Properties

Label 197.6.a.b.1.15
Level $197$
Weight $6$
Character 197.1
Self dual yes
Analytic conductor $31.596$
Analytic rank $0$
Dimension $43$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,6,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.5956125032\)
Analytic rank: \(0\)
Dimension: \(43\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.19771 q^{2} +3.76016 q^{3} -4.98380 q^{4} +5.57792 q^{5} -19.5442 q^{6} +75.5206 q^{7} +192.231 q^{8} -228.861 q^{9} -28.9924 q^{10} +535.511 q^{11} -18.7399 q^{12} -703.883 q^{13} -392.534 q^{14} +20.9739 q^{15} -839.680 q^{16} +1823.54 q^{17} +1189.55 q^{18} -2264.64 q^{19} -27.7992 q^{20} +283.970 q^{21} -2783.43 q^{22} -711.106 q^{23} +722.820 q^{24} -3093.89 q^{25} +3658.58 q^{26} -1774.28 q^{27} -376.379 q^{28} +4657.25 q^{29} -109.016 q^{30} +8116.66 q^{31} -1786.98 q^{32} +2013.61 q^{33} -9478.21 q^{34} +421.248 q^{35} +1140.60 q^{36} -66.5124 q^{37} +11770.9 q^{38} -2646.72 q^{39} +1072.25 q^{40} -10115.6 q^{41} -1475.99 q^{42} -9329.01 q^{43} -2668.88 q^{44} -1276.57 q^{45} +3696.12 q^{46} +22696.0 q^{47} -3157.34 q^{48} -11103.6 q^{49} +16081.1 q^{50} +6856.79 q^{51} +3508.01 q^{52} +34630.8 q^{53} +9222.17 q^{54} +2987.04 q^{55} +14517.4 q^{56} -8515.42 q^{57} -24207.1 q^{58} -7445.49 q^{59} -104.530 q^{60} +48629.2 q^{61} -42188.0 q^{62} -17283.7 q^{63} +36158.0 q^{64} -3926.20 q^{65} -10466.2 q^{66} +49198.6 q^{67} -9088.14 q^{68} -2673.88 q^{69} -2189.52 q^{70} +60666.4 q^{71} -43994.2 q^{72} +69639.7 q^{73} +345.712 q^{74} -11633.5 q^{75} +11286.5 q^{76} +40442.1 q^{77} +13756.9 q^{78} +36459.9 q^{79} -4683.67 q^{80} +48941.7 q^{81} +52578.2 q^{82} -33146.0 q^{83} -1415.25 q^{84} +10171.5 q^{85} +48489.5 q^{86} +17512.0 q^{87} +102942. q^{88} +52330.9 q^{89} +6635.24 q^{90} -53157.7 q^{91} +3544.01 q^{92} +30520.0 q^{93} -117967. q^{94} -12632.0 q^{95} -6719.34 q^{96} -69399.8 q^{97} +57713.5 q^{98} -122558. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 43 q + 12 q^{2} + 98 q^{3} + 752 q^{4} + 146 q^{5} + 144 q^{6} + 831 q^{7} + 699 q^{8} + 3725 q^{9} + 1033 q^{10} + 1370 q^{11} + 3136 q^{12} + 2948 q^{13} + 929 q^{14} + 1859 q^{15} + 14080 q^{16} + 1545 q^{17}+ \cdots + 119867 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.19771 −0.918834 −0.459417 0.888221i \(-0.651942\pi\)
−0.459417 + 0.888221i \(0.651942\pi\)
\(3\) 3.76016 0.241215 0.120607 0.992700i \(-0.461516\pi\)
0.120607 + 0.992700i \(0.461516\pi\)
\(4\) −4.98380 −0.155744
\(5\) 5.57792 0.0997809 0.0498904 0.998755i \(-0.484113\pi\)
0.0498904 + 0.998755i \(0.484113\pi\)
\(6\) −19.5442 −0.221636
\(7\) 75.5206 0.582532 0.291266 0.956642i \(-0.405923\pi\)
0.291266 + 0.956642i \(0.405923\pi\)
\(8\) 192.231 1.06194
\(9\) −228.861 −0.941816
\(10\) −28.9924 −0.0916821
\(11\) 535.511 1.33440 0.667201 0.744878i \(-0.267492\pi\)
0.667201 + 0.744878i \(0.267492\pi\)
\(12\) −18.7399 −0.0375677
\(13\) −703.883 −1.15516 −0.577580 0.816334i \(-0.696003\pi\)
−0.577580 + 0.816334i \(0.696003\pi\)
\(14\) −392.534 −0.535251
\(15\) 20.9739 0.0240686
\(16\) −839.680 −0.820000
\(17\) 1823.54 1.53035 0.765177 0.643820i \(-0.222651\pi\)
0.765177 + 0.643820i \(0.222651\pi\)
\(18\) 1189.55 0.865372
\(19\) −2264.64 −1.43918 −0.719590 0.694399i \(-0.755670\pi\)
−0.719590 + 0.694399i \(0.755670\pi\)
\(20\) −27.7992 −0.0155402
\(21\) 283.970 0.140515
\(22\) −2783.43 −1.22609
\(23\) −711.106 −0.280295 −0.140147 0.990131i \(-0.544758\pi\)
−0.140147 + 0.990131i \(0.544758\pi\)
\(24\) 722.820 0.256155
\(25\) −3093.89 −0.990044
\(26\) 3658.58 1.06140
\(27\) −1774.28 −0.468394
\(28\) −376.379 −0.0907258
\(29\) 4657.25 1.02834 0.514168 0.857690i \(-0.328101\pi\)
0.514168 + 0.857690i \(0.328101\pi\)
\(30\) −109.016 −0.0221151
\(31\) 8116.66 1.51696 0.758478 0.651699i \(-0.225943\pi\)
0.758478 + 0.651699i \(0.225943\pi\)
\(32\) −1786.98 −0.308493
\(33\) 2013.61 0.321877
\(34\) −9478.21 −1.40614
\(35\) 421.248 0.0581256
\(36\) 1140.60 0.146682
\(37\) −66.5124 −0.00798727 −0.00399363 0.999992i \(-0.501271\pi\)
−0.00399363 + 0.999992i \(0.501271\pi\)
\(38\) 11770.9 1.32237
\(39\) −2646.72 −0.278642
\(40\) 1072.25 0.105961
\(41\) −10115.6 −0.939796 −0.469898 0.882721i \(-0.655709\pi\)
−0.469898 + 0.882721i \(0.655709\pi\)
\(42\) −1475.99 −0.129110
\(43\) −9329.01 −0.769422 −0.384711 0.923037i \(-0.625699\pi\)
−0.384711 + 0.923037i \(0.625699\pi\)
\(44\) −2668.88 −0.207825
\(45\) −1276.57 −0.0939752
\(46\) 3696.12 0.257544
\(47\) 22696.0 1.49866 0.749332 0.662194i \(-0.230375\pi\)
0.749332 + 0.662194i \(0.230375\pi\)
\(48\) −3157.34 −0.197796
\(49\) −11103.6 −0.660656
\(50\) 16081.1 0.909686
\(51\) 6856.79 0.369144
\(52\) 3508.01 0.179909
\(53\) 34630.8 1.69345 0.846725 0.532031i \(-0.178571\pi\)
0.846725 + 0.532031i \(0.178571\pi\)
\(54\) 9222.17 0.430377
\(55\) 2987.04 0.133148
\(56\) 14517.4 0.618613
\(57\) −8515.42 −0.347151
\(58\) −24207.1 −0.944870
\(59\) −7445.49 −0.278460 −0.139230 0.990260i \(-0.544463\pi\)
−0.139230 + 0.990260i \(0.544463\pi\)
\(60\) −104.530 −0.00374853
\(61\) 48629.2 1.67330 0.836648 0.547741i \(-0.184512\pi\)
0.836648 + 0.547741i \(0.184512\pi\)
\(62\) −42188.0 −1.39383
\(63\) −17283.7 −0.548638
\(64\) 36158.0 1.10345
\(65\) −3926.20 −0.115263
\(66\) −10466.2 −0.295752
