Properties

Label 200.2.q.a.169.7
Level $200$
Weight $2$
Character 200.169
Analytic conductor $1.597$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(9,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.q (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 169.7
Character \(\chi\) \(=\) 200.169
Dual form 200.2.q.a.129.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35643 + 1.86696i) q^{3} +(1.16787 - 1.90685i) q^{5} +4.74404i q^{7} +(-0.718596 + 2.21161i) q^{9} +(-1.69253 - 5.20907i) q^{11} +(-0.855610 - 0.278005i) q^{13} +(5.14414 - 0.406141i) q^{15} +(-0.419832 + 0.577849i) q^{17} +(4.33157 + 3.14707i) q^{19} +(-8.85692 + 6.43493i) q^{21} +(-2.89267 + 0.939884i) q^{23} +(-2.27217 - 4.45390i) q^{25} +(1.48052 - 0.481050i) q^{27} +(-0.515235 + 0.374340i) q^{29} +(-4.88535 - 3.54941i) q^{31} +(7.42933 - 10.2256i) q^{33} +(9.04617 + 5.54041i) q^{35} +(-1.61438 - 0.524543i) q^{37} +(-0.641548 - 1.97448i) q^{39} +(3.19882 - 9.84495i) q^{41} -8.11200i q^{43} +(3.37799 + 3.95312i) q^{45} +(-0.534394 - 0.735531i) q^{47} -15.5059 q^{49} -1.64829 q^{51} +(-0.605064 - 0.832800i) q^{53} +(-11.9096 - 2.85610i) q^{55} +12.3556i q^{57} +(-1.73043 + 5.32571i) q^{59} +(2.52925 + 7.78422i) q^{61} +(-10.4920 - 3.40904i) q^{63} +(-1.52935 + 1.30685i) q^{65} +(0.801238 - 1.10281i) q^{67} +(-5.67841 - 4.12561i) q^{69} +(-1.26639 + 0.920086i) q^{71} +(7.71383 - 2.50637i) q^{73} +(5.23323 - 10.2834i) q^{75} +(24.7120 - 8.02942i) q^{77} +(-9.83997 + 7.14916i) q^{79} +(8.55024 + 6.21211i) q^{81} +(-7.54215 + 10.3809i) q^{83} +(0.611564 + 1.47541i) q^{85} +(-1.39776 - 0.454158i) q^{87} +(1.23150 + 3.79018i) q^{89} +(1.31886 - 4.05904i) q^{91} -13.9353i q^{93} +(11.0597 - 4.58431i) q^{95} +(5.26145 + 7.24176i) q^{97} +12.7367 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{5} + 10 q^{9} + 6 q^{11} + 12 q^{15} - 6 q^{19} - 4 q^{21} - 30 q^{23} + 6 q^{25} - 2 q^{29} + 6 q^{31} + 8 q^{35} - 40 q^{37} - 12 q^{39} - 12 q^{45} - 20 q^{47} - 60 q^{49} - 60 q^{51} - 30 q^{53}+ \cdots + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.35643 + 1.86696i 0.783132 + 1.07789i 0.994929 + 0.100576i \(0.0320684\pi\)
−0.211797 + 0.977314i \(0.567932\pi\)
\(4\) 0 0
\(5\) 1.16787 1.90685i 0.522286 0.852770i
\(6\) 0 0
\(7\) 4.74404i 1.79308i 0.442966 + 0.896538i \(0.353926\pi\)
−0.442966 + 0.896538i \(0.646074\pi\)
\(8\) 0 0
\(9\) −0.718596 + 2.21161i −0.239532 + 0.737203i
\(10\) 0 0
\(11\) −1.69253 5.20907i −0.510317 1.57059i −0.791645 0.610982i \(-0.790775\pi\)
0.281328 0.959612i \(-0.409225\pi\)
\(12\) 0 0
\(13\) −0.855610 0.278005i −0.237304 0.0771046i 0.187951 0.982178i \(-0.439815\pi\)
−0.425254 + 0.905074i \(0.639815\pi\)
\(14\) 0 0
\(15\) 5.14414 0.406141i 1.32821 0.104865i
\(16\) 0 0
\(17\) −0.419832 + 0.577849i −0.101824 + 0.140149i −0.856889 0.515502i \(-0.827606\pi\)
0.755064 + 0.655651i \(0.227606\pi\)
\(18\) 0 0
\(19\) 4.33157 + 3.14707i 0.993731 + 0.721988i 0.960735 0.277467i \(-0.0894951\pi\)
0.0329963 + 0.999455i \(0.489495\pi\)
\(20\) 0 0
