Properties

Label 200.10.a.a
Level 200200
Weight 1010
Character orbit 200.a
Self dual yes
Analytic conductor 103.007103.007
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,10,Mod(1,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 103.007167233103.007167233
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 8)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q68q310248q715059q9+3916q11+176594q13148370q17+499796q19+696864q21+1889768q23+2362456q27920898q29+1379360q31266288q33+58971044q99+O(q100) q - 68 q^{3} - 10248 q^{7} - 15059 q^{9} + 3916 q^{11} + 176594 q^{13} - 148370 q^{17} + 499796 q^{19} + 696864 q^{21} + 1889768 q^{23} + 2362456 q^{27} - 920898 q^{29} + 1379360 q^{31} - 266288 q^{33}+ \cdots - 58971044 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −68.0000 0 0 0 −10248.0 0 −15059.0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.10.a.a 1
4.b odd 2 1 400.10.a.i 1
5.b even 2 1 8.10.a.b 1
5.c odd 4 2 200.10.c.a 2
15.d odd 2 1 72.10.a.a 1
20.d odd 2 1 16.10.a.b 1
20.e even 4 2 400.10.c.f 2
35.c odd 2 1 392.10.a.a 1
40.e odd 2 1 64.10.a.g 1
40.f even 2 1 64.10.a.c 1
60.h even 2 1 144.10.a.b 1
80.k odd 4 2 256.10.b.k 2
80.q even 4 2 256.10.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.10.a.b 1 5.b even 2 1
16.10.a.b 1 20.d odd 2 1
64.10.a.c 1 40.f even 2 1
64.10.a.g 1 40.e odd 2 1
72.10.a.a 1 15.d odd 2 1
144.10.a.b 1 60.h even 2 1
200.10.a.a 1 1.a even 1 1 trivial
200.10.c.a 2 5.c odd 4 2
256.10.b.a 2 80.q even 4 2
256.10.b.k 2 80.k odd 4 2
392.10.a.a 1 35.c odd 2 1
400.10.a.i 1 4.b odd 2 1
400.10.c.f 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+68 T_{3} + 68 acting on S10new(Γ0(200))S_{10}^{\mathrm{new}}(\Gamma_0(200)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+68 T + 68 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+10248 T + 10248 Copy content Toggle raw display
1111 T3916 T - 3916 Copy content Toggle raw display
1313 T176594 T - 176594 Copy content Toggle raw display
1717 T+148370 T + 148370 Copy content Toggle raw display
1919 T499796 T - 499796 Copy content Toggle raw display
2323 T1889768 T - 1889768 Copy content Toggle raw display
2929 T+920898 T + 920898 Copy content Toggle raw display
3131 T1379360 T - 1379360 Copy content Toggle raw display
3737 T+5064966 T + 5064966 Copy content Toggle raw display
4141 T+24100758 T + 24100758 Copy content Toggle raw display
4343 T+25785196 T + 25785196 Copy content Toggle raw display
4747 T60790224 T - 60790224 Copy content Toggle raw display
5353 T+29496214 T + 29496214 Copy content Toggle raw display
5959 T51819388 T - 51819388 Copy content Toggle raw display
6161 T33426910 T - 33426910 Copy content Toggle raw display
6767 T+144856196 T + 144856196 Copy content Toggle raw display
7171 T68397128 T - 68397128 Copy content Toggle raw display
7373 T+168216202 T + 168216202 Copy content Toggle raw display
7979 T235398736 T - 235398736 Copy content Toggle raw display
8383 T64639852 T - 64639852 Copy content Toggle raw display
8989 T+78782694 T + 78782694 Copy content Toggle raw display
9797 T24113566 T - 24113566 Copy content Toggle raw display
show more
show less