\(67\) 49198.6 1.33896 0.669478 0.742832i \(-0.266518\pi\)
0.669478 + 0.742832i \(0.266518\pi\)
\(68\) −9088.14 −0.238343
\(69\) −2673.88 −0.0676112
\(70\) −2189.52 −0.0534078
\(71\) 60666.4 1.42824 0.714122 0.700021i \(-0.246826\pi\)
0.714122 + 0.700021i \(0.246826\pi\)
\(72\) −43994.2 −1.00015
\(73\) 69639.7 1.52950 0.764750 0.644327i \(-0.222862\pi\)
0.764750 + 0.644327i \(0.222862\pi\)
\(74\) 345.712 0.00733897
\(75\) −11633.5 −0.238813
\(76\) 11286.5 0.224143
\(77\) 40442.1 0.777332
\(78\) 13756.9 0.256025
\(79\) 36459.9 0.657276 0.328638 0.944456i \(-0.393410\pi\)
0.328638 + 0.944456i \(0.393410\pi\)
\(80\) −4683.67 −0.0818203
\(81\) 48941.7 0.828832
\(82\) 52578.2 0.863517
\(83\) −33146.0 −0.528123 −0.264062 0.964506i \(-0.585062\pi\)
−0.264062 + 0.964506i \(0.585062\pi\)
\(84\) −1415.25 −0.0218844
\(85\) 10171.5 0.152700
\(86\) 48489.5 0.706971
\(87\) 17512.0 0.248050
\(88\) 102942. 1.41705
\(89\) 52330.9 0.700299 0.350149 0.936694i \(-0.386131\pi\)
0.350149 + 0.936694i \(0.386131\pi\)
\(90\) 6635.24 0.0863476
\(91\) −53157.7 −0.672919
\(92\) 3544.01 0.0436541
\(93\) 30520.0 0.365912
\(94\) −117967. −1.37702
\(95\) −12632.0 −0.143603
\(96\) −6719.34 −0.0744129
\(97\) −69399.8 −0.748909 −0.374454 0.927245i \(-0.622170\pi\)
−0.374454 + 0.927245i \(0.622170\pi\)
\(98\) 57713.5 0.607033
\(99\) −122558. −1.25676
\(100\) 15419.3 0.154193
\(101\) 25233.5 0.246135 0.123068 0.992398i \(-0.460727\pi\)
0.123068 + 0.992398i \(0.460727\pi\)
\(102\) −35639.6 −0.339182
\(103\) −75257.5 −0.698968 −0.349484 0.936942i \(-0.613643\pi\)
−0.349484 + 0.936942i \(0.613643\pi\)
\(104\) −135308. −1.22671
\(105\) 1583.96 0.0140207
\(106\) −180001. −1.55600
\(107\) −157044. −1.32606 −0.663028 0.748594i \(-0.730729\pi\)
−0.663028 + 0.748594i \(0.730729\pi\)
\(108\) 8842.63 0.0729495
\(109\) 208857. 1.68377 0.841885 0.539656i \(-0.181446\pi\)
0.841885 + 0.539656i \(0.181446\pi\)
\(110\) −15525.8 −0.122341
\(111\) −250.097 −0.00192665
\(112\) −63413.1 −0.477677
\(113\) 45591.5 0.335883 0.167942 0.985797i \(-0.446288\pi\)
0.167942 + 0.985797i \(0.446288\pi\)
\(114\) 44260.7 0.318975
\(115\) −3966.49 −0.0279680
\(116\) −23210.8 −0.160157
\(117\) 161092. 1.08795
\(118\) 38699.5 0.255859
\(119\) 137714. 0.891481
\(120\) 4031.83 0.0255593
\(121\) 125721. 0.780628
\(122\) −252761. −1.53748
\(123\) −38036.5 −0.226693
\(124\) −40451.8 −0.236256
\(125\) −34688.4 −0.198568
\(126\) 89835.8 0.504107
\(127\) −194477. −1.06994 −0.534969 0.844872i \(-0.679677\pi\)
−0.534969 + 0.844872i \(0.679677\pi\)
\(128\) −130755. −0.705398
\(129\) −35078.6 −0.185596
\(130\) 20407.3 0.105908
\(131\) 20848.1 0.106142 0.0530711 0.998591i \(-0.483099\pi\)
0.0530711 + 0.998591i \(0.483099\pi\)
\(132\) −10035.4 −0.0501303
\(133\) −171027. −0.838369
\(134\) −255720. −1.23028
\(135\) −9896.76 −0.0467368
\(136\) 350540. 1.62514
\(137\) 8886.47 0.0404509 0.0202254 0.999795i \(-0.493562\pi\)
0.0202254 + 0.999795i \(0.493562\pi\)
\(138\) 13898.0 0.0621234
\(139\) −55059.5 −0.241710 −0.120855 0.992670i \(-0.538564\pi\)
−0.120855 + 0.992670i \(0.538564\pi\)
\(140\) −2099.41 −0.00905269
\(141\) 85340.6 0.361500
\(142\) −315327. −1.31232
\(143\) −376937. −1.54145
\(144\) 192170. 0.772289
\(145\) 25977.8 0.102608
\(146\) −361967. −1.40536
\(147\) −41751.5 −0.159360
\(148\) 331.484 0.00124397
\(149\) 275661. 1.01721 0.508604 0.861000i \(-0.330162\pi\)
0.508604 + 0.861000i \(0.330162\pi\)
\(150\) 60467.7 0.219430
\(151\) −187066. −0.667657 −0.333828 0.942634i \(-0.608341\pi\)
−0.333828 + 0.942634i \(0.608341\pi\)
\(152\) −435334. −1.52832
\(153\) −417337. −1.44131
\(154\) −210206. −0.714240
\(155\) 45274.0 0.151363
\(156\) 13190.7 0.0433967
\(157\) −431171. −1.39605 −0.698023 0.716075i \(-0.745937\pi\)
−0.698023 + 0.716075i \(0.745937\pi\)
\(158\) −189508. −0.603927
\(159\) 130217. 0.408485
\(160\) −9967.63 −0.0307817
\(161\) −53703.1 −0.163281
\(162\) −254385. −0.761559
\(163\) 266240. 0.784882 0.392441 0.919777i \(-0.371631\pi\)
0.392441 + 0.919777i \(0.371631\pi\)
\(164\) 50414.3 0.146367
\(165\) 11231.7 0.0321172
\(166\) 172283. 0.485258
\(167\) 212836. 0.590546 0.295273 0.955413i \(-0.404589\pi\)
0.295273 + 0.955413i \(0.404589\pi\)
\(168\) 54587.8 0.149218
\(169\) 124159. 0.334396
\(170\) −52868.7 −0.140306
\(171\) 518288. 1.35544
\(172\) 46493.9 0.119833
\(173\) 696415. 1.76910 0.884551 0.466443i \(-0.154465\pi\)
0.884551 + 0.466443i \(0.154465\pi\)
\(174\) −91022.5 −0.227916
\(175\) −233652. −0.576733
\(176\) −449658. −1.09421
\(177\) −27996.2 −0.0671687
\(178\) −272001. −0.643459
\(179\) −451438. −1.05309 −0.526545 0.850148i \(-0.676513\pi\)
−0.526545 + 0.850148i \(0.676513\pi\)
\(180\) 6362.16 0.0146360
\(181\) 717221. 1.62726 0.813629 0.581385i \(-0.197489\pi\)
0.813629 + 0.581385i \(0.197489\pi\)
\(182\) 276298. 0.618301
\(183\) 182854. 0.403623
\(184\) −136697. −0.297655
\(185\) −371.001 −0.000796976 0
\(186\) −158634. −0.336212
\(187\) 976523. 2.04211
\(188\) −113112. −0.233408
\(189\) −133994. −0.272855
\(190\) 65657.4 0.131947
\(191\) 588227. 1.16671 0.583354 0.812218i \(-0.301740\pi\)
0.583354 + 0.812218i \(0.301740\pi\)
\(192\) 135960. 0.266169
\(193\) −224178. −0.433211 −0.216606 0.976259i \(-0.569499\pi\)
−0.216606 + 0.976259i \(0.569499\pi\)
\(194\) 360720. 0.688123
