Properties

Label 197.6.a.b.1.19
Level $197$
Weight $6$
Character 197.1
Self dual yes
Analytic conductor $31.596$
Analytic rank $0$
Dimension $43$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,6,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.5956125032\)
Analytic rank: \(0\)
Dimension: \(43\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.834938 q^{2} +25.3960 q^{3} -31.3029 q^{4} -87.5439 q^{5} -21.2041 q^{6} -171.205 q^{7} +52.8540 q^{8} +401.958 q^{9} +73.0938 q^{10} +131.758 q^{11} -794.969 q^{12} -315.350 q^{13} +142.945 q^{14} -2223.27 q^{15} +957.562 q^{16} +1295.01 q^{17} -335.610 q^{18} +1195.63 q^{19} +2740.38 q^{20} -4347.92 q^{21} -110.010 q^{22} +1036.50 q^{23} +1342.28 q^{24} +4538.94 q^{25} +263.297 q^{26} +4036.91 q^{27} +5359.20 q^{28} +7000.27 q^{29} +1856.29 q^{30} +5369.93 q^{31} -2490.83 q^{32} +3346.13 q^{33} -1081.25 q^{34} +14987.9 q^{35} -12582.4 q^{36} -875.870 q^{37} -998.277 q^{38} -8008.63 q^{39} -4627.04 q^{40} +628.033 q^{41} +3630.24 q^{42} -22948.9 q^{43} -4124.41 q^{44} -35189.0 q^{45} -865.412 q^{46} -8828.97 q^{47} +24318.3 q^{48} +12504.1 q^{49} -3789.73 q^{50} +32888.2 q^{51} +9871.35 q^{52} -7288.61 q^{53} -3370.57 q^{54} -11534.6 q^{55} -9048.85 q^{56} +30364.3 q^{57} -5844.79 q^{58} +40877.9 q^{59} +69594.7 q^{60} -40999.2 q^{61} -4483.56 q^{62} -68817.1 q^{63} -28562.3 q^{64} +27606.9 q^{65} -2793.81 q^{66} +43542.0 q^{67} -40537.6 q^{68} +26323.0 q^{69} -12514.0 q^{70} +27327.1 q^{71} +21245.1 q^{72} +42264.1 q^{73} +731.297 q^{74} +115271. q^{75} -37426.7 q^{76} -22557.6 q^{77} +6686.71 q^{78} +14871.3 q^{79} -83828.8 q^{80} +4845.53 q^{81} -524.368 q^{82} +76584.2 q^{83} +136102. q^{84} -113370. q^{85} +19160.9 q^{86} +177779. q^{87} +6963.93 q^{88} -81131.1 q^{89} +29380.6 q^{90} +53989.3 q^{91} -32445.4 q^{92} +136375. q^{93} +7371.64 q^{94} -104670. q^{95} -63257.2 q^{96} +93274.6 q^{97} -10440.1 q^{98} +52961.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 43 q + 12 q^{2} + 98 q^{3} + 752 q^{4} + 146 q^{5} + 144 q^{6} + 831 q^{7} + 699 q^{8} + 3725 q^{9} + 1033 q^{10} + 1370 q^{11} + 3136 q^{12} + 2948 q^{13} + 929 q^{14} + 1859 q^{15} + 14080 q^{16} + 1545 q^{17}+ \cdots + 119867 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.834938 −0.147598 −0.0737988 0.997273i \(-0.523512\pi\)
−0.0737988 + 0.997273i \(0.523512\pi\)
\(3\) 25.3960 1.62916 0.814578 0.580054i \(-0.196969\pi\)
0.814578 + 0.580054i \(0.196969\pi\)
\(4\) −31.3029 −0.978215
\(5\) −87.5439 −1.56603 −0.783017 0.622001i \(-0.786320\pi\)
−0.783017 + 0.622001i \(0.786320\pi\)
\(6\) −21.2041 −0.240459
\(7\) −171.205 −1.32060 −0.660299 0.751003i \(-0.729570\pi\)
−0.660299 + 0.751003i \(0.729570\pi\)
\(8\) 52.8540 0.291980
\(9\) 401.958 1.65415
\(10\) 73.0938 0.231143
\(11\) 131.758 0.328319 0.164159 0.986434i \(-0.447509\pi\)
0.164159 + 0.986434i \(0.447509\pi\)
\(12\) −794.969 −1.59366
\(13\) −315.350 −0.517528 −0.258764 0.965941i \(-0.583315\pi\)
−0.258764 + 0.965941i \(0.583315\pi\)
\(14\) 142.945 0.194917
\(15\) −2223.27 −2.55131
\(16\) 957.562 0.935119
\(17\) 1295.01 1.08680 0.543402 0.839472i \(-0.317136\pi\)
0.543402 + 0.839472i \(0.317136\pi\)
\(18\) −335.610 −0.244148
\(19\) 1195.63 0.759824 0.379912 0.925023i \(-0.375954\pi\)
0.379912 + 0.925023i \(0.375954\pi\)
\(20\) 2740.38 1.53192
\(21\) −4347.92 −2.15146
\(22\) −110.010 −0.0484590
\(23\) 1036.50 0.408554 0.204277 0.978913i \(-0.434516\pi\)
0.204277 + 0.978913i \(0.434516\pi\)
\(24\) 1342.28 0.475680
\(25\) 4538.94 1.45246
\(26\) 263.297 0.0763859
\(27\) 4036.91 1.06571
\(28\) 5359.20 1.29183
\(29\) 7000.27 1.54568 0.772840 0.634601i \(-0.218836\pi\)
0.772840 + 0.634601i \(0.218836\pi\)
\(30\) 1856.29 0.376568
\(31\) 5369.93 1.00361 0.501805 0.864981i \(-0.332670\pi\)
0.501805 + 0.864981i \(0.332670\pi\)
\(32\) −2490.83 −0.430001
\(33\) 3346.13 0.534882
\(34\) −1081.25 −0.160410
\(35\) 14987.9 2.06810
\(36\) −12582.4 −1.61811
\(37\) −875.870 −0.105181 −0.0525903 0.998616i \(-0.516748\pi\)
−0.0525903 + 0.998616i \(0.516748\pi\)
\(38\) −998.277 −0.112148
\(39\) −8008.63 −0.843134
\(40\) −4627.04 −0.457250
\(41\) 628.033 0.0583475 0.0291738 0.999574i \(-0.490712\pi\)
0.0291738 + 0.999574i \(0.490712\pi\)
\(42\) 3630.24 0.317550
\(43\) −22948.9 −1.89274 −0.946370 0.323084i \(-0.895280\pi\)
−0.946370 + 0.323084i \(0.895280\pi\)
\(44\) −4124.41 −0.321166
\(45\) −35189.0 −2.59045
\(46\) −865.412 −0.0603015
\(47\) −8828.97 −0.582995 −0.291498 0.956572i \(-0.594154\pi\)
−0.291498 + 0.956572i \(0.594154\pi\)
\(48\) 24318.3 1.52346
\(49\) 12504.1 0.743979
\(50\) −3789.73 −0.214380
\(51\) 32888.2 1.77057
\(52\) 9871.35 0.506254
\(53\) −7288.61 −0.356414 −0.178207 0.983993i \(-0.557030\pi\)
−0.178207 + 0.983993i \(0.557030\pi\)
\(54\) −3370.57 −0.157296
\(55\) −11534.6 −0.514158
\(56\) −9048.85 −0.385588
\(57\) 30364.3 1.23787
\(58\) −5844.79 −0.228139
\(59\) 40877.9 1.52883 0.764413 0.644727i \(-0.223029\pi\)
0.764413 + 0.644727i \(0.223029\pi\)
\(60\) 69594.7 2.49573
\(61\) −40999.2 −1.41075 −0.705376 0.708834i \(-0.749222\pi\)
−0.705376 + 0.708834i \(0.749222\pi\)
\(62\) −4483.56 −0.148130
\(63\) −68817.1 −2.18447
\(64\) −28562.3 −0.871652
\(65\) 27606.9 0.810466
\(66\) −2793.81 −0.0789473
