Properties

Label 2.30.a.b
Level 22
Weight 3030
Character orbit 2.a
Self dual yes
Analytic conductor 10.65610.656
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2,30,Mod(1,2)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 30, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2.1");
 
S:= CuspForms(chi, 30);
 
N := Newforms(S);
 
Level: N N == 2 2
Weight: k k == 30 30
Character orbit: [χ][\chi] == 2.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.655608476610.6556084766
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+16384q2+4782996q3+268435456q4+6065841750q5+78364606464q6+904018883432q7+4398046511104q845753326628867q9+99382751232000q10+23 ⁣ ⁣32q11+10 ⁣ ⁣44q99+O(q100) q + 16384 q^{2} + 4782996 q^{3} + 268435456 q^{4} + 6065841750 q^{5} + 78364606464 q^{6} + 904018883432 q^{7} + 4398046511104 q^{8} - 45753326628867 q^{9} + 99382751232000 q^{10} + 23\!\cdots\!32 q^{11}+ \cdots - 10\!\cdots\!44 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
16384.0 4.78300e6 2.68435e8 6.06584e9 7.83646e10 9.04019e11 4.39805e12 −4.57533e13 9.93828e13
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2.30.a.b 1
3.b odd 2 1 18.30.a.a 1
4.b odd 2 1 16.30.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.30.a.b 1 1.a even 1 1 trivial
16.30.a.a 1 4.b odd 2 1
18.30.a.a 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34782996 T_{3} - 4782996 acting on S30new(Γ0(2))S_{30}^{\mathrm{new}}(\Gamma_0(2)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16384 T - 16384 Copy content Toggle raw display
33 T4782996 T - 4782996 Copy content Toggle raw display
55 T6065841750 T - 6065841750 Copy content Toggle raw display
77 T904018883432 T - 904018883432 Copy content Toggle raw display
1111 T2348011244715132 T - 2348011244715132 Copy content Toggle raw display
1313 T16 ⁣ ⁣86 T - 16\!\cdots\!86 Copy content Toggle raw display
1717 T+53 ⁣ ⁣18 T + 53\!\cdots\!18 Copy content Toggle raw display
1919 T+45 ⁣ ⁣40 T + 45\!\cdots\!40 Copy content Toggle raw display
2323 T60 ⁣ ⁣36 T - 60\!\cdots\!36 Copy content Toggle raw display
2929 T+23 ⁣ ⁣90 T + 23\!\cdots\!90 Copy content Toggle raw display
3131 T45 ⁣ ⁣52 T - 45\!\cdots\!52 Copy content Toggle raw display
3737 T+50 ⁣ ⁣58 T + 50\!\cdots\!58 Copy content Toggle raw display
4141 T15 ⁣ ⁣82 T - 15\!\cdots\!82 Copy content Toggle raw display
4343 T+21 ⁣ ⁣84 T + 21\!\cdots\!84 Copy content Toggle raw display
4747 T+88 ⁣ ⁣48 T + 88\!\cdots\!48 Copy content Toggle raw display
5353 T19 ⁣ ⁣66 T - 19\!\cdots\!66 Copy content Toggle raw display
5959 T41 ⁣ ⁣20 T - 41\!\cdots\!20 Copy content Toggle raw display
6161 T+63 ⁣ ⁣98 T + 63\!\cdots\!98 Copy content Toggle raw display
6767 T15 ⁣ ⁣92 T - 15\!\cdots\!92 Copy content Toggle raw display
7171 T+45 ⁣ ⁣08 T + 45\!\cdots\!08 Copy content Toggle raw display
7373 T38 ⁣ ⁣06 T - 38\!\cdots\!06 Copy content Toggle raw display
7979 T40 ⁣ ⁣20 T - 40\!\cdots\!20 Copy content Toggle raw display
8383 T+12 ⁣ ⁣64 T + 12\!\cdots\!64 Copy content Toggle raw display
8989 T10 ⁣ ⁣90 T - 10\!\cdots\!90 Copy content Toggle raw display
9797 T10 ⁣ ⁣62 T - 10\!\cdots\!62 Copy content Toggle raw display
show more
show less