\(195\) −14763.2 −0.0278031
\(196\) 55338.3 0.102893
\(197\) 38809.0 0.0712470
\(198\) 637019. 1.15475
\(199\) 324.370 0.000580642 0 0.000290321 1.00000i \(-0.499908\pi\)
0.000290321 1.00000i \(0.499908\pi\)
\(200\) −594741. −1.05136
\(201\) 184995. 0.322976
\(202\) −131156. −0.226157
\(203\) 351718. 0.599039
\(204\) −34172.9 −0.0574918
\(205\) −56424.2 −0.0937737
\(206\) 391167. 0.642235
\(207\) 162745. 0.263986
\(208\) 591037. 0.947232
\(209\) −1.21274e6 −1.92044
\(210\) −8232.97 −0.0128827
\(211\) −185429. −0.286729 −0.143364 0.989670i \(-0.545792\pi\)
−0.143364 + 0.989670i \(0.545792\pi\)
\(212\) −172593. −0.263744
\(213\) 228116. 0.344513
\(214\) 816269. 1.21843
\(215\) −52036.5 −0.0767735
\(216\) −341071. −0.497405
\(217\) 612974. 0.883676
\(218\) −1.08558e6 −1.54711
\(219\) 261857. 0.368938
\(220\) −14886.8 −0.0207369
\(221\) −1.28356e6 −1.76781
\(222\) 1299.93 0.00177027
\(223\) −975718. −1.31390 −0.656950 0.753935i \(-0.728154\pi\)
−0.656950 + 0.753935i \(0.728154\pi\)
\(224\) −134954. −0.179707
\(225\) 708071. 0.932439
\(226\) −236972. −0.308621
\(227\) 1.43184e6 1.84429 0.922143 0.386848i \(-0.126436\pi\)
0.922143 + 0.386848i \(0.126436\pi\)
\(228\) 42439.1 0.0540666
\(229\) −1.36811e6 −1.72398 −0.861992 0.506922i \(-0.830783\pi\)
−0.861992 + 0.506922i \(0.830783\pi\)
\(230\) 20616.7 0.0256980
\(231\) 152069. 0.187504
\(232\) 895269. 1.09203
\(233\) 341372. 0.411944 0.205972 0.978558i \(-0.433964\pi\)
0.205972 + 0.978558i \(0.433964\pi\)
\(234\) −837308. −0.999644
\(235\) 126596. 0.149538
\(236\) 37106.8 0.0433684
\(237\) 137095. 0.158545
\(238\) −715800. −0.819123
\(239\) 258337. 0.292544 0.146272 0.989244i \(-0.453272\pi\)
0.146272 + 0.989244i \(0.453272\pi\)
\(240\) −17611.4 −0.0197363
\(241\) 742372. 0.823340 0.411670 0.911333i \(-0.364946\pi\)
0.411670 + 0.911333i \(0.364946\pi\)
\(242\) −653461. −0.717267
\(243\) 615178. 0.668321
\(244\) −242358. −0.260605
\(245\) −61935.2 −0.0659208
\(246\) 197703. 0.208293
\(247\) 1.59404e6 1.66248
\(248\) 1.56027e6 1.61091
\(249\) −124634. −0.127391
\(250\) 180301. 0.182451
\(251\) 1.76033e6 1.76364 0.881821 0.471583i \(-0.156317\pi\)
0.881821 + 0.471583i \(0.156317\pi\)
\(252\) 86138.6 0.0854469
\(253\) −380805. −0.374026
\(254\) 1.01083e6 0.983096
\(255\) 38246.6 0.0368335
\(256\) −477427. −0.455310
\(257\) −769457. −0.726694 −0.363347 0.931654i \(-0.618366\pi\)
−0.363347 + 0.931654i \(0.618366\pi\)
\(258\) 182328. 0.170532
\(259\) −5023.05 −0.00465284
\(260\) 19567.4 0.0179515
\(261\) −1.06586e6 −0.968502
\(262\) −108362. −0.0975271
\(263\) −874387. −0.779497 −0.389748 0.920921i \(-0.627438\pi\)
−0.389748 + 0.920921i \(0.627438\pi\)
\(264\) 387078. 0.341813
\(265\) 193168. 0.168974
\(266\) 888949. 0.770322
\(267\) 196773. 0.168922
\(268\) −245196. −0.208534
\(269\) −26277.9 −0.0221417 −0.0110708 0.999939i \(-0.503524\pi\)
−0.0110708 + 0.999939i \(0.503524\pi\)
\(270\) 51440.5 0.0429434
\(271\) 395415. 0.327062 0.163531 0.986538i \(-0.447712\pi\)
0.163531 + 0.986538i \(0.447712\pi\)
\(272\) −1.53119e6 −1.25489
\(273\) −199882. −0.162318
\(274\) −46189.3 −0.0371676
\(275\) −1.65681e6 −1.32112
\(276\) 13326.1 0.0105300
\(277\) 1.49333e6 1.16938 0.584690 0.811257i \(-0.301216\pi\)
0.584690 + 0.811257i \(0.301216\pi\)
\(278\) 286183. 0.222092
\(279\) −1.85759e6 −1.42869
\(280\) 80976.9 0.0617257
\(281\) −1.44166e6 −1.08918 −0.544588 0.838704i \(-0.683314\pi\)
−0.544588 + 0.838704i \(0.683314\pi\)
\(282\) −443576. −0.332158
\(283\) 963140. 0.714864 0.357432 0.933939i \(-0.383652\pi\)
0.357432 + 0.933939i \(0.383652\pi\)
\(284\) −302349. −0.222440
\(285\) −47498.3 −0.0346391
\(286\) 1.95921e6 1.41634
\(287\) −763939. −0.547462
\(288\) 408970. 0.290543
\(289\) 1.90543e6 1.34198
\(290\) −135025. −0.0942799
\(291\) −260955. −0.180648
\(292\) −347070. −0.238210
\(293\) −1.90757e6 −1.29811 −0.649055 0.760742i \(-0.724835\pi\)
−0.649055 + 0.760742i \(0.724835\pi\)
\(294\) 217012. 0.146425
\(295\) −41530.3 −0.0277850
\(296\) −12785.7 −0.00848197
\(297\) −950144. −0.625026
\(298\) −1.43281e6 −0.934646
\(299\) 500536. 0.323785
\(300\) 57979.1 0.0371936
\(301\) −704532. −0.448213
\(302\) 972317. 0.613466
\(303\) 94882.0 0.0593714
\(304\) 1.90157e6 1.18013
\(305\) 271250. 0.166963
\(306\) 2.16920e6 1.32433
\(307\) 1.16830e6 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(308\) −201555. −0.121065
\(309\) −282981. −0.168601
\(310\) −235321. −0.139078
\(311\) 380703. 0.223195 0.111598 0.993753i \(-0.464403\pi\)
0.111598 + 0.993753i \(0.464403\pi\)
\(312\) −508781. −0.295900
\(313\) 1.50517e6 0.868411 0.434205 0.900814i \(-0.357029\pi\)
0.434205 + 0.900814i \(0.357029\pi\)
\(314\) 2.24110e6 1.28274
\(315\) −96407.2 −0.0547436
\(316\) −181709. −0.102367
\(317\) −138597. −0.0774653 −0.0387326 0.999250i \(-0.512332\pi\)
−0.0387326 + 0.999250i \(0.512332\pi\)
\(318\) −676832. −0.375330
\(319\) 2.49401e6 1.37221
\(320\) 201686. 0.110104
\(321\) −590511. −0.319864
\(322\) 279133. 0.150028
\(323\) −4.12965e6 −2.20246
\(324\) −243916. −0.129085
\(325\) 2.17774e6 1.14366
\(326\) −1.38384e6 −0.721177
\(327\) 785337. 0.406150
\(328\) −1.94454e6 −0.998004
\(329\) 1.71401e6 0.873021
\(330\) −58379.4 −0.0295104
\(331\) −3.93334e6 −1.97330 −0.986648 0.162870i \(-0.947925\pi\)
−0.986648 + 0.162870i \(0.947925\pi\)