\(67\) 43542.0 1.18501 0.592504 0.805568i \(-0.298140\pi\)
0.592504 + 0.805568i \(0.298140\pi\)
\(68\) −40537.6 −1.06313
\(69\) 26323.0 0.665598
\(70\) −12514.0 −0.305247
\(71\) 27327.1 0.643351 0.321676 0.946850i \(-0.395754\pi\)
0.321676 + 0.946850i \(0.395754\pi\)
\(72\) 21245.1 0.482978
\(73\) 42264.1 0.928249 0.464124 0.885770i \(-0.346369\pi\)
0.464124 + 0.885770i \(0.346369\pi\)
\(74\) 731.297 0.0155244
\(75\) 115271. 2.36629
\(76\) −37426.7 −0.743271
\(77\) −22557.6 −0.433577
\(78\) 6686.71 0.124445
\(79\) 14871.3 0.268090 0.134045 0.990975i \(-0.457203\pi\)
0.134045 + 0.990975i \(0.457203\pi\)
\(80\) −83828.8 −1.46443
\(81\) 4845.53 0.0820595
\(82\) −524.368 −0.00861196
\(83\) 76584.2 1.22024 0.610118 0.792311i \(-0.291122\pi\)
0.610118 + 0.792311i \(0.291122\pi\)
\(84\) 136102. 2.10459
\(85\) −113370. −1.70197
\(86\) 19160.9 0.279364
\(87\) 177779. 2.51815
\(88\) 6963.93 0.0958623
\(89\) −81131.1 −1.08571 −0.542853 0.839828i \(-0.682656\pi\)
−0.542853 + 0.839828i \(0.682656\pi\)
\(90\) 29380.6 0.382344
\(91\) 53989.3 0.683447
\(92\) −32445.4 −0.399653
\(93\) 136375. 1.63504
\(94\) 7371.64 0.0860487
\(95\) −104670. −1.18991
\(96\) −63257.2 −0.700539
\(97\) 93274.6 1.00655 0.503274 0.864127i \(-0.332129\pi\)
0.503274 + 0.864127i \(0.332129\pi\)
\(98\) −10440.1 −0.109809
\(99\) 52961.2 0.543088
\(100\) −142082. −1.42082
\(101\) −70816.1 −0.690762 −0.345381 0.938462i \(-0.612250\pi\)
−0.345381 + 0.938462i \(0.612250\pi\)
\(102\) −27459.6 −0.261332
\(103\) 32496.5 0.301817 0.150909 0.988548i \(-0.451780\pi\)
0.150909 + 0.988548i \(0.451780\pi\)
\(104\) −16667.5 −0.151108
\(105\) 380634. 3.36926
\(106\) 6085.54 0.0526059
\(107\) 113929. 0.961998 0.480999 0.876721i \(-0.340274\pi\)
0.480999 + 0.876721i \(0.340274\pi\)
\(108\) −126367. −1.04249
\(109\) 138149. 1.11373 0.556866 0.830602i \(-0.312004\pi\)
0.556866 + 0.830602i \(0.312004\pi\)
\(110\) 9630.69 0.0758884
\(111\) −22243.6 −0.171355
\(112\) −163939. −1.23492
\(113\) 98757.7 0.727570 0.363785 0.931483i \(-0.381484\pi\)
0.363785 + 0.931483i \(0.381484\pi\)
\(114\) −25352.3 −0.182707
\(115\) −90739.2 −0.639809
\(116\) −219128. −1.51201
\(117\) −126757. −0.856069
\(118\) −34130.5 −0.225651
\(119\) −221712. −1.43523
\(120\) −117509. −0.744932
\(121\) −143691. −0.892207
\(122\) 34231.8 0.208223
\(123\) 15949.5 0.0950573
\(124\) −168094. −0.981746
\(125\) −123782. −0.708570
\(126\) 57458.0 0.322422
\(127\) 155173. 0.853701 0.426851 0.904322i \(-0.359623\pi\)
0.426851 + 0.904322i \(0.359623\pi\)
\(128\) 103554. 0.558655
\(129\) −582811. −3.08357
\(130\) −23050.1 −0.119623
\(131\) 70210.6 0.357457 0.178729 0.983898i \(-0.442802\pi\)
0.178729 + 0.983898i \(0.442802\pi\)
\(132\) −104744. −0.523230
\(133\) −204698. −1.00342
\(134\) −36354.8 −0.174904
\(135\) −353407. −1.66894
\(136\) 68446.5 0.317325
\(137\) 402937. 1.83415 0.917076 0.398713i \(-0.130543\pi\)
0.917076 + 0.398713i \(0.130543\pi\)
\(138\) −21978.0 −0.0982406
\(139\) −195533. −0.858388 −0.429194 0.903212i \(-0.641202\pi\)
−0.429194 + 0.903212i \(0.641202\pi\)
\(140\) −469166. −2.02305
\(141\) −224221. −0.949791
\(142\) −22816.5 −0.0949571
\(143\) −41549.8 −0.169914
\(144\) 384900. 1.54683
\(145\) −612831. −2.42059
\(146\) −35287.9 −0.137007
\(147\) 317553. 1.21206
\(148\) 27417.2 0.102889
\(149\) 302529. 1.11635 0.558176 0.829722i \(-0.311501\pi\)
0.558176 + 0.829722i \(0.311501\pi\)
\(150\) −96244.2 −0.349258
\(151\) 410360. 1.46461 0.732306 0.680975i \(-0.238444\pi\)
0.732306 + 0.680975i \(0.238444\pi\)
\(152\) 63193.8 0.221853
\(153\) 520541. 1.79774
\(154\) 18834.2 0.0639949
\(155\) −470105. −1.57169
\(156\) 250693. 0.824766
\(157\) 507021. 1.64164 0.820818 0.571190i \(-0.193518\pi\)
0.820818 + 0.571190i \(0.193518\pi\)
\(158\) −12416.6 −0.0395694
\(159\) −185102. −0.580655
\(160\) 218057. 0.673396
\(161\) −177454. −0.539535
\(162\) −4045.72 −0.0121118
\(163\) −54010.4 −0.159224 −0.0796119 0.996826i \(-0.525368\pi\)
−0.0796119 + 0.996826i \(0.525368\pi\)
\(164\) −19659.2 −0.0570764
\(165\) −292933. −0.837643
\(166\) −63943.0 −0.180104
\(167\) −691433. −1.91849 −0.959244 0.282578i \(-0.908810\pi\)
−0.959244 + 0.282578i \(0.908810\pi\)
\(168\) −229805. −0.628183
\(169\) −271848. −0.732165
\(170\) 94657.3 0.251207
\(171\) 480593. 1.25686
\(172\) 718367. 1.85151
\(173\) 45452.7 0.115463 0.0577317 0.998332i \(-0.481613\pi\)
0.0577317 + 0.998332i \(0.481613\pi\)
\(174\) −148434. −0.371673
\(175\) −777088. −1.91812
\(176\) 126167. 0.307017
\(177\) 1.03814e6 2.49070
\(178\) 67739.4 0.160248
\(179\) −268244. −0.625745 −0.312872 0.949795i \(-0.601291\pi\)
−0.312872 + 0.949795i \(0.601291\pi\)
\(180\) 1.10152e6 2.53402
\(181\) 560898. 1.27259 0.636293 0.771447i \(-0.280467\pi\)
0.636293 + 0.771447i \(0.280467\pi\)
\(182\) −45077.7 −0.100875
\(183\) −1.04122e6 −2.29833
\(184\) 54783.1 0.119289
\(185\) 76677.1 0.164716
\(186\) −113865. −0.241327
\(187\) 170628. 0.356818
\(188\) 276372. 0.570295
\(189\) −691137. −1.40737
\(190\) 87393.1 0.175628
\(191\) −613488. −1.21681 −0.608404 0.793627i \(-0.708190\pi\)
−0.608404 + 0.793627i \(0.708190\pi\)
\(192\) −725369. −1.42006
\(193\) 605861. 1.17079 0.585396 0.810747i \(-0.300939\pi\)
0.585396 + 0.810747i \(0.300939\pi\)
\(194\) −77878.5 −0.148564
\(195\) 701107. 1.32038
\(196\) −391413. −0.727771
