.8 1.65519
\(535\) 11526.7 0.931482
\(536\) −9477.86 −0.763771
\(537\) −850.419 −0.0683394
\(538\) 35947.3 2.88066
\(539\) 72.5473 0.00579747
\(540\) 24980.7 1.99074
\(541\) 446.967 0.0355205 0.0177603 0.999842i \(-0.494346\pi\)
0.0177603 + 0.999842i \(0.494346\pi\)
\(542\) −46067.2 −3.65084
\(543\) −1641.71 −0.129747
\(544\) −30758.4 −2.42419
\(545\) 11720.9 0.921228
\(546\) 19471.0 1.52616
\(547\) 6496.73 0.507824 0.253912 0.967227i \(-0.418283\pi\)
0.253912 + 0.967227i \(0.418283\pi\)
\(548\) −4568.42 −0.356119
\(549\) −12759.8 −0.991942
\(550\) 813.447 0.0630645
\(551\) 1013.80 0.0783835
\(552\) −7970.56 −0.614582
\(553\) 11565.5 0.889361
\(554\) −39073.6 −2.99653
\(555\) 1163.19 0.0889632
\(556\) 63812.1 4.86733
\(557\) −3929.02 −0.298883 −0.149442 0.988771i \(-0.547748\pi\)
−0.149442 + 0.988771i \(0.547748\pi\)
\(558\) −7764.33 −0.589051
\(559\) −10895.1 −0.824353
\(560\) −29800.7 −2.24877
\(561\) 860.233 0.0647398
\(562\) −9001.33 −0.675619
\(563\) 8042.66 0.602056 0.301028 0.953615i \(-0.402670\pi\)
0.301028 + 0.953615i \(0.402670\pi\)
\(564\) 16944.1 1.26503
\(565\) −7403.28 −0.551253
\(566\) 33953.7 2.52152
\(567\) 1809.84 0.134049
\(568\) −7646.73 −0.564876
\(569\) 9979.73 0.735276 0.367638 0.929969i \(-0.380167\pi\)
0.367638 + 0.929969i \(0.380167\pi\)
\(570\) 2067.77 0.151946
\(571\) 14222.8 1.04239 0.521196 0.853437i \(-0.325486\pi\)
0.521196 + 0.853437i \(0.325486\pi\)
\(572\) −5622.30 −0.410980
\(573\) 9933.76 0.724239
\(574\) −36158.4 −2.62931
\(575\) 1606.65 0.116525
\(576\) −15530.8 −1.12347
\(577\) −8627.75 −0.622492 −0.311246 0.950329i \(-0.600746\pi\)
−0.311246 + 0.950329i \(0.600746\pi\)
\(578\) 1362.57 0.0980547
\(579\) 3830.94 0.274971
\(580\) 13360.6 0.956500
\(581\) −18685.6 −1.33427
\(582\) 17697.5 1.26046
\(583\) −2205.99 −0.156711
\(584\) 70036.9 4.96258
\(585\) 11819.8 0.835366
\(586\) 30597.8 2.15697
\(587\) −26249.5 −1.84571 −0.922857 0.385142i \(-0.874152\pi\)
−0.922857 + 0.385142i \(0.874152\pi\)
\(588\) −1056.16 −0.0740735
\(589\) −1136.68 −0.0795182
\(590\) 35073.9 2.44741
\(591\) −580.865 −0.0404291
\(592\) −7482.68 −0.519487
\(593\) −11900.4 −0.824097 −0.412048 0.911162i \(-0.635187\pi\)
−0.412048 + 0.911162i \(0.635187\pi\)
\(594\) 2869.76 0.198229
\(595\) 12102.5 0.833874
\(596\) 67697.4 4.65267
\(597\) 14757.6 1.01171
\(598\) −15539.2 −1.06262
\(599\) 23284.4 1.58827 0.794135 0.607741i \(-0.207924\pi\)
0.794135 + 0.607741i \(0.207924\pi\)
\(600\) −7113.19 −0.483991