\(332\) 165193. 0.0822519
\(333\) 15222.1 0.00752253
\(334\) −1.10626e6 −0.542614
\(335\) 274426. 0.133602
\(336\) −238444. −0.115223
\(337\) 3.45853e6 1.65889 0.829444 0.558590i \(-0.188658\pi\)
0.829444 + 0.558590i \(0.188658\pi\)
\(338\) −645342. −0.307254
\(339\) 171432. 0.0810199
\(340\) −50692.9 −0.0237821
\(341\) 4.34656e6 2.02423
\(342\) −2.69391e6 −1.24543
\(343\) −2.10783e6 −0.967386
\(344\) −1.79333e6 −0.817077
\(345\) −14914.7 −0.00674630
\(346\) −3.61977e6 −1.62551
\(347\) −1.65303e6 −0.736981 −0.368490 0.929632i \(-0.620125\pi\)
−0.368490 + 0.929632i \(0.620125\pi\)
\(348\) −87276.4 −0.0386322
\(349\) 751225. 0.330146 0.165073 0.986281i \(-0.447214\pi\)
0.165073 + 0.986281i \(0.447214\pi\)
\(350\) 1.21446e6 0.529922
\(351\) 1.24888e6 0.541071
\(352\) −956947. −0.411653
\(353\) −722241. −0.308493 −0.154246 0.988032i \(-0.549295\pi\)
−0.154246 + 0.988032i \(0.549295\pi\)
\(354\) 145516. 0.0617169
\(355\) 338392. 0.142511
\(356\) −260807. −0.109067
\(357\) 517829. 0.215038
\(358\) 2.34644e6 0.967614
\(359\) −335743. −0.137490 −0.0687449 0.997634i \(-0.521899\pi\)
−0.0687449 + 0.997634i \(0.521899\pi\)
\(360\) −245396. −0.0997957
\(361\) 2.65250e6 1.07124
\(362\) −3.72791e6 −1.49518
\(363\) 472731. 0.188299
\(364\) 264927. 0.104803
\(365\) 388444. 0.152615
\(366\) −950422. −0.370863
\(367\) 2.22140e6 0.860918 0.430459 0.902610i \(-0.358352\pi\)
0.430459 + 0.902610i \(0.358352\pi\)
\(368\) 597102. 0.229842
\(369\) 2.31508e6 0.885115
\(370\) 1928.35 0.000732289 0
\(371\) 2.61533e6 0.986490
\(372\) −152105. −0.0569885
\(373\) −864573. −0.321758 −0.160879 0.986974i \(-0.551433\pi\)
−0.160879 + 0.986974i \(0.551433\pi\)
\(374\) −5.07569e6 −1.87636
\(375\) −130434. −0.0478976
\(376\) 4.36287e6 1.59149
\(377\) −3.27816e6 −1.18789
\(378\) 696464. 0.250708
\(379\) 4.99610e6 1.78662 0.893311 0.449439i \(-0.148376\pi\)
0.893311 + 0.449439i \(0.148376\pi\)
\(380\) 62955.2 0.0223652
\(381\) −731265. −0.258085
\(382\) −3.05744e6 −1.07201
\(383\) −4.18551e6 −1.45798 −0.728990 0.684524i \(-0.760010\pi\)
−0.728990 + 0.684524i \(0.760010\pi\)
\(384\) −491662. −0.170152
\(385\) 225583. 0.0775629
\(386\) 1.16521e6 0.398049
\(387\) 2.13505e6 0.724653
\(388\) 345875. 0.116638
\(389\) −3.48494e6 −1.16767 −0.583836 0.811872i \(-0.698449\pi\)
−0.583836 + 0.811872i \(0.698449\pi\)
\(390\) 76734.7 0.0255464
\(391\) −1.29673e6 −0.428950
\(392\) −2.13447e6 −0.701575
\(393\) 78392.3 0.0256031
\(394\) −201718. −0.0654642
\(395\) 203370. 0.0655835
\(396\) 610803. 0.195732
\(397\) 899629. 0.286475 0.143238 0.989688i \(-0.454249\pi\)
0.143238 + 0.989688i \(0.454249\pi\)
\(398\) −1685.98 −0.000533513 0
\(399\) −643089. −0.202227
\(400\) 2.59788e6 0.811836
\(401\) −4.00012e6 −1.24226 −0.621129 0.783709i \(-0.713326\pi\)
−0.621129 + 0.783709i \(0.713326\pi\)
\(402\) −961550. −0.296761
\(403\) −5.71318e6 −1.75233
\(404\) −125759. −0.0383340
\(405\) 272993. 0.0827016
\(406\) −1.82813e6 −0.550417
\(407\) −35618.1 −0.0106582
\(408\) 1.31809e6 0.392007
\(409\) −3.35798e6 −0.992590 −0.496295 0.868154i \(-0.665306\pi\)
−0.496295 + 0.868154i \(0.665306\pi\)
\(410\) 293277. 0.0861625
\(411\) 33414.6 0.00975734
\(412\) 375068. 0.108860
\(413\) −562287. −0.162212
\(414\) −845899. −0.242559
\(415\) −184885. −0.0526966
\(416\) 1.25783e6 0.356358
\(417\) −207033. −0.0583040
\(418\) 6.30347e6 1.76457
\(419\) 727261. 0.202374 0.101187 0.994867i \(-0.467736\pi\)
0.101187 + 0.994867i \(0.467736\pi\)
\(420\) −7894.14 −0.00218364
\(421\) −5.18504e6 −1.42576 −0.712881 0.701285i \(-0.752610\pi\)
−0.712881 + 0.701285i \(0.752610\pi\)
\(422\) 963806. 0.263456
\(423\) −5.19423e6 −1.41147
\(424\) 6.65711e6 1.79834
\(425\) −5.64181e6 −1.51512
\(426\) −1.18568e6 −0.316551
\(427\) 3.67251e6 0.974749
\(428\) 782676. 0.206525
\(429\) −1.41735e6 −0.371820
\(430\) 270470. 0.0705422
\(431\) −13997.1 −0.00362947 −0.00181474 0.999998i \(-0.500578\pi\)
−0.00181474 + 0.999998i \(0.500578\pi\)
\(432\) 1.48982e6 0.384083
\(433\) 4.94322e6 1.26704 0.633519 0.773727i \(-0.281610\pi\)
0.633519 + 0.773727i \(0.281610\pi\)
\(434\) −3.18606e6 −0.811952
\(435\) 97680.7 0.0247506
\(436\) −1.04090e6 −0.262237
\(437\) 1.61040e6 0.403394
\(438\) −1.36105e6 −0.338993
\(439\) −3.75112e6 −0.928965 −0.464482 0.885582i \(-0.653760\pi\)
−0.464482 + 0.885582i \(0.653760\pi\)
\(440\) 574201. 0.141394
\(441\) 2.54119e6 0.622216
\(442\) 6.67156e6 1.62432
\(443\) −1.46686e6 −0.355123 −0.177561 0.984110i \(-0.556821\pi\)
−0.177561 + 0.984110i \(0.556821\pi\)
\(444\) 1246.44 0.000300063 0
\(445\) 291898. 0.0698764
\(446\) 5.07150e6 1.20726
\(447\) 1.03653e6 0.245366
\(448\) 2.73067e6 0.642798
\(449\) 7.39536e6 1.73119 0.865593 0.500748i \(-0.166942\pi\)
0.865593 + 0.500748i \(0.166942\pi\)
\(450\) −3.68035e6 −0.856756
\(451\) −5.41703e6 −1.25407
\(452\) −227219. −0.0523117
\(453\) −703400. −0.161049
\(454\) −7.44227e6 −1.69459
\(455\) −296509. −0.0671444
\(456\) −1.63693e6 −0.368653
\(457\) −4.56751e6 −1.02303 −0.511516 0.859274i \(-0.670916\pi\)
−0.511516 + 0.859274i \(0.670916\pi\)
\(458\) 7.11105e6 1.58406
\(459\) −3.23545e6 −0.716809
\(460\) 19768.2 0.00435585
\(461\) −7.21344e6 −1.58085 −0.790424 0.612560i \(-0.790140\pi\)
−0.790424 + 0.612560i \(0.790140\pi\)
\(462\) −790410. −0.172285
