Properties

Label 2.22.a.a
Level $2$
Weight $22$
Character orbit 2.a
Self dual yes
Analytic conductor $5.590$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2,22,Mod(1,2)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.58954688574\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 1024 q^{2} + 71604 q^{3} + 1048576 q^{4} - 28693770 q^{5} - 73322496 q^{6} - 853202392 q^{7} - 1073741824 q^{8} - 5333220387 q^{9} + 29382420480 q^{10} + 86731179612 q^{11} + 75082235904 q^{12} - 895323442786 q^{13}+ \cdots - 46\!\cdots\!44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1024.00 71604.0 1.04858e6 −2.86938e7 −7.33225e7 −8.53202e8 −1.07374e9 −5.33322e9 2.93824e10
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2.22.a.a 1
3.b odd 2 1 18.22.a.e 1
4.b odd 2 1 16.22.a.a 1
5.b even 2 1 50.22.a.c 1
5.c odd 4 2 50.22.b.a 2
8.b even 2 1 64.22.a.b 1
8.d odd 2 1 64.22.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.22.a.a 1 1.a even 1 1 trivial
16.22.a.a 1 4.b odd 2 1
18.22.a.e 1 3.b odd 2 1
50.22.a.c 1 5.b even 2 1
50.22.b.a 2 5.c odd 4 2
64.22.a.b 1 8.b even 2 1
64.22.a.f 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 71604 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(2))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1024 \) Copy content Toggle raw display
$3$ \( T - 71604 \) Copy content Toggle raw display
$5$ \( T + 28693770 \) Copy content Toggle raw display
$7$ \( T + 853202392 \) Copy content Toggle raw display
$11$ \( T - 86731179612 \) Copy content Toggle raw display
$13$ \( T + 895323442786 \) Copy content Toggle raw display
$17$ \( T - 3257566804818 \) Copy content Toggle raw display
$19$ \( T - 23032467644420 \) Copy content Toggle raw display
$23$ \( T - 146495714575224 \) Copy content Toggle raw display
$29$ \( T + 734051633521170 \) Copy content Toggle raw display
$31$ \( T + 3146664162057568 \) Copy content Toggle raw display
$37$ \( T + 12\!\cdots\!62 \) Copy content Toggle raw display
$41$ \( T - 45\!\cdots\!42 \) Copy content Toggle raw display
$43$ \( T + 24\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T + 44\!\cdots\!52 \) Copy content Toggle raw display
$53$ \( T - 20\!\cdots\!54 \) Copy content Toggle raw display
$59$ \( T + 37\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T + 76\!\cdots\!38 \) Copy content Toggle raw display
$67$ \( T + 18\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T + 45\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T + 25\!\cdots\!26 \) Copy content Toggle raw display
$79$ \( T - 99\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T - 29\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T - 11\!\cdots\!90 \) Copy content Toggle raw display
$97$ \( T + 56\!\cdots\!02 \) Copy content Toggle raw display
show more
show less