\(601\) 18057.7 1.22561 0.612804 0.790235i \(-0.290041\pi\)
0.612804 + 0.790235i \(0.290041\pi\)
\(602\) −15037.1 −1.01805
\(603\) 2723.31 0.183917
\(604\) −13397.0 −0.902512
\(605\) 12270.6 0.824582
\(606\) −9691.64 −0.649663
\(607\) 14117.2 0.943987 0.471993 0.881602i \(-0.343535\pi\)
0.471993 + 0.881602i \(0.343535\pi\)
\(608\) −6069.72 −0.404868
\(609\) −3798.56 −0.252751
\(610\) −34449.2 −2.28657
\(611\) 19842.1 1.31379
\(612\) 26369.3 1.74170
\(613\) 15003.2 0.988538 0.494269 0.869309i \(-0.335436\pi\)
0.494269 + 0.869309i \(0.335436\pi\)
\(614\) −31962.5 −2.10081
\(615\) 10424.5 0.683508
\(616\) −4660.96 −0.304863
\(617\) 5683.75 0.370858 0.185429 0.982658i \(-0.440633\pi\)
0.185429 + 0.982658i \(0.440633\pi\)
\(618\) 2355.92 0.153348
\(619\) −22819.0 −1.48170 −0.740849 0.671672i \(-0.765577\pi\)
−0.740849 + 0.671672i \(0.765577\pi\)
\(620\) −14980.1 −0.970347
\(621\) 5668.10 0.366269
\(622\) −16211.7 −1.04506
\(623\) 23590.5 1.51707
\(624\) 36111.2 2.31668
\(625\) −9457.94 −0.605308
\(626\) −25833.3 −1.64937
\(627\) 169.754 0.0108123
\(628\) −30738.9 −1.95321
\(629\) 3038.83 0.192633
\(630\) 16313.4 1.03165
\(631\) −19171.0 −1.20949 −0.604743 0.796421i \(-0.706724\pi\)
−0.604743 + 0.796421i \(0.706724\pi\)
\(632\) 40865.0 2.57203
\(633\) 6964.94 0.437332
\(634\) −56907.0 −3.56477
\(635\) 4321.58 0.270074
\(636\) 32115.2 2.00228
\(637\) −1236.79 −0.0769286
\(638\) 1534.86 0.0952440
\(639\) 2197.17 0.136023
\(640\) −9986.41 −0.616793
\(641\) −18464.3 −1.13775 −0.568873 0.822425i \(-0.692620\pi\)
−0.568873 + 0.822425i \(0.692620\pi\)
\(642\) −19277.7 −1.18509
\(643\) 20320.1 1.24626 0.623131 0.782118i \(-0.285861\pi\)
0.623131 + 0.782118i \(0.285861\pi\)
\(644\) −15326.4 −0.937800
\(645\) 4335.23 0.264650
\(646\) 5402.05 0.329011
\(647\) −19838.1 −1.20543 −0.602717 0.797955i \(-0.705915\pi\)
−0.602717 + 0.797955i \(0.705915\pi\)
\(648\) 6394.77 0.387670
\(649\) 2879.40 0.174155
\(650\) −13867.7 −0.836826
\(651\) 4258.99 0.256410
\(652\) −64066.2 −3.84820
\(653\) −14882.7 −0.891889 −0.445944 0.895061i \(-0.647132\pi\)
−0.445944 + 0.895061i \(0.647132\pi\)
\(654\) −19602.5 −1.17205
\(655\) −9453.95 −0.563964
\(656\) −67059.9 −3.99124
\(657\) −20124.0 −1.19499
\(658\) 27385.5 1.62249
\(659\) 1822.35 0.107722 0.0538608 0.998548i \(-0.482847\pi\)
0.0538608 + 0.998548i \(0.482847\pi\)
\(660\) 2237.15 0.131941
\(661\) −13294.9 −0.782316 −0.391158 0.920324i \(-0.627925\pi\)
−0.391158 + 0.920324i \(0.627925\pi\)
\(662\) 40026.7 2.34997
