Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,4,Mod(36,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([12]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.36");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.d (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.6233762711\) |
Analytic rank: | \(0\) |
Dimension: | \(294\) |
Relative dimension: | \(49\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
36.1 | −4.99354 | + | 2.40476i | −5.23278 | − | 2.51997i | 14.1646 | − | 17.7619i | −12.6486 | − | 15.8608i | 32.1900 | 16.7036 | + | 8.04405i | −18.1521 | + | 79.5297i | 4.19748 | + | 5.26348i | 101.303 | + | 48.7848i | ||
36.2 | −4.96059 | + | 2.38889i | −7.79565 | − | 3.75419i | 13.9127 | − | 17.4460i | 10.3332 | + | 12.9574i | 47.6394 | −26.2094 | − | 12.6218i | −17.5373 | + | 76.8359i | 29.8440 | + | 37.4232i | −82.2124 | − | 39.5914i | ||
36.3 | −4.86777 | + | 2.34419i | 3.69855 | + | 1.78113i | 13.2120 | − | 16.5673i | 7.62651 | + | 9.56334i | −22.1790 | 13.6794 | + | 6.58764i | −15.8580 | + | 69.4785i | −6.32736 | − | 7.93426i | −59.5424 | − | 28.6741i | ||
36.4 | −4.54516 | + | 2.18883i | 6.85363 | + | 3.30053i | 10.8795 | − | 13.6425i | −1.34248 | − | 1.68342i | −38.3751 | −29.8193 | − | 14.3602i | −10.6076 | + | 46.4748i | 19.2445 | + | 24.1318i | 9.78651 | + | 4.71294i | ||
36.5 | −4.23571 | + | 2.03981i | 5.41516 | + | 2.60780i | 8.79251 | − | 11.0255i | −7.52587 | − | 9.43714i | −28.2565 | 15.8752 | + | 7.64508i | −6.38361 | + | 27.9684i | 5.68910 | + | 7.13391i | 51.1274 | + | 24.6217i | ||
36.6 | −4.14519 | + | 1.99622i | −1.88374 | − | 0.907162i | 8.20981 | − | 10.2948i | −4.59596 | − | 5.76315i | 9.61936 | −18.7661 | − | 9.03730i | −5.29039 | + | 23.1787i | −14.1087 | − | 17.6917i | 30.5557 | + | 14.7148i | ||
36.7 | −4.04091 | + | 1.94600i | −1.44300 | − | 0.694910i | 7.55409 | − | 9.47253i | 1.68297 | + | 2.11038i | 7.18331 | 0.423695 | + | 0.204041i | −4.10768 | + | 17.9969i | −15.2349 | − | 19.1039i | −10.9075 | − | 5.25278i | ||
36.8 | −3.89468 | + | 1.87558i | −3.17499 | − | 1.52899i | 6.66280 | − | 8.35489i | 7.46144 | + | 9.35635i | 15.2333 | 20.5374 | + | 9.89028i | −2.58398 | + | 11.3211i | −9.09148 | − | 11.4004i | −46.6085 | − | 22.4454i | ||
36.9 | −3.67532 | + | 1.76994i | −7.40057 | − | 3.56393i | 5.38734 | − | 6.75551i | −2.19674 | − | 2.75463i | 33.5074 | 8.85732 | + | 4.26546i | −0.581514 | + | 2.54778i | 25.2326 | + | 31.6407i | 12.9492 | + | 6.23602i | ||
36.10 | −3.23729 | + | 1.55900i | 2.40034 | + | 1.15594i | 3.06165 | − | 3.83919i | 12.7344 | + | 15.9684i | −9.57271 | −16.4771 | − | 7.93493i | 2.47019 | − | 10.8226i | −12.4088 | − | 15.5601i | −66.1197 | − | 31.8416i | ||