\(197\) 38809.0 0.0712470
\(198\) −44219.3 −0.0801584
\(199\) 647497. 1.15906 0.579529 0.814952i \(-0.303237\pi\)
0.579529 + 0.814952i \(0.303237\pi\)
\(200\) 239901. 0.424089
\(201\) 1.10579e6 1.93056
\(202\) 59127.1 0.101955
\(203\) −1.19848e6 −2.04122
\(204\) −1.02949e6 −1.73200
\(205\) −54980.5 −0.0913742
\(206\) −27132.6 −0.0445475
\(207\) 416629. 0.675809
\(208\) −301967. −0.483951
\(209\) 157534. 0.249464
\(210\) −317806. −0.497294
\(211\) −1.14611e6 −1.77223 −0.886115 0.463465i \(-0.846606\pi\)
−0.886115 + 0.463465i \(0.846606\pi\)
\(212\) 228155. 0.348650
\(213\) 694000. 1.04812
\(214\) −95123.5 −0.141989
\(215\) 2.00904e6 2.96410
\(216\) 213367. 0.311166
\(217\) −919358. −1.32536
\(218\) −115346. −0.164384
\(219\) 1.07334e6 1.51226
\(220\) 361067. 0.502957
\(221\) −408382. −0.562452
\(222\) 18572.0 0.0252916
\(223\) −1.00874e6 −1.35836 −0.679181 0.733971i \(-0.737665\pi\)
−0.679181 + 0.733971i \(0.737665\pi\)
\(224\) 426442. 0.567859
\(225\) 1.82446e6 2.40259
\(226\) −82456.5 −0.107388
\(227\) 1.12225e6 1.44552 0.722760 0.691099i \(-0.242873\pi\)
0.722760 + 0.691099i \(0.242873\pi\)
\(228\) −950489. −1.21090
\(229\) −1.20306e6 −1.51599 −0.757997 0.652257i \(-0.773822\pi\)
−0.757997 + 0.652257i \(0.773822\pi\)
\(230\) 75761.6 0.0944343
\(231\) −572873. −0.706364
\(232\) 369992. 0.451307
\(233\) −8724.46 −0.0105281 −0.00526404 0.999986i \(-0.501676\pi\)
−0.00526404 + 0.999986i \(0.501676\pi\)
\(234\) 105835. 0.126354
\(235\) 772922. 0.912991
\(236\) −1.27959e6 −1.49552
\(237\) 377671. 0.436760
\(238\) 185116. 0.211837
\(239\) −1.12543e6 −1.27445 −0.637227 0.770676i \(-0.719919\pi\)
−0.637227 + 0.770676i \(0.719919\pi\)
\(240\) −2.12892e6 −2.38578
\(241\) 445330. 0.493900 0.246950 0.969028i \(-0.420572\pi\)
0.246950 + 0.969028i \(0.420572\pi\)
\(242\) 119973. 0.131688
\(243\) −857911. −0.932023
\(244\) 1.28339e6 1.38002
\(245\) −1.09465e6 −1.16510
\(246\) −13316.9 −0.0140302
\(247\) −377042. −0.393230
\(248\) 283822. 0.293034
\(249\) 1.94493e6 1.98795
\(250\) 103350. 0.104583
\(251\) 1.35982e6 1.36238 0.681188 0.732109i \(-0.261464\pi\)
0.681188 + 0.732109i \(0.261464\pi\)
\(252\) 2.15417e6 2.13688
\(253\) 136567. 0.134136
\(254\) −129560. −0.126004
\(255\) −2.87916e6 −2.77278
\(256\) 827532. 0.789196
\(257\) 171046. 0.161540 0.0807698 0.996733i \(-0.474262\pi\)
0.0807698 + 0.996733i \(0.474262\pi\)
\(258\) 486611. 0.455127
\(259\) 149953. 0.138901
\(260\) −864177. −0.792810
\(261\) 2.81381e6 2.55678
\(262\) −58621.5 −0.0527598
\(263\) −813608. −0.725314 −0.362657 0.931923i \(-0.618130\pi\)
−0.362657 + 0.931923i \(0.618130\pi\)
\(264\) 176856. 0.156175
\(265\) 638074. 0.558157
\(266\) 170910. 0.148103
\(267\) −2.06041e6 −1.76878
\(268\) −1.36299e6 −1.15919
\(269\) −774708. −0.652765 −0.326383 0.945238i \(-0.605830\pi\)
−0.326383 + 0.945238i \(0.605830\pi\)
\(270\) 295073. 0.246331
\(271\) 506827. 0.419214 0.209607 0.977786i \(-0.432781\pi\)
0.209607 + 0.977786i \(0.432781\pi\)
\(272\) 1.24005e6 1.01629
\(273\) 1.37111e6 1.11344
\(274\) −336427. −0.270716
\(275\) 598042. 0.476870
\(276\) −823984. −0.651098
\(277\) −839340. −0.657262 −0.328631 0.944458i \(-0.606587\pi\)
−0.328631 + 0.944458i \(0.606587\pi\)
\(278\) 163258. 0.126696
\(279\) 2.15849e6 1.66012
\(280\) 792172. 0.603843
\(281\) 348090. 0.262982 0.131491 0.991317i \(-0.458024\pi\)
0.131491 + 0.991317i \(0.458024\pi\)
\(282\) 187210. 0.140187
\(283\) −791577. −0.587526 −0.293763 0.955878i \(-0.594908\pi\)
−0.293763 + 0.955878i \(0.594908\pi\)
\(284\) −855418. −0.629336
\(285\) −2.65821e6 −1.93855
\(286\) 34691.5 0.0250789
\(287\) −107522. −0.0770537
\(288\) −1.00121e6 −0.711286
\(289\) 257199. 0.181144
\(290\) 511676. 0.357273
\(291\) 2.36880e6 1.63982
\(292\) −1.32299e6 −0.908027
\(293\) −588858. −0.400720 −0.200360 0.979722i \(-0.564211\pi\)
−0.200360 + 0.979722i \(0.564211\pi\)
\(294\) −265137. −0.178897
\(295\) −3.57861e6 −2.39419
\(296\) −46293.2 −0.0307106
\(297\) 531895. 0.349892
\(298\) −252593. −0.164771
\(299\) −326860. −0.211438
\(300\) −3.60832e6 −2.31474
\(301\) 3.92896e6 2.49955
\(302\) −342625. −0.216173
\(303\) −1.79845e6 −1.12536
\(304\) 1.14489e6 0.710526
\(305\) 3.58923e6 2.20928
\(306\) −434619. −0.265342
\(307\) 3.16683e6 1.91769 0.958847 0.283922i \(-0.0916358\pi\)
0.958847 + 0.283922i \(0.0916358\pi\)
\(308\) 706118. 0.424131
\(309\) 825282. 0.491707
\(310\) 392509. 0.231977
\(311\) −789002. −0.462570 −0.231285 0.972886i \(-0.574293\pi\)
−0.231285 + 0.972886i \(0.574293\pi\)
\(312\) −423288. −0.246178
\(313\) −22020.8 −0.0127049 −0.00635247 0.999980i \(-0.502022\pi\)
−0.00635247 + 0.999980i \(0.502022\pi\)
\(314\) −423331. −0.242301
\(315\) 6.02452e6 3.42095
\(316\) −465514. −0.262250
\(317\) −574777. −0.321256 −0.160628 0.987015i \(-0.551352\pi\)
−0.160628 + 0.987015i \(0.551352\pi\)
\(318\) 154549. 0.0857032
\(319\) 922341. 0.507475
\(320\) 2.50046e6 1.36504
\(321\) 2.89334e6 1.56725
\(322\) 148163. 0.0796341
\(323\) 1.54836e6 0.825780
\(324\) −151679. −0.0802718
\(325\) −1.43135e6 −0.751690
\(326\) 45095.3 0.0235010
\(327\) 3.50843e6 1.81444
\(328\) 33194.0 0.0170363
\(329\) 1.51156e6 0.769903
\(330\) 244581. 0.123634
\(331\) 1.43550e6 0.720168 0.360084 0.932920i \(-0.382748\pi\)
0.360084 + 0.932920i \(0.382748\pi\)