\(663\) −14665.3 −0.859056
\(664\) −66022.5 −3.85869
\(665\) 2388.25 0.139267
\(666\) 4096.14 0.238322
\(667\) 3031.52 0.175983
\(668\) 59768.3 3.46183
\(669\) 6861.56 0.396537
\(670\) 7352.45 0.423955
\(671\) −2828.12 −0.162710
\(672\) 22742.3 1.30551
\(673\) 26371.5 1.51047 0.755235 0.655454i \(-0.227523\pi\)
0.755235 + 0.655454i \(0.227523\pi\)
\(674\) −27292.4 −1.55974
\(675\) 5058.40 0.288441
\(676\) 51837.1 2.94931
\(677\) −3293.49 −0.186971 −0.0934853 0.995621i \(-0.529801\pi\)
−0.0934853 + 0.995621i \(0.529801\pi\)
\(678\) 12381.5 0.701341
\(679\) 20440.5 1.15528
\(680\) 42762.3 2.41156
\(681\) 14518.1 0.816937
\(682\) −1720.90 −0.0966229
\(683\) 1265.50 0.0708977 0.0354489 0.999371i \(-0.488714\pi\)
0.0354489 + 0.999371i \(0.488714\pi\)
\(684\) 5203.60 0.290884
\(685\) 2128.70 0.118735
\(686\) −34452.4 −1.91749
\(687\) −1472.30 −0.0817640
\(688\) −27888.1 −1.54538
\(689\) 37607.9 2.07946
\(690\) 6183.16 0.341143
\(691\) 2745.08 0.151125 0.0755627 0.997141i \(-0.475925\pi\)
0.0755627 + 0.997141i \(0.475925\pi\)
\(692\) −11109.6 −0.610297
\(693\) 1339.25 0.0734112
\(694\) −55312.0 −3.02538
\(695\) −29733.9 −1.62284
\(696\) −13421.6 −0.730954
\(697\) 27234.1 1.48001
\(698\) 4459.24 0.241812
\(699\) −16992.7 −0.919489
\(700\) −13677.8 −0.738530
\(701\) 11610.0 0.625540 0.312770 0.949829i \(-0.398743\pi\)
0.312770 + 0.949829i \(0.398743\pi\)
\(702\) −48924.0 −2.63037
\(703\) 599.668 0.0321720
\(704\) −3442.28 −0.184284
\(705\) −7895.30 −0.421779
\(706\) −19038.6 −1.01491
\(707\) −11193.7 −0.595451
\(708\) −41918.9 −2.22515
\(709\) −21016.4 −1.11324 −0.556620 0.830767i \(-0.687902\pi\)
−0.556620 + 0.830767i \(0.687902\pi\)
\(710\) 5931.95 0.313552
\(711\) −11741.9 −0.619347
\(712\) 83353.1 4.38735
\(713\) −3398.97 −0.178531
\(714\) −20240.7 −1.06091
\(715\) 2619.77 0.137026
\(716\) −5777.88 −0.301578
\(717\) 5178.36 0.269720
\(718\) −42862.8 −2.22789
\(719\) −15546.0 −0.806352 −0.403176 0.915122i \(-0.632094\pi\)
−0.403176 + 0.915122i \(0.632094\pi\)
\(720\) 30255.1 1.56603
\(721\) 2721.06 0.140552
\(722\) −35249.8 −1.81698
\(723\) −11119.1 −0.571955
\(724\) −11154.0 −0.572564
\(725\) 2705.43 0.138589
\(726\) −20521.9 −1.04909
\(727\) 29761.3 1.51827 0.759136 0.650932i \(-0.225622\pi\)
0.759136 + 0.650932i \(0.225622\pi\)
\(728\) 79460.5 4.04533
\(729\) 8797.58 0.446963
\(730\) −54331.1 −2.75464
\(731\) 11325.8 0.573050
\(732\) 41172.3 2.07892
\(733\) −6134.71 −0.309128 −0.154564 0.987983i \(-0.549397\pi\)
−0.154564 + 0.987983i \(0.549397\pi\)