\(21\) −8.85692 + 6.43493i −1.93274 + 1.40422i
\(22\) 0 0
\(23\) −2.89267 + 0.939884i −0.603163 + 0.195979i −0.594650 0.803984i \(-0.702710\pi\)
−0.00851216 + 0.999964i \(0.502710\pi\)
\(24\) 0 0
\(25\) −2.27217 4.45390i −0.454434 0.890780i
\(26\) 0 0
\(27\) 1.48052 0.481050i 0.284926 0.0925781i
\(28\) 0 0
\(29\) −0.515235 + 0.374340i −0.0956768 + 0.0695132i −0.634595 0.772845i \(-0.718833\pi\)
0.538918 + 0.842358i \(0.318833\pi\)
\(30\) 0 0
\(31\) −4.88535 3.54941i −0.877434 0.637493i 0.0551370 0.998479i \(-0.482440\pi\)
−0.932571 + 0.360985i \(0.882440\pi\)
\(32\) 0 0
\(33\) 7.42933 10.2256i 1.29328 1.78005i
\(34\) 0 0
\(35\) 9.04617 + 5.54041i 1.52908 + 0.936500i
\(36\) 0 0
\(37\) −1.61438 0.524543i −0.265402 0.0862344i 0.173293 0.984870i \(-0.444559\pi\)
−0.438695 + 0.898636i \(0.644559\pi\)
\(38\) 0 0
\(39\) −0.641548 1.97448i −0.102730 0.316170i
\(40\) 0 0
\(41\) 3.19882 9.84495i 0.499572 1.53752i −0.310137 0.950692i \(-0.600375\pi\)
0.809709 0.586832i \(-0.199625\pi\)
\(42\) 0 0
\(43\) 8.11200i 1.23707i −0.785758 0.618534i \(-0.787727\pi\)
0.785758 0.618534i \(-0.212273\pi\)
\(44\) 0 0
\(45\) 3.37799 + 3.95312i 0.503561 + 0.589297i
\(46\) 0 0
\(47\) −0.534394 0.735531i −0.0779494 0.107288i 0.768262 0.640136i \(-0.221122\pi\)
−0.846211 + 0.532848i \(0.821122\pi\)
\(48\) 0 0
\(49\) −15.5059 −2.21512
\(50\) 0 0
\(51\) −1.64829 −0.230807
\(52\) 0 0
\(53\) −0.605064 0.832800i −0.0831120 0.114394i 0.765437 0.643511i \(-0.222523\pi\)
−0.848549 + 0.529118i \(0.822523\pi\)
\(54\) 0 0
\(55\) −11.9096 2.85610i −1.60589 0.385117i
\(56\) 0 0
\(57\) 12.3556i 1.63654i
\(58\) 0 0
\(59\) −1.73043 + 5.32571i −0.225282 + 0.693348i 0.772980 + 0.634430i \(0.218765\pi\)
−0.998263 + 0.0589180i \(0.981235\pi\)
\(60\) 0 0
\(61\) 2.52925 + 7.78422i 0.323837 + 0.996667i 0.971963 + 0.235134i \(0.0755530\pi\)
−0.648126 + 0.761533i \(0.724447\pi\)
\(62\) 0 0
\(63\) −10.4920 3.40904i −1.32186 0.429499i
\(64\) 0 0
\(65\) −1.52935 + 1.30685i −0.189693 + 0.162095i
\(66\) 0 0
\(67\) 0.801238 1.10281i 0.0978868 0.134730i −0.757264 0.653109i \(-0.773464\pi\)
0.855151 + 0.518379i \(0.173464\pi\)
\(68\) 0 0
\(69\) −5.67841 4.12561i −0.683600 0.496665i
\(70\) 0 0
\(71\) −1.26639 + 0.920086i −0.150293 + 0.109194i −0.660390 0.750922i \(-0.729609\pi\)
0.510098 + 0.860116i \(0.329609\pi\)
\(72\) 0 0
\(73\) 7.71383 2.50637i 0.902835 0.293349i 0.179429 0.983771i \(-0.442575\pi\)
0.723407 + 0.690422i \(0.242575\pi\)
\(74\) 0 0
\(75\) 5.23323 10.2834i 0.604281 1.18743i
\(76\) 0 0
\(77\) 24.7120 8.02942i 2.81619 0.915037i
\(78\) 0 0
\(79\) −9.83997 + 7.14916i −1.10708 + 0.804343i −0.982202 0.187829i \(-0.939855\pi\)
−0.124881 + 0.992172i \(0.539855\pi\)
\(80\) 0 0
\(81\) 8.55024 + 6.21211i 0.950026 + 0.690235i
\(82\) 0 0
\(83\) −7.54215 + 10.3809i −0.827858 + 1.13945i 0.160459 + 0.987042i \(0.448702\pi\)
−0.988318 + 0.152407i \(0.951298\pi\)
\(84\) 0 0
\(85\) 0.611564 + 1.47541i 0.0663334 + 0.160030i
\(86\) 0 0
\(87\) −1.39776 0.454158i −0.149855 0.0486909i
\(88\) 0 0
\(89\) 1.23150 + 3.79018i 0.130539 + 0.401758i 0.994870 0.101166i \(-0.0322574\pi\)