\(463\) −3.18009e6 −0.689424 −0.344712 0.938708i \(-0.612023\pi\)
−0.344712 + 0.938708i \(0.612023\pi\)
\(464\) −3.91060e6 −0.843235
\(465\) 170238. 0.0365110
\(466\) −1.77435e6 −0.378508
\(467\) −337722. −0.0716584 −0.0358292 0.999358i \(-0.511407\pi\)
−0.0358292 + 0.999358i \(0.511407\pi\)
\(468\) −802848. −0.169441
\(469\) 3.71551e6 0.779985
\(470\) −658012. −0.137401
\(471\) −1.62127e6 −0.336747
\(472\) −1.43125e6 −0.295707
\(473\) −4.99579e6 −1.02672
\(474\) −712581. −0.145676
\(475\) 7.00654e6 1.42485
\(476\) −686341. −0.138843
\(477\) −7.92564e6 −1.59492
\(478\) −1.34276e6 −0.268800
\(479\) 5.47597e6 1.09049 0.545246 0.838276i \(-0.316436\pi\)
0.545246 + 0.838276i \(0.316436\pi\)
\(480\) −37479.9 −0.00742499
\(481\) 46817.0 0.00922657
\(482\) −3.85864e6 −0.756513
\(483\) −201933. −0.0393857
\(484\) −626567. −0.121578
\(485\) −387106. −0.0747267
\(486\) −3.19752e6 −0.614076
\(487\) 2.13877e6 0.408640 0.204320 0.978904i \(-0.434502\pi\)
0.204320 + 0.978904i \(0.434502\pi\)
\(488\) 9.34805e6 1.77693
\(489\) 1.00111e6 0.189325
\(490\) 321921. 0.0605703
\(491\) 7.48997e6 1.40209 0.701046 0.713116i \(-0.252717\pi\)
0.701046 + 0.713116i \(0.252717\pi\)
\(492\) 189566. 0.0353059
\(493\) 8.49267e6 1.57372
\(494\) −8.28537e6 −1.52755
\(495\) −683617. −0.125401
\(496\) −6.81540e6 −1.24390
\(497\) 4.58156e6 0.831999
\(498\) 647813. 0.117051
\(499\) 2.96062e6 0.532268 0.266134 0.963936i \(-0.414254\pi\)
0.266134 + 0.963936i \(0.414254\pi\)
\(500\) 172880. 0.0309258
\(501\) 800298. 0.142448
\(502\) −9.14971e6 −1.62050
\(503\) 9.55380e6 1.68367 0.841833 0.539738i \(-0.181477\pi\)
0.841833 + 0.539738i \(0.181477\pi\)
\(504\) −3.32247e6 −0.582619
\(505\) 140750. 0.0245596
\(506\) 1.97931e6 0.343668
\(507\) 466858. 0.0806612
\(508\) 969233. 0.166636
\(509\) −8.17902e6 −1.39929 −0.699643 0.714492i \(-0.746658\pi\)
−0.699643 + 0.714492i \(0.746658\pi\)
\(510\) −198795. −0.0338439
\(511\) 5.25923e6 0.890983
\(512\) 6.66570e6 1.12375
\(513\) 4.01810e6 0.674104
\(514\) 3.99942e6 0.667712
\(515\) −419781. −0.0697436
\(516\) 174825. 0.0289054
\(517\) 1.21539e7 1.99982
\(518\) 26108.4 0.00427519
\(519\) 2.61864e6 0.426733
\(520\) −754739. −0.122402
\(521\) −9.47540e6 −1.52934 −0.764669 0.644424i \(-0.777097\pi\)
−0.764669 + 0.644424i \(0.777097\pi\)
\(522\) 5.54006e6 0.889893
\(523\) −1.07462e7 −1.71791 −0.858953 0.512055i \(-0.828884\pi\)
−0.858953 + 0.512055i \(0.828884\pi\)
\(524\) −103903. −0.0165310
\(525\) −878570. −0.139116
\(526\) 4.54481e6 0.716228
\(527\) 1.48010e7 2.32148
\(528\) −1.69079e6 −0.263939
\(529\) −5.93067e6 −0.921435
\(530\) −1.00403e6 −0.155259
\(531\) 1.70398e6 0.262258
\(532\) 852364. 0.130571
\(533\) 7.12023e6 1.08562
\(534\) −1.02277e6 −0.155212
\(535\) −875979. −0.132315
\(536\) 9.45751e6 1.42189
\(537\) −1.69748e6 −0.254021
\(538\) 136585. 0.0203445
\(539\) −5.94612e6 −0.881580
\(540\) 49323.5 0.00727896
\(541\) −6.91734e6 −1.01612 −0.508061 0.861321i \(-0.669638\pi\)
−0.508061 + 0.861321i \(0.669638\pi\)
\(542\) −2.05525e6 −0.300516
\(543\) 2.69687e6 0.392518
\(544\) −3.25862e6 −0.472103
\(545\) 1.16499e6 0.168008
\(546\) 1.03893e6 0.149143
\(547\) 6.66329e6 0.952183 0.476091 0.879396i \(-0.342053\pi\)
0.476091 + 0.879396i \(0.342053\pi\)
\(548\) −44288.4 −0.00629997
\(549\) −1.11293e7 −1.57594
\(550\) 8.61162e6 1.21389
\(551\) −1.05470e7 −1.47996
\(552\) −514002. −0.0717988
\(553\) 2.75347e6 0.382884
\(554\) −7.76189e6 −1.07447
\(555\) −1395.02 −0.000192242 0
\(556\) 274405. 0.0376448
\(557\) 684613. 0.0934991 0.0467495 0.998907i \(-0.485114\pi\)
0.0467495 + 0.998907i \(0.485114\pi\)
\(558\) 9.65520e6 1.31273
\(559\) 6.56653e6 0.888805
\(560\) −353713. −0.0476630
\(561\) 3.67189e6 0.492586
\(562\) 7.49335e6 1.00077
\(563\) 480541. 0.0638939 0.0319470 0.999490i \(-0.489829\pi\)
0.0319470 + 0.999490i \(0.489829\pi\)
\(564\) −425321. −0.0563013
\(565\) 254306. 0.0335147
\(566\) −5.00613e6 −0.656842
\(567\) 3.69610e6 0.482822
\(568\) 1.16620e7 1.51671
\(569\) 6.88712e6 0.891779 0.445889 0.895088i \(-0.352887\pi\)
0.445889 + 0.895088i \(0.352887\pi\)
\(570\) 246883. 0.0318276
\(571\) 613961. 0.0788044 0.0394022 0.999223i \(-0.487455\pi\)
0.0394022 + 0.999223i \(0.487455\pi\)
\(572\) 1.87858e6 0.240071
\(573\) 2.21183e6 0.281427
\(574\) 3.97073e6 0.503027
\(575\) 2.20008e6 0.277504
\(576\) −8.27516e6 −1.03925
\(577\) −2.21463e6 −0.276925 −0.138462 0.990368i \(-0.544216\pi\)
−0.138462 + 0.990368i \(0.544216\pi\)
\(578\) −9.90386e6 −1.23306
\(579\) −842946. −0.104497
\(580\) −129468. −0.0159806
\(581\) −2.50320e6 −0.307649
\(582\) 1.35637e6 0.165985
\(583\) 1.85451e7 2.25974
\(584\) 1.33869e7 1.62423
\(585\) 898556. 0.108556
\(586\) 9.91499e6 1.19275
\(587\) 1.10037e7 1.31809 0.659044 0.752105i \(-0.270961\pi\)
0.659044 + 0.752105i \(0.270961\pi\)
\(588\) 208081. 0.0248193
\(589\) −1.83813e7 −2.18317
\(590\) 215863. 0.0255298
\(591\) 145928. 0.0171858
\(592\) 55849.1 0.00654956
\(593\) −6.21747e6 −0.726067 −0.363034 0.931776i \(-0.618259\pi\)
−0.363034 + 0.931776i \(0.618259\pi\)
\(594\) 4.93857e6 0.574295
\(595\) 768160. 0.0889528
\(596\) −1.37384e6 −0.158424
\(597\) 1219.68 0.000140059 0
\(598\) −2.60164e6 −0.297505
\(599\) −6.94013e6 −0.790315 −0.395158 0.918613i \(-0.629310\pi\)
−0.395158 + 0.918613i \(0.629310\pi\)