\(734\) −27373.3 −1.37652
\(735\) 492.128 0.0246972
\(736\) −18150.0 −0.908991
\(737\) 603.601 0.0301681
\(738\) 36709.7 1.83104
\(739\) 9420.97 0.468953 0.234476 0.972122i \(-0.424662\pi\)
0.234476 + 0.972122i \(0.424662\pi\)
\(740\) 7902.89 0.392589
\(741\) −2893.98 −0.143472
\(742\) 51905.4 2.56807
\(743\) 24198.2 1.19481 0.597407 0.801938i \(-0.296198\pi\)
0.597407 + 0.801938i \(0.296198\pi\)
\(744\) 15048.5 0.741536
\(745\) −31544.3 −1.55127
\(746\) 29681.9 1.45675
\(747\) 18970.5 0.929176
\(748\) 5844.56 0.285693
\(749\) −22265.5 −1.08620
\(750\) 23733.8 1.15552
\(751\) −6822.49 −0.331500 −0.165750 0.986168i \(-0.553004\pi\)
−0.165750 + 0.986168i \(0.553004\pi\)
\(752\) 50789.7 2.46291
\(753\) −4204.33 −0.203472
\(754\) −26166.4 −1.26383
\(755\) 6242.48 0.300910
\(756\) −48253.9 −2.32140
\(757\) 31702.0 1.52210 0.761048 0.648695i \(-0.224685\pi\)
0.761048 + 0.648695i \(0.224685\pi\)
\(758\) 29246.8 1.40144
\(759\) 507.608 0.0242754
\(760\) 8438.51 0.402759
\(761\) −6180.40 −0.294401 −0.147201 0.989107i \(-0.547026\pi\)
−0.147201 + 0.989107i \(0.547026\pi\)
\(762\) −7227.57 −0.343605
\(763\) −22640.7 −1.07424
\(764\) 67491.6 3.19602
\(765\) −12287.1 −0.580706
\(766\) −50256.3 −2.37054
\(767\) −49088.3 −2.31092
\(768\) −3310.74 −0.155555
\(769\) −16944.4 −0.794578 −0.397289 0.917693i \(-0.630049\pi\)
−0.397289 + 0.917693i \(0.630049\pi\)
\(770\) 3615.74 0.169224
\(771\) −2044.07 −0.0954803
\(772\) 26028.0 1.21343
\(773\) 1442.45 0.0671169 0.0335585 0.999437i \(-0.489316\pi\)
0.0335585 + 0.999437i \(0.489316\pi\)
\(774\) 15266.4 0.708966
\(775\) −3033.36 −0.140595
\(776\) 72223.1 3.34106
\(777\) −2246.87 −0.103740
\(778\) 44181.5 2.03597
\(779\) 5374.24 0.247179
\(780\) −38139.1 −1.75077
\(781\) 486.985 0.0223120
\(782\) 16153.5 0.738681
\(783\) 9544.49 0.435622
\(784\) −3165.81 −0.144215
\(785\) 14323.1 0.651227
\(786\) 15811.1 0.717512
\(787\) −22188.4 −1.00499 −0.502497 0.864579i \(-0.667585\pi\)
−0.502497 + 0.864579i \(0.667585\pi\)
\(788\) −3946.49 −0.178411
\(789\) −11888.4 −0.536422
\(790\) −31701.0 −1.42768
\(791\) 14300.5 0.642816
\(792\) 4732.03 0.212305
\(793\) 48214.0 2.15905
\(794\) 10720.6 0.479168
\(795\) −14964.4 −0.667588
\(796\) 100266. 4.46460
\(797\) −33481.1 −1.48803 −0.744017 0.668161i \(-0.767082\pi\)
−0.744017 + 0.668161i \(0.767082\pi\)
\(798\) −3994.20 −0.177184
\(799\) −20626.5 −0.913282
\(800\) −16197.7 −0.715842
\(801\) −23950.2 −1.05648
\(802\) −26339.9 −1.15972
