Properties

Label 200.10.a.b
Level 200200
Weight 1010
Character orbit 200.a
Self dual yes
Analytic conductor 103.007103.007
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,10,Mod(1,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 103.007167233103.007167233
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 8)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+60q3+4344q716083q9+93644q11+12242q13+319598q17553516q19+260640q21+712936q232145960q27+2075838q296420448q31+5618640q33+1506076452q99+O(q100) q + 60 q^{3} + 4344 q^{7} - 16083 q^{9} + 93644 q^{11} + 12242 q^{13} + 319598 q^{17} - 553516 q^{19} + 260640 q^{21} + 712936 q^{23} - 2145960 q^{27} + 2075838 q^{29} - 6420448 q^{31} + 5618640 q^{33}+ \cdots - 1506076452 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 60.0000 0 0 0 4344.00 0 −16083.0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.10.a.b 1
4.b odd 2 1 400.10.a.d 1
5.b even 2 1 8.10.a.a 1
5.c odd 4 2 200.10.c.b 2
15.d odd 2 1 72.10.a.e 1
20.d odd 2 1 16.10.a.c 1
20.e even 4 2 400.10.c.g 2
35.c odd 2 1 392.10.a.b 1
40.e odd 2 1 64.10.a.d 1
40.f even 2 1 64.10.a.f 1
60.h even 2 1 144.10.a.n 1
80.k odd 4 2 256.10.b.c 2
80.q even 4 2 256.10.b.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.10.a.a 1 5.b even 2 1
16.10.a.c 1 20.d odd 2 1
64.10.a.d 1 40.e odd 2 1
64.10.a.f 1 40.f even 2 1
72.10.a.e 1 15.d odd 2 1
144.10.a.n 1 60.h even 2 1
200.10.a.b 1 1.a even 1 1 trivial
200.10.c.b 2 5.c odd 4 2
256.10.b.c 2 80.k odd 4 2
256.10.b.i 2 80.q even 4 2
392.10.a.b 1 35.c odd 2 1
400.10.a.d 1 4.b odd 2 1
400.10.c.g 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T360 T_{3} - 60 acting on S10new(Γ0(200))S_{10}^{\mathrm{new}}(\Gamma_0(200)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T60 T - 60 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T4344 T - 4344 Copy content Toggle raw display
1111 T93644 T - 93644 Copy content Toggle raw display
1313 T12242 T - 12242 Copy content Toggle raw display
1717 T319598 T - 319598 Copy content Toggle raw display
1919 T+553516 T + 553516 Copy content Toggle raw display
2323 T712936 T - 712936 Copy content Toggle raw display
2929 T2075838 T - 2075838 Copy content Toggle raw display
3131 T+6420448 T + 6420448 Copy content Toggle raw display
3737 T18197754 T - 18197754 Copy content Toggle raw display
4141 T9033834 T - 9033834 Copy content Toggle raw display
4343 T+19594732 T + 19594732 Copy content Toggle raw display
4747 T18484176 T - 18484176 Copy content Toggle raw display
5353 T+10255766 T + 10255766 Copy content Toggle raw display
5959 T121666556 T - 121666556 Copy content Toggle raw display
6161 T+45948962 T + 45948962 Copy content Toggle raw display
6767 T+50535428 T + 50535428 Copy content Toggle raw display
7171 T267044680 T - 267044680 Copy content Toggle raw display
7373 T176213366 T - 176213366 Copy content Toggle raw display
7979 T+269685680 T + 269685680 Copy content Toggle raw display
8383 T227032556 T - 227032556 Copy content Toggle raw display
8989 T72141594 T - 72141594 Copy content Toggle raw display
9797 T+228776546 T + 228776546 Copy content Toggle raw display
show more
show less