\(600\) −2.23632e6 −0.253604
\(601\) −6.03770e6 −0.681845 −0.340922 0.940091i \(-0.610739\pi\)
−0.340922 + 0.940091i \(0.610739\pi\)
\(602\) 3.66195e6 0.411834
\(603\) −1.12597e7 −1.26105
\(604\) 932301. 0.103983
\(605\) 701261. 0.0778917
\(606\) −493169. −0.0545525
\(607\) 9.86943e6 1.08723 0.543613 0.839336i \(-0.317056\pi\)
0.543613 + 0.839336i \(0.317056\pi\)
\(608\) 4.04687e6 0.443976
\(609\) 1.32252e6 0.144497
\(610\) −1.40988e6 −0.153411
\(611\) −1.59753e7 −1.73120
\(612\) 2.07992e6 0.224475
\(613\) 1.25306e6 0.134685 0.0673426 0.997730i \(-0.478548\pi\)
0.0673426 + 0.997730i \(0.478548\pi\)
\(614\) −6.07250e6 −0.650049
\(615\) −212164. −0.0226196
\(616\) 7.77423e6 0.825478
\(617\) 3.05448e6 0.323016 0.161508 0.986871i \(-0.448364\pi\)
0.161508 + 0.986871i \(0.448364\pi\)
\(618\) 1.47085e6 0.154917
\(619\) −1.75579e7 −1.84181 −0.920905 0.389787i \(-0.872549\pi\)
−0.920905 + 0.389787i \(0.872549\pi\)
\(620\) −225637. −0.0235739
\(621\) 1.26170e6 0.131288
\(622\) −1.97878e6 −0.205079
\(623\) 3.95206e6 0.407947
\(624\) 2.22240e6 0.228486
\(625\) 9.47491e6 0.970230
\(626\) −7.82345e6 −0.797926
\(627\) −4.56010e6 −0.463239
\(628\) 2.14887e6 0.217425
\(629\) −121288. −0.0122233
\(630\) 501097. 0.0503003
\(631\) 1.13580e7 1.13561 0.567806 0.823163i \(-0.307793\pi\)
0.567806 + 0.823163i \(0.307793\pi\)
\(632\) 7.00872e6 0.697985
\(633\) −697243. −0.0691632
\(634\) 720390. 0.0711778
\(635\) −1.08478e6 −0.106759
\(636\) −648977. −0.0636189
\(637\) 7.81567e6 0.763164
\(638\) −1.29631e7 −1.26084
\(639\) −1.38842e7 −1.34514
\(640\) −729343. −0.0703853
\(641\) 1.83468e7 1.76366 0.881829 0.471569i \(-0.156312\pi\)
0.881829 + 0.471569i \(0.156312\pi\)
\(642\) 3.06931e6 0.293902
\(643\) −8.68139e6 −0.828060 −0.414030 0.910263i \(-0.635879\pi\)
−0.414030 + 0.910263i \(0.635879\pi\)
\(644\) 267646. 0.0254299
\(645\) −195666. −0.0185189
\(646\) 2.14647e7 2.02369
\(647\) 4.39313e6 0.412584 0.206292 0.978490i \(-0.433860\pi\)
0.206292 + 0.978490i \(0.433860\pi\)
\(648\) 9.40812e6 0.880167
\(649\) −3.98714e6 −0.371578
\(650\) −1.13192e7 −1.05083
\(651\) 2.30488e6 0.213156
\(652\) −1.32689e6 −0.122240
\(653\) 2.86980e6 0.263372 0.131686 0.991291i \(-0.457961\pi\)
0.131686 + 0.991291i \(0.457961\pi\)
\(654\) −4.08195e6 −0.373185
\(655\) 116289. 0.0105910
\(656\) 8.49390e6 0.770633
\(657\) −1.59378e7 −1.44051
\(658\) −8.90895e6 −0.802161
\(659\) −1.18400e7 −1.06203 −0.531017 0.847361i \(-0.678190\pi\)
−0.531017 + 0.847361i \(0.678190\pi\)
\(660\) −55976.8 −0.00500205
\(661\) 1.07309e7 0.955281 0.477641 0.878555i \(-0.341492\pi\)
0.477641 + 0.878555i \(0.341492\pi\)
\(662\) 2.04444e7 1.81313
\(663\) −4.82638e6 −0.426420
\(664\) −6.37168e6 −0.560834
\(665\) −953974. −0.0836532
\(666\) −79120.1 −0.00691196
\(667\) −3.31180e6 −0.288237
\(668\) −1.06073e6 −0.0919739
\(669\) −3.66886e6 −0.316932
\(670\) −1.42639e6 −0.122758
\(671\) 2.60415e7 2.23285
\(672\) −507448. −0.0433479
\(673\) −2.07757e7 −1.76814 −0.884071 0.467353i \(-0.845208\pi\)
−0.884071 + 0.467353i \(0.845208\pi\)
\(674\) −1.79764e7 −1.52424
\(675\) 5.48941e6 0.463731
\(676\) −618783. −0.0520800
\(677\) 1.84359e7 1.54594 0.772969 0.634444i \(-0.218771\pi\)
0.772969 + 0.634444i \(0.218771\pi\)
\(678\) −891052. −0.0744439
\(679\) −5.24111e6 −0.436264
\(680\) 1.95529e6 0.162158
\(681\) 5.38394e6 0.444869
\(682\) −2.25921e7 −1.85993
\(683\) −1.10599e7 −0.907191 −0.453596 0.891208i \(-0.649859\pi\)
−0.453596 + 0.891208i \(0.649859\pi\)
\(684\) −2.58304e6 −0.211102
\(685\) 49568.0 0.00403622
\(686\) 1.09559e7 0.888867
\(687\) −5.14433e6 −0.415850
\(688\) 7.83338e6 0.630926
\(689\) −2.43760e7 −1.95621
\(690\) 77522.1 0.00619873
\(691\) −7.08758e6 −0.564680 −0.282340 0.959314i \(-0.591111\pi\)
−0.282340 + 0.959314i \(0.591111\pi\)
\(692\) −3.47079e6 −0.275527
\(693\) −9.25562e6 −0.732104
\(694\) 8.59196e6 0.677163
\(695\) −307117. −0.0241181
\(696\) 3.36636e6 0.263413
\(697\) −1.84462e7 −1.43822
\(698\) −3.90465e6 −0.303350
\(699\) 1.28362e6 0.0993669
\(700\) 1.16447e6 0.0898225
\(701\) 7.26755e6 0.558590 0.279295 0.960205i \(-0.409899\pi\)
0.279295 + 0.960205i \(0.409899\pi\)
\(702\) −6.49133e6 −0.497154
\(703\) 150627. 0.0114951
\(704\) 1.93630e7 1.47245
\(705\) 476023. 0.0360708
\(706\) 3.75400e6 0.283454
\(707\) 1.90565e6 0.143382
\(708\) 139528. 0.0104611
\(709\) −1.53263e7 −1.14504 −0.572520 0.819891i \(-0.694034\pi\)
−0.572520 + 0.819891i \(0.694034\pi\)
\(710\) −1.75887e6 −0.130944
\(711\) −8.34425e6 −0.619032
\(712\) 1.00596e7 0.743673
\(713\) −5.77180e6 −0.425194
\(714\) −2.69153e6 −0.197585
\(715\) −2.10253e6 −0.153807
\(716\) 2.24987e6 0.164012
\(717\) 971389. 0.0705660
\(718\) 1.74509e6 0.126330
\(719\) 9.07927e6 0.654981 0.327490 0.944855i \(-0.393797\pi\)
0.327490 + 0.944855i \(0.393797\pi\)
\(720\) 1.07191e6 0.0770596
\(721\) −5.68349e6 −0.407171
\(722\) −1.37869e7 −0.984292
\(723\) 2.79144e6 0.198602
\(724\) −3.57448e6 −0.253435
\(725\) −1.44090e7 −1.01810
\(726\) −2.45712e6 −0.173015
\(727\) −2.08130e7 −1.46049 −0.730245 0.683185i \(-0.760594\pi\)
−0.730245 + 0.683185i \(0.760594\pi\)
\(728\) −1.02186e7 −0.714597
\(729\) −9.57966e6 −0.667623
\(730\) −2.01902e6 −0.140228
\(731\) −1.70118e7 −1.17749
\(732\) −911307. −0.0628618
\(733\) −1.84241e7 −1.26656 −0.633282 0.773921i \(-0.718293\pi\)