\(803\) −4460.33 −0.196017
\(804\) −8787.34 −0.385455
\(805\) 7141.48 0.312676
\(806\) 29338.1 1.28212
\(807\) 20018.9 0.873233
\(808\) −39551.3 −1.72204
\(809\) 16181.1 0.703210 0.351605 0.936148i \(-0.385636\pi\)
0.351605 + 0.936148i \(0.385636\pi\)
\(810\) −4960.74 −0.215188
\(811\) 1746.49 0.0756195 0.0378098 0.999285i \(-0.487962\pi\)
0.0378098 + 0.999285i \(0.487962\pi\)
\(812\) −25808.0 −1.11537
\(813\) −25654.7 −1.10670
\(814\) 907.879 0.0390923
\(815\) 29852.3 1.28304
\(816\) −37538.7 −1.61044
\(817\) 2234.98 0.0957061
\(818\) −9088.31 −0.388466
\(819\) −22831.7 −0.974120
\(820\) 70825.9 3.01628
\(821\) 22960.3 0.976031 0.488016 0.872835i \(-0.337721\pi\)
0.488016 + 0.872835i \(0.337721\pi\)
\(822\) −3560.12 −0.151062
\(823\) 2006.60 0.0849887 0.0424943 0.999097i \(-0.486470\pi\)
0.0424943 + 0.999097i \(0.486470\pi\)
\(824\) 9614.44 0.406474
\(825\) 453.006 0.0191171
\(826\) −67750.3 −2.85392
\(827\) −2070.21 −0.0870475 −0.0435237 0.999052i \(-0.513858\pi\)
−0.0435237 + 0.999052i \(0.513858\pi\)
\(828\) 15560.1 0.653080
\(829\) −44977.7 −1.88437 −0.942183 0.335099i \(-0.891230\pi\)
−0.942183 + 0.335099i \(0.891230\pi\)
\(830\) 51216.9 2.14189
\(831\) −21759.9 −0.908356
\(832\) 58684.3 2.44533
\(833\) 1285.69 0.0534770
\(834\) 49728.0 2.06468
\(835\) −27849.6 −1.15422
\(836\) 1153.34 0.0477141
\(837\) −10701.4 −0.441929
\(838\) −35461.8 −1.46182
\(839\) 27362.0 1.12591 0.562957 0.826486i \(-0.309663\pi\)
0.562957 + 0.826486i \(0.309663\pi\)
\(840\) −31617.8 −1.29871
\(841\) −19284.2 −0.790694
\(842\) 49830.1 2.03950
\(843\) −5012.81 −0.204805
\(844\) 47320.9 1.92992
\(845\) −24154.0 −0.983343
\(846\) −27803.1 −1.12990
\(847\) −23702.5 −0.961545
\(848\) 96264.6 3.89828
\(849\) 18908.7 0.764363
\(850\) 14415.9 0.581720
\(851\) 1793.16 0.0722312
\(852\) −7089.62 −0.285078
\(853\) 45411.8 1.82282 0.911412 0.411494i \(-0.134993\pi\)
0.911412 + 0.411494i \(0.134993\pi\)
\(854\) 66543.7 2.66637
\(855\) −2424.67 −0.0969847
\(856\) −78671.7 −3.14129
\(857\) −29755.1 −1.18601 −0.593007 0.805197i \(-0.702059\pi\)
−0.593007 + 0.805197i \(0.702059\pi\)
\(858\) −4381.40 −0.174334
\(859\) 23109.5 0.917913 0.458957 0.888459i \(-0.348223\pi\)
0.458957 + 0.888459i \(0.348223\pi\)
\(860\) 29454.2 1.16789
\(861\) −20136.5 −0.797038
\(862\) 6034.57 0.238443
\(863\) −25242.5 −0.995671 −0.497836 0.867271i \(-0.665872\pi\)
−0.497836 + 0.867271i \(0.665872\pi\)
\(864\) −57143.8 −2.25008
\(865\) 5176.65 0.203482
\(866\) 2847.70 0.111742
\(867\) 758.813 0.0297239