\(332\) −2.39731e6 −1.19365
\(333\) −352063. −0.173984
\(334\) 577304. 0.283164
\(335\) −3.81183e6 −1.85576
\(336\) −4.16340e6 −2.01187
\(337\) 1.57658e6 0.756206 0.378103 0.925764i \(-0.376577\pi\)
0.378103 + 0.925764i \(0.376577\pi\)
\(338\) 226976. 0.108066
\(339\) 2.50805e6 1.18532
\(340\) 3.54882e6 1.66490
\(341\) 707532. 0.329504
\(342\) −401266. −0.185510
\(343\) 736684. 0.338101
\(344\) −1.21294e6 −0.552642
\(345\) −2.30442e6 −1.04235
\(346\) −37950.2 −0.0170421
\(347\) −3.50638e6 −1.56327 −0.781637 0.623734i \(-0.785615\pi\)
−0.781637 + 0.623734i \(0.785615\pi\)
\(348\) −5.56499e6 −2.46330
\(349\) 2.21043e6 0.971433 0.485716 0.874116i \(-0.338559\pi\)
0.485716 + 0.874116i \(0.338559\pi\)
\(350\) 648820. 0.283109
\(351\) −1.27304e6 −0.551535
\(352\) −328187. −0.141177
\(353\) 2.88495e6 1.23226 0.616130 0.787645i \(-0.288700\pi\)
0.616130 + 0.787645i \(0.288700\pi\)
\(354\) −866779. −0.367621
\(355\) −2.39232e6 −1.00751
\(356\) 2.53964e6 1.06205
\(357\) −5.63061e6 −2.33822
\(358\) 223967. 0.0923584
\(359\) −4.00113e6 −1.63850 −0.819251 0.573436i \(-0.805610\pi\)
−0.819251 + 0.573436i \(0.805610\pi\)
\(360\) −1.85988e6 −0.756360
\(361\) −1.04657e6 −0.422668
\(362\) −468315. −0.187831
\(363\) −3.64918e6 −1.45354
\(364\) −1.69002e6 −0.668558
\(365\) −3.69996e6 −1.45367
\(366\) 869351. 0.339228
\(367\) −1.46785e6 −0.568873 −0.284436 0.958695i \(-0.591806\pi\)
−0.284436 + 0.958695i \(0.591806\pi\)
\(368\) 992512. 0.382047
\(369\) 252443. 0.0965155
\(370\) −64020.6 −0.0243117
\(371\) 1.24785e6 0.470680
\(372\) −4.26893e6 −1.59942
\(373\) 506043. 0.188328 0.0941642 0.995557i \(-0.469982\pi\)
0.0941642 + 0.995557i \(0.469982\pi\)
\(374\) −142464. −0.0526655
\(375\) −3.14357e6 −1.15437
\(376\) −466646. −0.170223
\(377\) −2.20753e6 −0.799933
\(378\) 577057. 0.207725
\(379\) 3.19756e6 1.14346 0.571730 0.820442i \(-0.306273\pi\)
0.571730 + 0.820442i \(0.306273\pi\)
\(380\) 3.27648e6 1.16399
\(381\) 3.94077e6 1.39081
\(382\) 512224. 0.179598
\(383\) 2.88210e6 1.00395 0.501975 0.864882i \(-0.332607\pi\)
0.501975 + 0.864882i \(0.332607\pi\)
\(384\) 2.62987e6 0.910136
\(385\) 1.97478e6 0.678996
\(386\) −505857. −0.172806
\(387\) −9.22450e6 −3.13087
\(388\) −2.91976e6 −0.984619
\(389\) 415568. 0.139241 0.0696206 0.997574i \(-0.477821\pi\)
0.0696206 + 0.997574i \(0.477821\pi\)
\(390\) −585381. −0.194884
\(391\) 1.34228e6 0.444018
\(392\) 660889. 0.217227
\(393\) 1.78307e6 0.582354
\(394\) −32403.1 −0.0105159
\(395\) −1.30189e6 −0.419838
\(396\) −1.65784e6 −0.531256
\(397\) 2.29734e6 0.731559 0.365780 0.930701i \(-0.380802\pi\)
0.365780 + 0.930701i \(0.380802\pi\)
\(398\) −540620. −0.171074
\(399\) −5.19850e6 −1.63473
\(400\) 4.34632e6 1.35822
\(401\) −1.75497e6 −0.545014 −0.272507 0.962154i \(-0.587853\pi\)
−0.272507 + 0.962154i \(0.587853\pi\)
\(402\) −923268. −0.284946
\(403\) −1.69341e6 −0.519396
\(404\) 2.21675e6 0.675714
\(405\) −424197. −0.128508
\(406\) 1.00066e6 0.301279
\(407\) −115403. −0.0345327
\(408\) 1.73827e6 0.516972
\(409\) −4.93051e6 −1.45742 −0.728709 0.684824i \(-0.759879\pi\)
−0.728709 + 0.684824i \(0.759879\pi\)
\(410\) 45905.3 0.0134866
\(411\) 1.02330e7 2.98812
\(412\) −1.01723e6 −0.295242
\(413\) −6.99848e6 −2.01897
\(414\) −347860. −0.0997477
\(415\) −6.70448e6 −1.91093
\(416\) 785483. 0.222538
\(417\) −4.96577e6 −1.39845
\(418\) −131531. −0.0368203
\(419\) −6.23257e6 −1.73433 −0.867165 0.498020i \(-0.834061\pi\)
−0.867165 + 0.498020i \(0.834061\pi\)
\(420\) −1.19149e7 −3.29586
\(421\) 4.10428e6 1.12858 0.564289 0.825578i \(-0.309151\pi\)
0.564289 + 0.825578i \(0.309151\pi\)
\(422\) 956930. 0.261577
\(423\) −3.54887e6 −0.964361
\(424\) −385232. −0.104066
\(425\) 5.87798e6 1.57854
\(426\) −579447. −0.154700
\(427\) 7.01925e6 1.86304
\(428\) −3.56630e6 −0.941041
\(429\) −1.05520e6 −0.276816
\(430\) −1.67742e6 −0.437493
\(431\) 4.60197e6 1.19330 0.596651 0.802501i \(-0.296498\pi\)
0.596651 + 0.802501i \(0.296498\pi\)
\(432\) 3.86559e6 0.996567
\(433\) 3.61256e6 0.925966 0.462983 0.886367i \(-0.346779\pi\)
0.462983 + 0.886367i \(0.346779\pi\)
\(434\) 767607. 0.195621
\(435\) −1.55635e7 −3.94351
\(436\) −4.32445e6 −1.08947
\(437\) 1.23927e6 0.310429
\(438\) −896172. −0.223206
\(439\) 5.20266e6 1.28844 0.644219 0.764841i \(-0.277182\pi\)
0.644219 + 0.764841i \(0.277182\pi\)
\(440\) −609650. −0.150124
\(441\) 5.02611e6 1.23065
\(442\) 340973. 0.0830165
\(443\) −3.08808e6 −0.747617 −0.373809 0.927506i \(-0.621948\pi\)
−0.373809 + 0.927506i \(0.621948\pi\)
\(444\) 696289. 0.167622
\(445\) 7.10254e6 1.70025
\(446\) 842233. 0.200491
\(447\) 7.68303e6 1.81871
\(448\) 4.89000e6 1.15110
\(449\) −4.43448e6 −1.03807 −0.519035 0.854753i \(-0.673709\pi\)
−0.519035 + 0.854753i \(0.673709\pi\)
\(450\) −1.52331e6 −0.354616
\(451\) 82748.3 0.0191566
\(452\) −3.09140e6 −0.711720
\(453\) 1.04215e7 2.38608
\(454\) −937007. −0.213355
\(455\) −4.72644e6 −1.07030
\(456\) 1.60487e6 0.361433
\(457\) 7.05709e6 1.58065 0.790324 0.612689i \(-0.209912\pi\)
0.790324 + 0.612689i \(0.209912\pi\)
\(458\) 1.00448e6 0.223757
\(459\) 5.22784e6 1.15822
\(460\) 2.84040e6 0.625871
\(461\) 1.12098e6 0.245667 0.122834 0.992427i \(-0.460802\pi\)
0.122834 + 0.992427i \(0.460802\pi\)
\(462\) 478314. 0.104258