−0.633282 + 0.773921i \(0.718293\pi\)
\(734\) −1.15462e7 −0.791041
\(735\) −232887. −0.0159011
\(736\) 1.27073e6 0.0864688
\(737\) 2.63464e7 1.78670
\(738\) −1.20331e7 −0.813274
\(739\) 1.18203e7 0.796189 0.398095 0.917344i \(-0.369672\pi\)
0.398095 + 0.917344i \(0.369672\pi\)
\(740\) 1848.99 0.000124124 0
\(741\) 5.99386e6 0.401016
\(742\) −1.35938e7 −0.906420
\(743\) −7.93755e6 −0.527490 −0.263745 0.964592i \(-0.584958\pi\)
−0.263745 + 0.964592i \(0.584958\pi\)
\(744\) 5.86688e6 0.388575
\(745\) 1.53762e6 0.101498
\(746\) 4.49380e6 0.295642
\(747\) 7.58582e6 0.497395
\(748\) −4.86680e6 −0.318045
\(749\) −1.18601e7 −0.772471
\(750\) 677960. 0.0440099
\(751\) 3.47806e6 0.225029 0.112514 0.993650i \(-0.464110\pi\)
0.112514 + 0.993650i \(0.464110\pi\)
\(752\) −1.90574e7 −1.22891
\(753\) 6.61914e6 0.425416
\(754\) 1.70389e7 1.09148
\(755\) −1.04344e6 −0.0666194
\(756\) 667800. 0.0424954
\(757\) −1.81981e7 −1.15421 −0.577106 0.816669i \(-0.695818\pi\)
−0.577106 + 0.816669i \(0.695818\pi\)
\(758\) −2.59683e7 −1.64161
\(759\) −1.43189e6 −0.0902204
\(760\) −2.42826e6 −0.152497
\(761\) −1.88105e7 −1.17744 −0.588720 0.808337i \(-0.700368\pi\)
−0.588720 + 0.808337i \(0.700368\pi\)
\(762\) 3.80090e6 0.237137
\(763\) 1.57730e7 0.980851
\(764\) −2.93161e6 −0.181707
\(765\) −2.32787e6 −0.143815
\(766\) 2.17551e7 1.33964
\(767\) 5.24075e6 0.321666
\(768\) −1.79520e6 −0.109827
\(769\) −7.31422e6 −0.446018 −0.223009 0.974816i \(-0.571588\pi\)
−0.223009 + 0.974816i \(0.571588\pi\)
\(770\) −1.17251e6 −0.0712674
\(771\) −2.89329e6 −0.175289
\(772\) 1.11726e6 0.0674699
\(773\) 2.74174e7 1.65036 0.825179 0.564872i \(-0.191074\pi\)
0.825179 + 0.564872i \(0.191074\pi\)
\(774\) −1.10974e7 −0.665836
\(775\) −2.51120e7 −1.50185
\(776\) −1.33408e7 −0.795294
\(777\) −18887.5 −0.00112233
\(778\) 1.81137e7 1.07290
\(779\) 2.29083e7 1.35254
\(780\) 73576.7 0.00433016
\(781\) 3.24875e7 1.90585
\(782\) 6.74001e6 0.394134
\(783\) −8.26325e6 −0.481666
\(784\) 9.32351e6 0.541738
\(785\) −2.40503e6 −0.139299
\(786\) −407460. −0.0235250
\(787\) 2.87493e7 1.65459 0.827294 0.561769i \(-0.189879\pi\)
0.827294 + 0.561769i \(0.189879\pi\)
\(788\) −193416. −0.0110963
\(789\) −3.28784e6 −0.188026
\(790\) −1.05706e6 −0.0602604
\(791\) 3.44310e6 0.195663
\(792\) −2.35594e7 −1.33460
\(793\) −3.42293e7 −1.93293
\(794\) −4.67601e6 −0.263223
\(795\) 726342. 0.0407590
\(796\) −1616.59 −9.04313e−5 0
\(797\) 5.42597e6 0.302574 0.151287 0.988490i \(-0.451658\pi\)
0.151287 + 0.988490i \(0.451658\pi\)
\(798\) 3.34259e6 0.185813
\(799\) 4.13870e7 2.29349
\(800\) 5.52871e6 0.305421
\(801\) −1.19765e7 −0.659552
\(802\) 2.07914e7 1.14143
\(803\) 3.72928e7 2.04097
\(804\) −921977. −0.0503014
\(805\) −299552. −0.0162923
\(806\) 2.96955e7 1.61010
\(807\) −98809.2 −0.00534089
\(808\) 4.85066e6 0.261380
\(809\) −2.21881e7 −1.19193 −0.595963 0.803012i \(-0.703230\pi\)
−0.595963 + 0.803012i \(0.703230\pi\)
\(810\) −1.41894e6 −0.0759890
\(811\) −3.34953e7 −1.78826 −0.894131 0.447805i \(-0.852206\pi\)
−0.894131 + 0.447805i \(0.852206\pi\)
\(812\) −1.75289e6 −0.0932965
\(813\) 1.48683e6 0.0788921
\(814\) 185133. 0.00979314
\(815\) 1.48507e6 0.0783162
\(816\) −5.75751e6 −0.302698
\(817\) 2.11268e7 1.10734
\(818\) 1.74538e7 0.912025
\(819\) 1.21657e7 0.633765
\(820\) 281207. 0.0146047
\(821\) −1.24443e7 −0.644338 −0.322169 0.946682i \(-0.604412\pi\)
−0.322169 + 0.946682i \(0.604412\pi\)
\(822\) −173679. −0.00896538
\(823\) 6.78002e6 0.348925 0.174462 0.984664i \(-0.444181\pi\)
0.174462 + 0.984664i \(0.444181\pi\)
\(824\) −1.44668e7 −0.742259
\(825\) −6.22988e6 −0.318673
\(826\) 2.92261e6 0.149046
\(827\) −3.17778e7 −1.61570 −0.807849 0.589390i \(-0.799368\pi\)
−0.807849 + 0.589390i \(0.799368\pi\)
\(828\) −811086. −0.0411141
\(829\) −2.96573e7 −1.49881 −0.749403 0.662114i \(-0.769660\pi\)
−0.749403 + 0.662114i \(0.769660\pi\)
\(830\) 960981. 0.0484194
\(831\) 5.61516e6 0.282072
\(832\) −2.54510e7 −1.27467
\(833\) −2.02479e7 −1.01104
\(834\) 1.07610e6 0.0535718
\(835\) 1.18718e6 0.0589252
\(836\) 6.04405e6 0.299097
\(837\) −1.44012e7 −0.710533
\(838\) −3.78009e6 −0.185948
\(839\) 3.06249e7 1.50200 0.751000 0.660303i \(-0.229572\pi\)
0.751000 + 0.660303i \(0.229572\pi\)
\(840\) 304486. 0.0148891
\(841\) 1.17886e6 0.0574739
\(842\) 2.69504e7 1.31004
\(843\) −5.42089e6 −0.262725
\(844\) 924140. 0.0446562
\(845\) 692548. 0.0333663
\(846\) 2.69981e7 1.29690
\(847\) 9.49451e6 0.454741
\(848\) −2.90788e7 −1.38863
\(849\) 3.62157e6 0.172436
\(850\) 2.93245e7 1.39214
\(851\) 47297.3 0.00223879
\(852\) −1.13688e6 −0.0536558
\(853\) 4.13271e7 1.94474 0.972371 0.233442i \(-0.0749988\pi\)
0.972371 + 0.233442i \(0.0749988\pi\)
\(854\) −1.90886e7 −0.895633
\(855\) 2.89097e6 0.135247
\(856\) −3.01887e7 −1.40819
\(857\) −1.33030e6 −0.0618724 −0.0309362 0.999521i \(-0.509849\pi\)
−0.0309362 + 0.999521i \(0.509849\pi\)
\(858\) 7.36695e6 0.341641
\(859\) 9.95944e6 0.460524 0.230262 0.973129i \(-0.426042\pi\)
0.230262 + 0.973129i \(0.426042\pi\)
\(860\) 259339. 0.0119570
\(861\) −2.87254e6 −0.132056
\(862\) 72752.6 0.00333488
\(863\) 7.55868e6 0.345477 0.172738 0.984968i \(-0.444738\pi\)
0.172738 + 0.984968i \(0.444738\pi\)
\(864\) 3.17059e6 0.144496
\(865\) 3.88455e6 0.176523