36.11 | −3.10199 | + | 1.49384i | 8.84799 | + | 4.26097i | 2.40285 | − | 3.01308i | 5.43559 | + | 6.81602i | −33.8115 | 3.70763 | + | 1.78550i | 3.17646 | − | 13.9170i | 43.2968 | + | 54.2925i | −27.0432 | − | 13.0233i | ||
36.12 | −3.03249 | + | 1.46037i | 3.37988 | + | 1.62767i | 2.07541 | − | 2.60249i | −13.2921 | − | 16.6678i | −12.6265 | −8.24050 | − | 3.96842i | 3.49863 | − | 15.3285i | −8.05991 | − | 10.1068i | 64.6494 | + | 31.1335i | ||
36.13 | −2.71290 | + | 1.30647i | −8.46100 | − | 4.07460i | 0.665075 | − | 0.833977i | −2.95496 | − | 3.70540i | 28.2772 | −5.24170 | − | 2.52427i | 4.64553 | − | 20.3534i | 38.1519 | + | 47.8410i | 12.8575 | + | 6.19185i | ||
36.14 | −2.69059 | + | 1.29572i | 6.01269 | + | 2.89556i | 0.572466 | − | 0.717849i | 0.538788 | + | 0.675619i | −19.9295 | 19.6300 | + | 9.45330i | 4.70603 | − | 20.6185i | 10.9339 | + | 13.7107i | −2.32507 | − | 1.11969i | ||
36.15 | −2.25876 | + | 1.08776i | 2.36915 | + | 1.14092i | −1.06916 | + | 1.34068i | 4.71882 | + | 5.91721i | −6.59238 | −13.2401 | − | 6.37609i | 5.41956 | − | 23.7447i | −12.5231 | − | 15.7034i | −17.0952 | − | 8.23260i | ||
36.16 | −2.08511 | + | 1.00413i | −6.32083 | − | 3.04395i | −1.64854 | + | 2.06720i | 11.8661 | + | 14.8797i | 16.2361 | 6.37684 | + | 3.07092i | 5.48146 | − | 24.0158i | 13.8531 | + | 17.3712i | −39.6833 | − | 19.1105i | ||
36.17 | −2.05041 | + | 0.987423i | −3.59199 | − | 1.72981i | −1.75876 | + | 2.20541i | −8.13502 | − | 10.2010i | 9.07310 | −19.7705 | − | 9.52099i | 5.47976 | − | 24.0084i | −6.92408 | − | 8.68252i | 26.7528 | + | 12.8835i | ||
36.18 | −2.04676 | + | 0.985669i | 0.445213 | + | 0.214403i | −1.77022 | + | 2.21979i | −3.24849 | − | 4.07347i | −1.12258 | 24.4430 | + | 11.7711i | 5.47932 | − | 24.0065i | −16.6820 | − | 20.9185i | 10.6640 | + | 5.13550i | ||
36.19 | −1.75279 | + | 0.844099i | −3.92827 | − | 1.89175i | −2.62815 | + | 3.29560i | −9.59724 | − | 12.0346i | 8.48226 | 26.9215 | + | 12.9647i | 5.28801 | − | 23.1683i | −4.98167 | − | 6.24682i | 26.9803 | + | 12.9930i | ||
36.20 | −1.26252 | + | 0.607996i | 8.03734 | + | 3.87058i | −3.76363 | + | 4.71944i | −10.7505 | − | 13.4806i | −12.5006 | −15.5899 | − | 7.50770i | 4.37677 | − | 19.1759i | 32.7833 | + | 41.1089i | 21.7688 | + | 10.4833i | ||
See next 80 embeddings (of 294 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.d | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.4.d.a | ✓ | 294 |
197.d | even | 7 | 1 | inner | 197.4.d.a | ✓ | 294 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.4.d.a | ✓ | 294 | 1.a | even | 1 | 1 | trivial |
197.4.d.a | ✓ | 294 | 197.d | even | 7 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(197, [\chi])\).