\(463\) 259268. 0.0562079 0.0281039 0.999605i \(-0.491053\pi\)
0.0281039 + 0.999605i \(0.491053\pi\)
\(464\) 6.70319e6 1.44540
\(465\) −1.19388e7 −2.56052
\(466\) 7284.38 0.00155392
\(467\) 6.39753e6 1.35744 0.678719 0.734398i \(-0.262535\pi\)
0.678719 + 0.734398i \(0.262535\pi\)
\(468\) 3.96787e6 0.837419
\(469\) −7.45459e6 −1.56492
\(470\) −645342. −0.134755
\(471\) 1.28763e7 2.67448
\(472\) 2.16056e6 0.446386
\(473\) −3.02370e6 −0.621422
\(474\) −315332. −0.0644647
\(475\) 5.42690e6 1.10361
\(476\) 6.94023e6 1.40397
\(477\) −2.92972e6 −0.589562
\(478\) 939665. 0.188106
\(479\) −5.66349e6 −1.12783 −0.563917 0.825831i \(-0.690706\pi\)
−0.563917 + 0.825831i \(0.690706\pi\)
\(480\) 5.53779e6 1.09707
\(481\) 276205. 0.0544339
\(482\) −371823. −0.0728985
\(483\) −4.50661e6 −0.878987
\(484\) 4.49794e6 0.872770
\(485\) −8.16563e6 −1.57629
\(486\) 716302. 0.137564
\(487\) 8.06445e6 1.54082 0.770411 0.637548i \(-0.220051\pi\)
0.770411 + 0.637548i \(0.220051\pi\)
\(488\) −2.16697e6 −0.411911
\(489\) −1.37165e6 −0.259400
\(490\) 913968. 0.171965
\(491\) 4.65955e6 0.872249 0.436124 0.899886i \(-0.356351\pi\)
0.436124 + 0.899886i \(0.356351\pi\)
\(492\) −499266. −0.0929864
\(493\) 9.06543e6 1.67985
\(494\) 314806. 0.0580398
\(495\) −4.63643e6 −0.850494
\(496\) 5.14205e6 0.938495
\(497\) −4.67853e6 −0.849608
\(498\) −1.62390e6 −0.293417
\(499\) 660910. 0.118820 0.0594102 0.998234i \(-0.481078\pi\)
0.0594102 + 0.998234i \(0.481078\pi\)
\(500\) 3.87473e6 0.693133
\(501\) −1.75597e7 −3.12552
\(502\) −1.13536e6 −0.201083
\(503\) −6.13270e6 −1.08077 −0.540383 0.841419i \(-0.681721\pi\)
−0.540383 + 0.841419i \(0.681721\pi\)
\(504\) −3.63726e6 −0.637820
\(505\) 6.19952e6 1.08176
\(506\) −114025. −0.0197981
\(507\) −6.90385e6 −1.19281
\(508\) −4.85735e6 −0.835103
\(509\) −9.76923e6 −1.67134 −0.835672 0.549229i \(-0.814922\pi\)
−0.835672 + 0.549229i \(0.814922\pi\)
\(510\) 2.40392e6 0.409255
\(511\) −7.23581e6 −1.22584
\(512\) −4.00468e6 −0.675138
\(513\) 4.82665e6 0.809752
\(514\) −142812. −0.0238429
\(515\) −2.84487e6 −0.472656
\(516\) 1.82437e7 3.01639
\(517\) −1.16329e6 −0.191408
\(518\) −125201. −0.0205015
\(519\) 1.15432e6 0.188108
\(520\) 1.45914e6 0.236640
\(521\) 4.02887e6 0.650263 0.325132 0.945669i \(-0.394591\pi\)
0.325132 + 0.945669i \(0.394591\pi\)
\(522\) −2.34936e6 −0.377375
\(523\) 1.05567e7 1.68761 0.843805 0.536649i \(-0.180310\pi\)
0.843805 + 0.536649i \(0.180310\pi\)
\(524\) −2.19779e6 −0.349670
\(525\) −1.97350e7 −3.12491
\(526\) 679312. 0.107055
\(527\) 6.95413e6 1.09073
\(528\) 3.20413e6 0.500179
\(529\) −5.36201e6 −0.833084
\(530\) −532752. −0.0823826
\(531\) 1.64312e7 2.52891
\(532\) 6.40762e6 0.981562
\(533\) −198050. −0.0301965
\(534\) 1.72031e6 0.261068
\(535\) −9.97378e6 −1.50652
\(536\) 2.30137e6 0.345998
\(537\) −6.81233e6 −1.01944
\(538\) 646833. 0.0963466
\(539\) 1.64751e6 0.244262
\(540\) 1.10626e7 1.63258
\(541\) −4.52850e6 −0.665214 −0.332607 0.943066i \(-0.607928\pi\)
−0.332607 + 0.943066i \(0.607928\pi\)
\(542\) −423169. −0.0618750
\(543\) 1.42446e7 2.07324
\(544\) −3.22566e6 −0.467327
\(545\) −1.20941e7 −1.74414
\(546\) −1.14480e6 −0.164341
\(547\) −194902. −0.0278514 −0.0139257 0.999903i \(-0.504433\pi\)
−0.0139257 + 0.999903i \(0.504433\pi\)
\(548\) −1.26131e7 −1.79419
\(549\) −1.64799e7 −2.33359
\(550\) −499328. −0.0703848
\(551\) 8.36973e6 1.17444
\(552\) 1.39127e6 0.194341
\(553\) −2.54603e6 −0.354039
\(554\) 700796. 0.0970102
\(555\) 1.94729e6 0.268348
\(556\) 6.12075e6 0.839688
\(557\) −6.08231e6 −0.830674 −0.415337 0.909668i \(-0.636336\pi\)
−0.415337 + 0.909668i \(0.636336\pi\)
\(558\) −1.80220e6 −0.245030
\(559\) 7.23693e6 0.979546
\(560\) 1.43519e7 1.93392
\(561\) 4.33328e6 0.581312
\(562\) −290633. −0.0388155
\(563\) −1.16523e7 −1.54932 −0.774661 0.632376i \(-0.782080\pi\)
−0.774661 + 0.632376i \(0.782080\pi\)
\(564\) 7.01875e6 0.929099
\(565\) −8.64564e6 −1.13940
\(566\) 660918. 0.0867174
\(567\) −829578. −0.108368
\(568\) 1.44435e6 0.187845
\(569\) 1.23028e7 1.59303 0.796517 0.604616i \(-0.206674\pi\)
0.796517 + 0.604616i \(0.206674\pi\)
\(570\) 2.21944e6 0.286125
\(571\) −1.14448e7 −1.46899 −0.734495 0.678614i \(-0.762581\pi\)
−0.734495 + 0.678614i \(0.762581\pi\)
\(572\) 1.30063e6 0.166212
\(573\) −1.55801e7 −1.98237
\(574\) 89774.3 0.0113729
\(575\) 4.70461e6 0.593409
\(576\) −1.14809e7 −1.44184
\(577\) −1.25711e6 −0.157193 −0.0785967 0.996906i \(-0.525044\pi\)
−0.0785967 + 0.996906i \(0.525044\pi\)
\(578\) −214745. −0.0267365
\(579\) 1.53865e7 1.90740
\(580\) 1.91834e7 2.36785
\(581\) −1.31116e7 −1.61144
\(582\) −1.97780e6 −0.242034
\(583\) −960333. −0.117017
\(584\) 2.23382e6 0.271030
\(585\) 1.10968e7 1.34063
\(586\) 491659. 0.0591453
\(587\) 1.09347e7 1.30982 0.654909 0.755708i \(-0.272707\pi\)
0.654909 + 0.755708i \(0.272707\pi\)
\(588\) −9.94033e6 −1.18565
\(589\) 6.42046e6 0.762566
\(590\) 2.98792e6 0.353377
\(591\) 985594. 0.116073
\(592\) −838700. −0.0983563
\(593\) −9.72067e6 −1.13517 −0.567583 0.823316i \(-0.692121\pi\)
−0.567583 + 0.823316i \(0.692121\pi\)
\(594\) −444099. −0.0516433
\(595\) 1.94096e7 2.24762
\(596\) −9.47003e6 −1.09203
\(597\) 1.64439e7 1.88829
\(598\) 272907. 0.0312077
\(599\) 1.28572e7 1.46413 0.732066 0.681233i \(-0.238556\pi\)
0.732066 + 0.681233i \(0.238556\pi\)
