Properties

Label 2.22.a.a
Level 22
Weight 2222
Character orbit 2.a
Self dual yes
Analytic conductor 5.5905.590
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2,22,Mod(1,2)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: N N == 2 2
Weight: k k == 22 22
Character orbit: [χ][\chi] == 2.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.589546885745.58954688574
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1024q2+71604q3+1048576q428693770q573322496q6853202392q71073741824q85333220387q9+29382420480q10+86731179612q11+75082235904q12895323442786q13+46 ⁣ ⁣44q99+O(q100) q - 1024 q^{2} + 71604 q^{3} + 1048576 q^{4} - 28693770 q^{5} - 73322496 q^{6} - 853202392 q^{7} - 1073741824 q^{8} - 5333220387 q^{9} + 29382420480 q^{10} + 86731179612 q^{11} + 75082235904 q^{12} - 895323442786 q^{13}+ \cdots - 46\!\cdots\!44 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−1024.00 71604.0 1.04858e6 −2.86938e7 −7.33225e7 −8.53202e8 −1.07374e9 −5.33322e9 2.93824e10
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2.22.a.a 1
3.b odd 2 1 18.22.a.e 1
4.b odd 2 1 16.22.a.a 1
5.b even 2 1 50.22.a.c 1
5.c odd 4 2 50.22.b.a 2
8.b even 2 1 64.22.a.b 1
8.d odd 2 1 64.22.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.22.a.a 1 1.a even 1 1 trivial
16.22.a.a 1 4.b odd 2 1
18.22.a.e 1 3.b odd 2 1
50.22.a.c 1 5.b even 2 1
50.22.b.a 2 5.c odd 4 2
64.22.a.b 1 8.b even 2 1
64.22.a.f 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T371604 T_{3} - 71604 acting on S22new(Γ0(2))S_{22}^{\mathrm{new}}(\Gamma_0(2)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1024 T + 1024 Copy content Toggle raw display
33 T71604 T - 71604 Copy content Toggle raw display
55 T+28693770 T + 28693770 Copy content Toggle raw display
77 T+853202392 T + 853202392 Copy content Toggle raw display
1111 T86731179612 T - 86731179612 Copy content Toggle raw display
1313 T+895323442786 T + 895323442786 Copy content Toggle raw display
1717 T3257566804818 T - 3257566804818 Copy content Toggle raw display
1919 T23032467644420 T - 23032467644420 Copy content Toggle raw display
2323 T146495714575224 T - 146495714575224 Copy content Toggle raw display
2929 T+734051633521170 T + 734051633521170 Copy content Toggle raw display
3131 T+3146664162057568 T + 3146664162057568 Copy content Toggle raw display
3737 T+12 ⁣ ⁣62 T + 12\!\cdots\!62 Copy content Toggle raw display
4141 T45 ⁣ ⁣42 T - 45\!\cdots\!42 Copy content Toggle raw display
4343 T+24 ⁣ ⁣56 T + 24\!\cdots\!56 Copy content Toggle raw display
4747 T+44 ⁣ ⁣52 T + 44\!\cdots\!52 Copy content Toggle raw display
5353 T20 ⁣ ⁣54 T - 20\!\cdots\!54 Copy content Toggle raw display
5959 T+37 ⁣ ⁣40 T + 37\!\cdots\!40 Copy content Toggle raw display
6161 T+76 ⁣ ⁣38 T + 76\!\cdots\!38 Copy content Toggle raw display
6767 T+18 ⁣ ⁣32 T + 18\!\cdots\!32 Copy content Toggle raw display
7171 T+45 ⁣ ⁣28 T + 45\!\cdots\!28 Copy content Toggle raw display
7373 T+25 ⁣ ⁣26 T + 25\!\cdots\!26 Copy content Toggle raw display
7979 T99 ⁣ ⁣80 T - 99\!\cdots\!80 Copy content Toggle raw display
8383 T29 ⁣ ⁣84 T - 29\!\cdots\!84 Copy content Toggle raw display
8989 T11 ⁣ ⁣90 T - 11\!\cdots\!90 Copy content Toggle raw display
9797 T+56 ⁣ ⁣02 T + 56\!\cdots\!02 Copy content Toggle raw display
show more
show less