\(868\) 28936.3 1.13152
\(869\) −2602.50 −0.101592
\(870\) 10411.8 0.405739
\(871\) −10290.2 −0.400312
\(872\) −79997.3 −3.10671
\(873\) −20752.2 −0.804529
\(874\) 3187.65 0.123368
\(875\) 27412.3 1.05909
\(876\) 64934.3 2.50448
\(877\) −19445.4 −0.748718 −0.374359 0.927284i \(-0.622137\pi\)
−0.374359 + 0.927284i \(0.622137\pi\)
\(878\) −15196.4 −0.584115
\(879\) 17039.8 0.653856
\(880\) 6705.81 0.256878
\(881\) −15716.2 −0.601013 −0.300507 0.953780i \(-0.597156\pi\)
−0.300507 + 0.953780i \(0.597156\pi\)
\(882\) 1733.02 0.0661607
\(883\) 19809.6 0.754980 0.377490 0.926014i \(-0.376787\pi\)
0.377490 + 0.926014i \(0.376787\pi\)
\(884\) −99638.6 −3.79096
\(885\) 19532.5 0.741897
\(886\) 41916.9 1.58942
\(887\) 27287.4 1.03294 0.516471 0.856304i \(-0.327245\pi\)
0.516471 + 0.856304i \(0.327245\pi\)
\(888\) −7938.95 −0.300015
\(889\) −8347.77 −0.314933
\(890\) −64661.2 −2.43533
\(891\) −407.253 −0.0153126
\(892\) 46618.6 1.74989
\(893\) −4070.33 −0.152529
\(894\) 52755.8 1.97362
\(895\) 2692.26 0.100550
\(896\) 19290.2 0.719242
\(897\) −8653.74 −0.322118
\(898\) −70905.2 −2.63490
\(899\) −5723.52 −0.212336
\(900\) 13886.3 0.514308
\(901\) −39094.5 −1.44554
\(902\) 8136.43 0.300347
\(903\) −8374.12 −0.308608
\(904\) 50528.6 1.85902
\(905\) 5197.34 0.190901
\(906\) −10440.1 −0.382837
\(907\) 12684.3 0.464361 0.232180 0.972673i \(-0.425414\pi\)
0.232180 + 0.972673i \(0.425414\pi\)
\(908\) 98638.2 3.60509
\(909\) 11364.4 0.414669
\(910\) −61641.4 −2.24549
\(911\) −37986.2 −1.38149 −0.690746 0.723097i \(-0.742718\pi\)
−0.690746 + 0.723097i \(0.742718\pi\)
\(912\) −7407.71 −0.268962
\(913\) 4204.67 0.152414
\(914\) 16909.6 0.611949
\(915\) −19184.7 −0.693143
\(916\) −10003.1 −0.360819
\(917\) 18261.7 0.657638
\(918\) 50858.0 1.82850
\(919\) 14608.2 0.524353 0.262177 0.965020i \(-0.415560\pi\)
0.262177 + 0.965020i \(0.415560\pi\)
\(920\) 25233.3 0.904257
\(921\) −17799.8 −0.636833
\(922\) 53809.8 1.92205
\(923\) −8302.16 −0.296066
\(924\) −4321.38 −0.153856
\(925\) 1600.28 0.0568830
\(926\) −86828.6 −3.08139
\(927\) −2762.56 −0.0978794
\(928\) −30562.7 −1.08111
\(929\) 46330.5 1.63623 0.818114 0.575056i \(-0.195020\pi\)
0.818114 + 0.575056i \(0.195020\pi\)
\(930\) −11673.8 −0.411613
\(931\) 253.711 0.00893129
\(932\) −115451. −4.05765
\(933\) −9028.23 −0.316796
\(934\) −11029.7 −0.386407
\(935\) −2723.33 −0.0952540
\(936\) −80672.2 −2.81715
\(937\) 36210.9 1.26249 0.631247 0.775582i \(-0.282543\pi\)
0.631247 + 0.775582i \(0.282543\pi\)