\(600\) 6.09253e6 0.690907
\(601\) −356240. −0.0402306 −0.0201153 0.999798i \(-0.506403\pi\)
−0.0201153 + 0.999798i \(0.506403\pi\)
\(602\) −3.28044e6 −0.368927
\(603\) 1.75020e7 1.96018
\(604\) −1.28455e7 −1.43271
\(605\) 1.25793e7 1.39723
\(606\) 1.50159e6 0.166100
\(607\) −5.94207e6 −0.654585 −0.327292 0.944923i \(-0.606136\pi\)
−0.327292 + 0.944923i \(0.606136\pi\)
\(608\) −2.97811e6 −0.326725
\(609\) −3.04366e7 −3.32547
\(610\) −2.99678e6 −0.326085
\(611\) 2.78421e6 0.301717
\(612\) −1.62944e7 −1.75857
\(613\) 1.62747e7 1.74929 0.874645 0.484763i \(-0.161094\pi\)
0.874645 + 0.484763i \(0.161094\pi\)
\(614\) −2.64411e6 −0.283047
\(615\) −1.39629e6 −0.148863
\(616\) −1.19226e6 −0.126596
\(617\) 3.62589e6 0.383444 0.191722 0.981449i \(-0.438593\pi\)
0.191722 + 0.981449i \(0.438593\pi\)
\(618\) −689060. −0.0725748
\(619\) 1.85683e7 1.94781 0.973904 0.226959i \(-0.0728784\pi\)
0.973904 + 0.226959i \(0.0728784\pi\)
\(620\) 1.47156e7 1.53745
\(621\) 4.18425e6 0.435400
\(622\) 658768. 0.0682742
\(623\) 1.38900e7 1.43378
\(624\) −7.66876e6 −0.788431
\(625\) −3.34783e6 −0.342817
\(626\) 18386.0 0.00187522
\(627\) 4.00074e6 0.406416
\(628\) −1.58712e7 −1.60587
\(629\) −1.13426e6 −0.114311
\(630\) −5.03010e6 −0.504923
\(631\) −1.01864e7 −1.01847 −0.509233 0.860629i \(-0.670071\pi\)
−0.509233 + 0.860629i \(0.670071\pi\)
\(632\) 786006. 0.0782768
\(633\) −2.91066e7 −2.88724
\(634\) 479903. 0.0474166
\(635\) −1.35844e7 −1.33692
\(636\) 5.79422e6 0.568005
\(637\) −3.94315e6 −0.385030
\(638\) −770098. −0.0749021
\(639\) 1.09844e7 1.06420
\(640\) −9.06556e6 −0.874872
\(641\) −8.63019e6 −0.829613 −0.414806 0.909910i \(-0.636151\pi\)
−0.414806 + 0.909910i \(0.636151\pi\)
\(642\) −2.41576e6 −0.231322
\(643\) −1.05009e7 −1.00161 −0.500806 0.865560i \(-0.666963\pi\)
−0.500806 + 0.865560i \(0.666963\pi\)
\(644\) 5.55481e6 0.527782
\(645\) 5.10216e7 4.82897
\(646\) −1.29278e6 −0.121883
\(647\) −4.33805e6 −0.407412 −0.203706 0.979032i \(-0.565299\pi\)
−0.203706 + 0.979032i \(0.565299\pi\)
\(648\) 256106. 0.0239597
\(649\) 5.38599e6 0.501942
\(650\) 1.19509e6 0.110948
\(651\) −2.33480e7 −2.15923
\(652\) 1.69068e6 0.155755
\(653\) −7.19343e6 −0.660166 −0.330083 0.943952i \(-0.607077\pi\)
−0.330083 + 0.943952i \(0.607077\pi\)
\(654\) −2.92932e6 −0.267807
\(655\) −6.14651e6 −0.559790
\(656\) 601380. 0.0545619
\(657\) 1.69884e7 1.53546
\(658\) −1.26206e6 −0.113636
\(659\) 1.08603e7 0.974160 0.487080 0.873357i \(-0.338062\pi\)
0.487080 + 0.873357i \(0.338062\pi\)
\(660\) 9.16966e6 0.819395
\(661\) −5.82289e6 −0.518364 −0.259182 0.965828i \(-0.583453\pi\)
−0.259182 + 0.965828i \(0.583453\pi\)
\(662\) −1.19856e6 −0.106295
\(663\) −1.03713e7 −0.916322
\(664\) 4.04778e6 0.356284
\(665\) 1.79200e7 1.57139
\(666\) 293951. 0.0256796
\(667\) 7.25577e6 0.631493
\(668\) 2.16439e7 1.87669
\(669\) −2.56179e7 −2.21298
\(670\) 3.18265e6 0.273906
\(671\) −5.40197e6 −0.463176
\(672\) 1.08299e7 0.925130
\(673\) −6.63196e6 −0.564423 −0.282211 0.959352i \(-0.591068\pi\)
−0.282211 + 0.959352i \(0.591068\pi\)
\(674\) −1.31634e6 −0.111614
\(675\) 1.83233e7 1.54790
\(676\) 8.50961e6 0.716214
\(677\) 2.41847e6 0.202801 0.101400 0.994846i \(-0.467668\pi\)
0.101400 + 0.994846i \(0.467668\pi\)
\(678\) −2.09407e6 −0.174951
\(679\) −1.59691e7 −1.32924
\(680\) −5.99208e6 −0.496941
\(681\) 2.85006e7 2.35498
\(682\) −590745. −0.0486339
\(683\) −2.17485e7 −1.78393 −0.891965 0.452104i \(-0.850673\pi\)
−0.891965 + 0.452104i \(0.850673\pi\)
\(684\) −1.50440e7 −1.22948
\(685\) −3.52747e7 −2.87234
\(686\) −615086. −0.0499028
\(687\) −3.05529e7 −2.46979
\(688\) −2.19750e7 −1.76994
\(689\) 2.29846e6 0.184454
\(690\) 1.92404e6 0.153848
\(691\) −2.24676e6 −0.179004 −0.0895018 0.995987i \(-0.528527\pi\)
−0.0895018 + 0.995987i \(0.528527\pi\)
\(692\) −1.42280e6 −0.112948
\(693\) −9.06721e6 −0.717200
\(694\) 2.92761e6 0.230735
\(695\) 1.71177e7 1.34426
\(696\) 9.39632e6 0.735250
\(697\) 813310. 0.0634124
\(698\) −1.84557e6 −0.143381
\(699\) −221567. −0.0171519
\(700\) 2.43251e7 1.87633
\(701\) 1.80035e6 0.138376 0.0691882 0.997604i \(-0.477959\pi\)
0.0691882 + 0.997604i \(0.477959\pi\)
\(702\) 1.06291e6 0.0814052
\(703\) −1.04722e6 −0.0799187
\(704\) −3.76331e6 −0.286180
\(705\) 1.96292e7 1.48740
\(706\) −2.40876e6 −0.181879
\(707\) 1.21241e7 0.912219
\(708\) −3.24966e7 −2.43644
\(709\) 1.51524e7 1.13205 0.566026 0.824388i \(-0.308480\pi\)
0.566026 + 0.824388i \(0.308480\pi\)
\(710\) 1.99744e6 0.148706
\(711\) 5.97763e6 0.443461
\(712\) −4.28810e6 −0.317004
\(713\) 5.56593e6 0.410028
\(714\) 4.70121e6 0.345115
\(715\) 3.63744e6 0.266091
\(716\) 8.39681e6 0.612113
\(717\) −2.85815e7 −2.07628
\(718\) 3.34070e6 0.241839
\(719\) −2.32346e7 −1.67615 −0.838076 0.545554i \(-0.816319\pi\)
−0.838076 + 0.545554i \(0.816319\pi\)
\(720\) −3.36957e7 −2.42238
\(721\) −5.56356e6 −0.398579
\(722\) 873818. 0.0623847
\(723\) 1.13096e7 0.804640
\(724\) −1.75577e7 −1.24486
\(725\) 3.17738e7 2.24504
\(726\) 3.04684e6 0.214540
\(727\) 6.19296e6 0.434573 0.217286 0.976108i \(-0.430279\pi\)
0.217286 + 0.976108i \(0.430279\pi\)
\(728\) 2.85355e6 0.199553
\(729\) −2.29650e7 −1.60047
\(730\) 3.08924e6 0.214558
\(731\) −2.97191e7 −2.05704
\(732\) 3.25931e7 2.24826
\(733\) 2.21916e7 1.52556 0.762780 0.646659i \(-0.223834\pi\)