\(866\) −2.56934e7 −1.16420
\(867\) 7.16472e6 0.323706
\(868\) −3.05494e6 −0.137627
\(869\) 1.95247e7 0.877070
\(870\) −507716. −0.0227417
\(871\) −3.46301e7 −1.54671
\(872\) 4.01488e7 1.78806
\(873\) 1.58829e7 0.705334
\(874\) −8.37039e6 −0.370653
\(875\) −2.61969e6 −0.115672
\(876\) −1.30504e6 −0.0574597
\(877\) −1.14551e7 −0.502922 −0.251461 0.967867i \(-0.580911\pi\)
−0.251461 + 0.967867i \(0.580911\pi\)
\(878\) 1.94972e7 0.853565
\(879\) −7.17277e6 −0.313123
\(880\) −2.50816e6 −0.109181
\(881\) −1.45015e7 −0.629466 −0.314733 0.949180i \(-0.601915\pi\)
−0.314733 + 0.949180i \(0.601915\pi\)
\(882\) −1.32084e7 −0.571713
\(883\) 3.57921e7 1.54485 0.772424 0.635107i \(-0.219044\pi\)
0.772424 + 0.635107i \(0.219044\pi\)
\(884\) 6.39699e6 0.275324
\(885\) −156161. −0.00670215
\(886\) 7.62430e6 0.326299
\(887\) 4.62246e6 0.197271 0.0986356 0.995124i \(-0.468552\pi\)
0.0986356 + 0.995124i \(0.468552\pi\)
\(888\) −48076.5 −0.00204598
\(889\) −1.46870e7 −0.623274
\(890\) −1.51720e6 −0.0642048
\(891\) 2.62088e7 1.10599
\(892\) 4.86278e6 0.204632
\(893\) −5.13982e7 −2.15685
\(894\) −5.38759e6 −0.225450
\(895\) −2.51808e6 −0.105078
\(896\) −9.87472e6 −0.410918
\(897\) 1.88210e6 0.0781017
\(898\) −3.84390e7 −1.59067
\(899\) 3.78013e7 1.55994
\(900\) −3.52888e6 −0.145221
\(901\) 6.31504e7 2.59158
\(902\) 2.81562e7 1.15228
\(903\) −2.64916e6 −0.108116
\(904\) 8.76411e6 0.356687
\(905\) 4.00060e6 0.162369
\(906\) 3.65607e6 0.147977
\(907\) 3.19267e7 1.28865 0.644325 0.764752i \(-0.277138\pi\)
0.644325 + 0.764752i \(0.277138\pi\)
\(908\) −7.13598e6 −0.287236
\(909\) −5.77496e6 −0.231814
\(910\) 1.54117e6 0.0616946
\(911\) −1.68727e7 −0.673581 −0.336790 0.941580i \(-0.609341\pi\)
−0.336790 + 0.941580i \(0.609341\pi\)
\(912\) 7.15023e6 0.284664
\(913\) −1.77500e7 −0.704729
\(914\) 2.37406e7 0.939997
\(915\) 1.01994e6 0.0402739
\(916\) 6.81840e6 0.268500
\(917\) 1.57446e6 0.0618313
\(918\) 1.68170e7 0.658629
\(919\) −7.70898e6 −0.301098 −0.150549 0.988603i \(-0.548104\pi\)
−0.150549 + 0.988603i \(0.548104\pi\)
\(920\) −762483. −0.0297003
\(921\) 4.39301e6 0.170653
\(922\) 3.74934e7 1.45254
\(923\) −4.27021e7 −1.64985
\(924\) −757881. −0.0292026
\(925\) 205782. 0.00790774
\(926\) 1.65292e7 0.633467
\(927\) 1.72235e7 0.658298
\(928\) −8.32242e6 −0.317234
\(929\) 1.49959e7 0.570076 0.285038 0.958516i \(-0.407994\pi\)
0.285038 + 0.958516i \(0.407994\pi\)
\(930\) −884847. −0.0335476
\(931\) 2.51458e7 0.950803
\(932\) −1.70133e6 −0.0641577
\(933\) 1.43150e6 0.0538380
\(934\) 1.75538e6 0.0658422
\(935\) 5.44697e6 0.203763
\(936\) 3.09668e7 1.15533
\(937\) −3.09311e7 −1.15092 −0.575462 0.817829i \(-0.695178\pi\)
−0.575462 + 0.817829i \(0.695178\pi\)
\(938\) −1.93121e7 −0.716677
\(939\) 5.65969e6 0.209473
\(940\) −630931. −0.0232896
\(941\) −1.45145e7 −0.534352 −0.267176 0.963648i \(-0.586091\pi\)
−0.267176 + 0.963648i \(0.586091\pi\)
\(942\) 8.42690e6 0.309415
\(943\) 7.19329e6 0.263420
\(944\) 6.25183e6 0.228337
\(945\) −747409. −0.0272257
\(946\) 2.59666e7 0.943383
\(947\) −1.70022e7 −0.616070 −0.308035 0.951375i \(-0.599671\pi\)
−0.308035 + 0.951375i \(0.599671\pi\)
\(948\) −683255. −0.0246923
\(949\) −4.90182e7 −1.76682
\(950\) −3.64180e7 −1.30920
\(951\) −521149. −0.0186858
\(952\) 2.64730e7 0.946697
\(953\) 4.26676e7 1.52183 0.760914 0.648853i \(-0.224751\pi\)
0.760914 + 0.648853i \(0.224751\pi\)
\(954\) 4.11952e7 1.46546
\(955\) 3.28109e6 0.116415
\(956\) −1.28750e6 −0.0455619
\(957\) 9.37788e6 0.330998
\(958\) −2.84625e7 −1.00198
\(959\) 671111. 0.0235639
\(960\) 758373. 0.0265586
\(961\) 3.72509e7 1.30115
\(962\) −243341. −0.00847769
\(963\) 3.59413e7 1.24890
\(964\) −3.69983e6 −0.128230
\(965\) −1.25045e6 −0.0432262
\(966\) 1.04959e6 0.0361889
\(967\) 2.51343e7 0.864371 0.432185 0.901785i \(-0.357743\pi\)
0.432185 + 0.901785i \(0.357743\pi\)
\(968\) 2.41675e7 0.828977
\(969\) −1.55282e7 −0.531265
\(970\) 2.01207e6 0.0686615
\(971\) 2.42214e7 0.824425 0.412213 0.911088i \(-0.364756\pi\)
0.412213 + 0.911088i \(0.364756\pi\)
\(972\) −3.06592e6 −0.104087
\(973\) −4.15812e6 −0.140804
\(974\) −1.11167e7 −0.375473
\(975\) 8.18864e6 0.275867
\(976\) −4.08330e7 −1.37210
\(977\) 4.57307e7 1.53275 0.766376 0.642393i \(-0.222058\pi\)
0.766376 + 0.642393i \(0.222058\pi\)
\(978\) −5.20346e6 −0.173958
\(979\) 2.80238e7 0.934480
\(980\) 308673. 0.0102668
\(981\) −4.77993e7 −1.58580
\(982\) −3.89307e7 −1.28829
\(983\) 142068. 0.00468936 0.00234468 0.999997i \(-0.499254\pi\)
0.00234468 + 0.999997i \(0.499254\pi\)
\(984\) −7.31179e6 −0.240733
\(985\) 216473. 0.00710909
\(986\) −4.41424e7 −1.44599
\(987\) 6.44497e6 0.210585
\(988\) −7.94439e6 −0.258921
\(989\) 6.63391e6 0.215665
\(990\) 3.55324e6 0.115222
\(991\) −3.50168e7 −1.13264 −0.566321 0.824185i \(-0.691634\pi\)
−0.566321 + 0.824185i \(0.691634\pi\)
\(992\) −1.45043e7 −0.467970
\(993\) −1.47900e7 −0.475988
\(994\) −2.38136e7 −0.764469
\(995\) 1809.31 5.79369e−5 0
\(996\) 621152. 0.0198404
\(997\) 1.06621e7 0.339707 0.169854 0.985469i \(-0.445670\pi\)
0.169854 + 0.985469i \(0.445670\pi\)
\(998\) −1.53884e7 −0.489066
\(999\) 118011. 0.00374119
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.6.a.b.1.15 43
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.6.a.b.1.15 43 1.1 even 1 trivial