\(938\) −14202.3 −0.494373
\(939\) −14386.5 −0.499984
\(940\) −53642.0 −1.86128
\(941\) −48013.8 −1.66334 −0.831672 0.555268i \(-0.812616\pi\)
−0.831672 + 0.555268i \(0.812616\pi\)
\(942\) −23954.5 −0.828533
\(943\) 16070.3 0.554955
\(944\) −125651. −4.33219
\(945\) 22484.4 0.773986
\(946\) 3383.68 0.116293
\(947\) 48383.6 1.66025 0.830124 0.557579i \(-0.188270\pi\)
0.830124 + 0.557579i \(0.188270\pi\)
\(948\) 37887.7 1.29803
\(949\) 76040.0 2.60102
\(950\) 2844.77 0.0971542
\(951\) −31691.3 −1.08061
\(952\) −82601.7 −2.81212
\(953\) 21420.9 0.728111 0.364056 0.931377i \(-0.381392\pi\)
0.364056 + 0.931377i \(0.381392\pi\)
\(954\) −52696.9 −1.78839
\(955\) −31448.4 −1.06560
\(956\) 35182.6 1.19026
\(957\) 854.759 0.0288719
\(958\) −7909.60 −0.266751
\(959\) −4111.90 −0.138457
\(960\) −23350.9 −0.785048
\(961\) −23373.7 −0.784590
\(962\) −15477.6 −0.518730
\(963\) 22605.0 0.756425
\(964\) −75544.9 −2.52400
\(965\) −12128.0 −0.404575
\(966\) −11943.7 −0.397807
\(967\) 27808.7 0.924786 0.462393 0.886675i \(-0.346991\pi\)
0.462393 + 0.886675i \(0.346991\pi\)
\(968\) −83749.1 −2.78078
\(969\) 3008.39 0.0997350
\(970\) −56027.1 −1.85456
\(971\) 30783.5 1.01739 0.508697 0.860946i \(-0.330127\pi\)
0.508697 + 0.860946i \(0.330127\pi\)
\(972\) 78184.9 2.58002
\(973\) 57435.4 1.89239
\(974\) 77940.4 2.56404
\(975\) −7722.89 −0.253672
\(976\) 123413. 4.04750
\(977\) −55303.0 −1.81095 −0.905476 0.424398i \(-0.860486\pi\)
−0.905476 + 0.424398i \(0.860486\pi\)
\(978\) −49926.1 −1.63237
\(979\) −5308.37 −0.173296
\(980\) 3343.60 0.108987
\(981\) 22985.9 0.748098
\(982\) 58832.3 1.91183
\(983\) −44404.1 −1.44077 −0.720383 0.693577i \(-0.756034\pi\)
−0.720383 + 0.693577i \(0.756034\pi\)
\(984\) −71149.0 −2.30503
\(985\) 1838.91 0.0594848
\(986\) 27200.8 0.878551
\(987\) 15250.9 0.491836
\(988\) −19662.2 −0.633135
\(989\) 6683.15 0.214875
\(990\) −3670.87 −0.117846
\(991\) 20571.6 0.659412 0.329706 0.944084i \(-0.393050\pi\)
0.329706 + 0.944084i \(0.393050\pi\)
\(992\) 34267.3 1.09676
\(993\) 22290.8 0.712362
\(994\) −11458.4 −0.365633
\(995\) −46719.8 −1.48856
\(996\) −61212.4 −1.94738
\(997\) 18008.7 0.572057 0.286029 0.958221i \(-0.407665\pi\)
0.286029 + 0.958221i \(0.407665\pi\)
\(998\) 33922.5 1.07595
\(999\) 5645.62 0.178798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.4.a.b.1.27 27
3.2 odd 2 1773.4.a.d.1.1 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.4.a.b.1.27 27 1.1 even 1 trivial
1773.4.a.d.1.1 27 3.2 odd 2