0.762780 + 0.646659i \(0.223834\pi\)
\(734\) 1.22556e6 0.0839642
\(735\) −2.77999e7 −1.89812
\(736\) −2.58174e6 −0.175679
\(737\) 5.73700e6 0.389060
\(738\) −210774. −0.0142455
\(739\) 2.35430e7 1.58581 0.792905 0.609346i \(-0.208568\pi\)
0.792905 + 0.609346i \(0.208568\pi\)
\(740\) −2.40021e6 −0.161128
\(741\) −9.57536e6 −0.640633
\(742\) −1.04187e6 −0.0694712
\(743\) −1.70057e7 −1.13012 −0.565058 0.825051i \(-0.691146\pi\)
−0.565058 + 0.825051i \(0.691146\pi\)
\(744\) 7.20796e6 0.477397
\(745\) −2.64846e7 −1.74825
\(746\) −422515. −0.0277968
\(747\) 3.07836e7 2.01845
\(748\) −5.34115e6 −0.349045
\(749\) −1.95052e7 −1.27041
\(750\) 2.62469e6 0.170382
\(751\) −2.57097e7 −1.66340 −0.831699 0.555226i \(-0.812632\pi\)
−0.831699 + 0.555226i \(0.812632\pi\)
\(752\) −8.45429e6 −0.545170
\(753\) 3.45340e7 2.21952
\(754\) 1.84315e6 0.118068
\(755\) −3.59245e7 −2.29363
\(756\) 2.16346e7 1.37672
\(757\) 8.87571e6 0.562942 0.281471 0.959570i \(-0.409178\pi\)
0.281471 + 0.959570i \(0.409178\pi\)
\(758\) −2.66977e6 −0.168772
\(759\) 3.46826e6 0.218528
\(760\) −5.53224e6 −0.347430
\(761\) −4.81848e6 −0.301612 −0.150806 0.988563i \(-0.548187\pi\)
−0.150806 + 0.988563i \(0.548187\pi\)
\(762\) −3.29030e6 −0.205280
\(763\) −2.36517e7 −1.47079
\(764\) 1.92039e7 1.19030
\(765\) −4.55702e7 −2.81532
\(766\) −2.40637e6 −0.148180
\(767\) −1.28908e7 −0.791211
\(768\) 2.10160e7 1.28572
\(769\) −8.47775e6 −0.516969 −0.258485 0.966015i \(-0.583223\pi\)
−0.258485 + 0.966015i \(0.583223\pi\)
\(770\) −1.64882e6 −0.100218
\(771\) 4.34388e6 0.263173
\(772\) −1.89652e7 −1.14529
\(773\) 2.81819e6 0.169638 0.0848188 0.996396i \(-0.472969\pi\)
0.0848188 + 0.996396i \(0.472969\pi\)
\(774\) 7.70189e6 0.462109
\(775\) 2.43738e7 1.45770
\(776\) 4.92993e6 0.293891
\(777\) 3.80821e6 0.226292
\(778\) −346973. −0.0205517
\(779\) 750895. 0.0443339
\(780\) −2.19467e7 −1.29161
\(781\) 3.60057e6 0.211224
\(782\) −1.12072e6 −0.0655360
\(783\) 2.82594e7 1.64725
\(784\) 1.19734e7 0.695709
\(785\) −4.43866e7 −2.57086
\(786\) −1.48875e6 −0.0859540
\(787\) 7.39611e6 0.425664 0.212832 0.977089i \(-0.431731\pi\)
0.212832 + 0.977089i \(0.431731\pi\)
\(788\) −1.21483e6 −0.0696949
\(789\) −2.06624e7 −1.18165
\(790\) 1.08700e6 0.0619670
\(791\) −1.69078e7 −0.960827
\(792\) 2.79921e6 0.158571
\(793\) 1.29291e7 0.730103
\(794\) −1.91814e6 −0.107976
\(795\) 1.62045e7 0.909325
\(796\) −2.02685e7 −1.13381
\(797\) 2.21559e7 1.23550 0.617751 0.786374i \(-0.288044\pi\)
0.617751 + 0.786374i \(0.288044\pi\)
\(798\) 4.34043e6 0.241282
\(799\) −1.14336e7 −0.633602
\(800\) −1.13057e7 −0.624560
\(801\) −3.26113e7 −1.79592
\(802\) 1.46529e6 0.0804428
\(803\) 5.56863e6 0.304761
\(804\) −3.46145e7 −1.88850
\(805\) 1.55350e7 0.844931
\(806\) 1.41389e6 0.0766616
\(807\) −1.96745e7 −1.06346
\(808\) −3.74291e6 −0.201689
\(809\) 1.35436e7 0.727549 0.363774 0.931487i \(-0.381488\pi\)
0.363774 + 0.931487i \(0.381488\pi\)
\(810\) 354178. 0.0189675
\(811\) −2.23098e7 −1.19109 −0.595545 0.803322i \(-0.703064\pi\)
−0.595545 + 0.803322i \(0.703064\pi\)
\(812\) 3.75158e7 1.99675
\(813\) 1.28714e7 0.682966
\(814\) 96354.2 0.00509694
\(815\) 4.72828e6 0.249350
\(816\) 3.14925e7 1.65570
\(817\) −2.74384e7 −1.43815
\(818\) 4.11667e6 0.215111
\(819\) 2.17015e7 1.13052
\(820\) 1.72105e6 0.0893836
\(821\) 2.15286e7 1.11470 0.557349 0.830278i \(-0.311819\pi\)
0.557349 + 0.830278i \(0.311819\pi\)
\(822\) −8.54391e6 −0.441039
\(823\) 1.44509e7 0.743698 0.371849 0.928293i \(-0.378724\pi\)
0.371849 + 0.928293i \(0.378724\pi\)
\(824\) 1.71757e6 0.0881245
\(825\) 1.51879e7 0.776895
\(826\) 5.84330e6 0.297994
\(827\) −2.66971e6 −0.135738 −0.0678688 0.997694i \(-0.521620\pi\)
−0.0678688 + 0.997694i \(0.521620\pi\)
\(828\) −1.30417e7 −0.661086
\(829\) 7.23292e6 0.365534 0.182767 0.983156i \(-0.441495\pi\)
0.182767 + 0.983156i \(0.441495\pi\)
\(830\) 5.59782e6 0.282049
\(831\) −2.13159e7 −1.07078
\(832\) 9.00711e6 0.451105
\(833\) 1.61929e7 0.808560
\(834\) 4.14611e6 0.206407
\(835\) 6.05308e7 3.00442
\(836\) −4.93126e6 −0.244030
\(837\) 2.16779e7 1.06956
\(838\) 5.20381e6 0.255983
\(839\) −3.28393e7 −1.61060 −0.805302 0.592865i \(-0.797997\pi\)
−0.805302 + 0.592865i \(0.797997\pi\)
\(840\) 2.01180e7 0.983755
\(841\) 2.84926e7 1.38913
\(842\) −3.42682e6 −0.166575
\(843\) 8.84010e6 0.428438
\(844\) 3.58765e7 1.73362
\(845\) 2.37986e7 1.14659
\(846\) 2.96309e6 0.142337
\(847\) 2.46005e7 1.17825
\(848\) −6.97930e6 −0.333290
\(849\) −2.01029e7 −0.957171
\(850\) −4.90775e6 −0.232989
\(851\) −907838. −0.0429719
\(852\) −2.17242e7 −1.02529
\(853\) −2.86786e7 −1.34954 −0.674769 0.738029i \(-0.735757\pi\)
−0.674769 + 0.738029i \(0.735757\pi\)
\(854\) −5.86064e6 −0.274979
\(855\) −4.20730e7 −1.96829
\(856\) 6.02159e6 0.280884
\(857\) −2.45015e7 −1.13957 −0.569785 0.821794i \(-0.692973\pi\)
−0.569785 + 0.821794i \(0.692973\pi\)
\(858\) 881027. 0.0408574
\(859\) 1.56200e7 0.722266 0.361133 0.932514i \(-0.382390\pi\)
0.361133 + 0.932514i \(0.382390\pi\)
\(860\) −6.28887e7 −2.89952
\(861\) −2.73064e6 −0.125532
\(862\) −3.84236e6 −0.176128
\(863\) 8.94840e6 0.408996 0.204498 0.978867i \(-0.434444\pi\)
0.204498 + 0.978867i \(0.434444\pi\)
\(864\) −1.00553e7 −0.458257
\(865\) −3.97911e6 −0.180820
\(866\) −3.01626e6 −0.136670
\(867\) 6.53184e6 0.295113
\(868\) 2.87786e7 1.29649
\(869\) 1.95941e6 0.0880189
\(870\) 1.29945e7 0.582053
\(871\) −1.37309e7 −0.613275
\(872\) 7.30171e6 0.325187
\(873\) 3.74925e7 1.66498
\(874\) −1.03471e6 −0.0458186
\(875\) 2.11921e7 0.935736
\(876\) −3.35986e7 −1.47932
\(877\) −1.42942e6 −0.0627569 −0.0313785 0.999508i \(-0.509990\pi\)
−0.0313785 + 0.999508i \(0.509990\pi\)
\(878\) −4.34389e6 −0.190170
\(879\) −1.49546e7 −0.652836
\(880\) −1.10451e7 −0.480799
\(881\) 8.56181e6 0.371643 0.185821 0.982584i \(-0.440505\pi\)
0.185821 + 0.982584i \(0.440505\pi\)
\(882\) −4.19649e6 −0.181641
\(883\) −1.64638e7 −0.710604 −0.355302 0.934752i \(-0.615622\pi\)
−0.355302 + 0.934752i \(0.615622\pi\)
\(884\) 1.27835e7 0.550199
\(885\) −9.08825e7 −3.90051
\(886\) 2.57836e6 0.110346
\(887\) 2.46335e7 1.05128 0.525639 0.850707i \(-0.323826\pi\)
0.525639 + 0.850707i \(0.323826\pi\)
\(888\) −1.17566e6 −0.0500323
\(889\) −2.65663e7 −1.12740
\(890\) −5.93018e6 −0.250953
\(891\) 638438. 0.0269417
\(892\) 3.15764e7 1.32877
\(893\) −1.05562e7 −0.442974
\(894\) −6.41486e6 −0.268437
\(895\) 2.34831e7 0.979937
\(896\) −1.77290e7 −0.737758
\(897\) −8.30093e6 −0.344466
\(898\) 3.70251e6 0.153217
\(899\) 3.75910e7 1.55126
\(900\) −5.71110e7 −2.35025
\(901\) −9.43884e6 −0.387353
\(902\) −69089.7 −0.00282746
\(903\) 9.97800e7 4.07216
\(904\) 5.21974e6 0.212436
\(905\) −4.91032e7 −1.99291
\(906\) −8.70132e6 −0.352180
\(907\) −3.79451e7 −1.53157 −0.765786 0.643096i \(-0.777650\pi\)
−0.765786 + 0.643096i \(0.777650\pi\)
\(908\) −3.51296e7 −1.41403
\(909\) −2.84651e7 −1.14262
\(910\) 3.94628e6 0.157974
\(911\) 4.82815e7 1.92746 0.963729 0.266883i \(-0.0859936\pi\)
0.963729 + 0.266883i \(0.0859936\pi\)
\(912\) 2.90757e7 1.15756
\(913\) 1.00906e7 0.400626
\(914\) −5.89223e6 −0.233300
\(915\) 9.11521e7 3.59927
\(916\) 3.76592e7 1.48297
\(917\) −1.20204e7 −0.472057
\(918\) −4.36492e6 −0.170950
\(919\) 7.56267e6 0.295384 0.147692 0.989033i \(-0.452816\pi\)
0.147692 + 0.989033i \(0.452816\pi\)
\(920\) −4.79593e6 −0.186811
\(921\) 8.04250e7 3.12422
\(922\) −935953. −0.0362599
\(923\) −8.61760e6 −0.332952
\(924\) 1.79326e7 0.690976
\(925\) −3.97552e6 −0.152771
\(926\) −216473. −0.00829614
\(927\) 1.30622e7 0.499250
\(928\) −1.74365e7 −0.664644
\(929\) 3.76999e7 1.43318 0.716591 0.697494i \(-0.245702\pi\)
0.716591 + 0.697494i \(0.245702\pi\)
\(930\) 9.96816e6 0.377927
\(931\) 1.49502e7 0.565293
\(932\) 273101. 0.0102987
\(933\) −2.00375e7 −0.753598
\(934\) −5.34154e6 −0.200355
\(935\) −1.49375e7 −0.558789
\(936\) −6.69963e6 −0.249955
\(937\) 1.91262e7 0.711673 0.355836 0.934548i \(-0.384196\pi\)
0.355836 + 0.934548i \(0.384196\pi\)
\(938\) 6.22412e6 0.230978
\(939\) −559241. −0.0206983
\(940\) −2.41947e7 −0.893101
\(941\) −2.42772e7 −0.893769 −0.446885 0.894592i \(-0.647467\pi\)
−0.446885 + 0.894592i \(0.647467\pi\)
\(942\) −1.07509e7 −0.394747
\(943\) 650955. 0.0238381
\(944\) 3.91431e7 1.42964
\(945\) 6.05049e7 2.20400
\(946\) 2.52460e6 0.0917203
\(947\) 7.17272e6 0.259902 0.129951 0.991520i \(-0.458518\pi\)
0.129951 + 0.991520i \(0.458518\pi\)
\(948\) −1.18222e7 −0.427245
\(949\) −1.33280e7 −0.480395
\(950\) −4.53112e6 −0.162891
\(951\) −1.45971e7 −0.523376
\(952\) −1.17184e7 −0.419059
\(953\) 3.24128e7 1.15607 0.578035 0.816012i \(-0.303820\pi\)
0.578035 + 0.816012i \(0.303820\pi\)
\(954\) 2.44613e6 0.0870180
\(955\) 5.37071e7 1.90556
\(956\) 3.52292e7 1.24669
\(957\) 2.34238e7 0.826756
\(958\) 4.72866e6 0.166466
\(959\) −6.89846e7 −2.42218
\(960\) 6.35017e7 2.22386
\(961\) 207037. 0.00723169
\(962\) −230614. −0.00803431
\(963\) 4.57946e7 1.59129
\(964\) −1.39401e7 −0.483141
\(965\) −5.30395e7 −1.83350
\(966\) 3.76274e6 0.129736
\(967\) −2.09828e6 −0.0721601 −0.0360800 0.999349i \(-0.511487\pi\)
−0.0360800 + 0.999349i \(0.511487\pi\)
\(968\) −7.59463e6 −0.260506
\(969\) 3.93221e7 1.34532
\(970\) 6.81779e6 0.232656
\(971\) −3.46547e7 −1.17954 −0.589772 0.807570i \(-0.700782\pi\)
−0.589772 + 0.807570i \(0.700782\pi\)
\(972\) 2.68551e7 0.911719
\(973\) 3.34762e7 1.13359
\(974\) −6.73331e6 −0.227421
\(975\) −3.63507e7 −1.22462
\(976\) −3.92593e7 −1.31922
\(977\) 5.84692e6 0.195970 0.0979852 0.995188i \(-0.468760\pi\)
0.0979852 + 0.995188i \(0.468760\pi\)
\(978\) 1.14524e6 0.0382869
\(979\) −1.06897e7 −0.356457
\(980\) 3.42658e7 1.13971
\(981\) 5.55300e7 1.84228
\(982\) −3.89044e6 −0.128742
\(983\) 5.89276e6 0.194507 0.0972535 0.995260i \(-0.468994\pi\)
0.0972535 + 0.995260i \(0.468994\pi\)
\(984\) 842996. 0.0277548
\(985\) −3.39749e6 −0.111575
\(986\) −7.56907e6 −0.247942
\(987\) 3.83876e7 1.25429
\(988\) 1.18025e7 0.384664
\(989\) −2.37865e7 −0.773286
\(990\) 3.87113e6 0.125531
\(991\) 4.69350e7 1.51814 0.759072 0.651007i \(-0.225653\pi\)
0.759072 + 0.651007i \(0.225653\pi\)
\(992\) −1.33756e7 −0.431553
\(993\) 3.64561e7 1.17327
\(994\) 3.90628e6 0.125400
\(995\) −5.66845e7 −1.81512
\(996\) −6.08820e7 −1.94465
\(997\) −9.53778e6 −0.303885 −0.151943 0.988389i \(-0.548553\pi\)
−0.151943 + 0.988389i \(0.548553\pi\)
\(998\) −551819. −0.0175376
\(999\) −3.53580e6 −0.112092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.6.a.b.1.19 43
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.6.a.b.1.19 43 1.1 even 1 trivial