−0.864330 + 0.502924i \(0.832257\pi\)
\(90\) 0 0
\(91\) 1.31886 4.05904i 0.138254 0.425503i
\(92\) 0 0
\(93\) 13.9353i 1.44502i
\(94\) 0 0
\(95\) 11.0597 4.58431i 1.13470 0.470340i
\(96\) 0 0
\(97\) 5.26145 + 7.24176i 0.534219 + 0.735290i 0.987766 0.155943i \(-0.0498415\pi\)
−0.453547 + 0.891232i \(0.649842\pi\)
\(98\) 0 0
\(99\) 12.7367 1.28008
\(100\) 0 0
\(101\) 4.17849 0.415775 0.207888 0.978153i \(-0.433341\pi\)
0.207888 + 0.978153i \(0.433341\pi\)
\(102\) 0 0
\(103\) 5.57874 + 7.67847i 0.549689 + 0.756583i 0.989970 0.141278i \(-0.0451210\pi\)
−0.440281 + 0.897860i \(0.645121\pi\)
\(104\) 0 0
\(105\) 1.92675 + 24.4040i 0.188031 + 2.38158i
\(106\) 0 0
\(107\) 5.22384i 0.505008i 0.967596 + 0.252504i \(0.0812540\pi\)
−0.967596 + 0.252504i \(0.918746\pi\)
\(108\) 0 0
\(109\) 0.593929 1.82793i 0.0568881 0.175084i −0.918575 0.395247i \(-0.870659\pi\)
0.975463 + 0.220163i \(0.0706590\pi\)
\(110\) 0 0
\(111\) −1.21048 3.72548i −0.114894 0.353607i
\(112\) 0 0
\(113\) −2.82035 0.916388i −0.265316 0.0862065i 0.173338 0.984862i \(-0.444545\pi\)
−0.438654 + 0.898656i \(0.644545\pi\)
\(114\) 0 0
\(115\) −1.58603 + 6.61355i −0.147898 + 0.616716i
\(116\) 0 0
\(117\) 1.22968 1.69250i 0.113684 0.156472i
\(118\) 0 0
\(119\) −2.74133 1.99170i −0.251298 0.182578i
\(120\) 0 0
\(121\) −15.3706 + 11.1674i −1.39732 + 1.01522i
\(122\) 0 0
\(123\) 22.7191 7.38188i 2.04851 0.665601i
\(124\) 0 0
\(125\) −11.1465 0.868878i −0.996976 0.0777148i
\(126\) 0 0
\(127\) −12.3430 + 4.01047i −1.09526 + 0.355872i −0.800277 0.599631i \(-0.795314\pi\)
−0.294984 + 0.955502i \(0.595314\pi\)
\(128\) 0 0
\(129\) 15.1448 11.0033i 1.33342 0.968789i
\(130\) 0 0
\(131\) 1.88372 + 1.36860i 0.164581 + 0.119575i 0.667027 0.745033i \(-0.267566\pi\)
−0.502446 + 0.864609i \(0.667566\pi\)
\(132\) 0 0
\(133\) −14.9298 + 20.5491i −1.29458 + 1.78184i
\(134\) 0 0
\(135\) 0.811760 3.38493i 0.0698652 0.291329i
\(136\) 0 0
\(137\) −12.6064 4.09607i −1.07704 0.349951i −0.283813 0.958880i \(-0.591600\pi\)
−0.793225 + 0.608929i \(0.791600\pi\)
\(138\) 0 0
\(139\) 1.19232 + 3.66957i 0.101131 + 0.311249i 0.988803 0.149227i \(-0.0476786\pi\)
−0.887672 + 0.460476i \(0.847679\pi\)
\(140\) 0 0
\(141\) 0.648340 1.99538i 0.0546001 0.168042i
\(142\) 0 0
\(143\) 4.92746i 0.412055i
\(144\) 0 0
\(145\) 0.112085 + 1.41966i 0.00930815 + 0.117896i
\(146\) 0 0
\(147\) −21.0326 28.9488i −1.73474 2.38766i
\(148\) 0 0
\(149\) 21.2606 1.74173 0.870866 0.491520i \(-0.163558\pi\)
0.870866 + 0.491520i \(0.163558\pi\)
\(150\) 0 0
\(151\) 13.6617 1.11177 0.555886 0.831258i \(-0.312379\pi\)
0.555886 + 0.831258i \(0.312379\pi\)
\(152\) 0 0
\(153\) −0.976287 1.34374i −0.0789281 0.108635i
\(154\) 0 0
\(155\) −12.4736 + 5.17039i −1.00191 + 0.415296i
\(156\) 0 0
\(157\) 10.4154i 0.831241i −0.909538 0.415621i \(-0.863564\pi\)
0.909538 0.415621i \(-0.136436\pi\)
\(158\) 0 0
\(159\) 0.734078 2.25926i 0.0582162 0.179171i
\(160\) 0 0
\(161\) −4.45884 13.7229i −0.351406 1.08152i
\(162\) 0 0
\(163\) 8.37076 + 2.71983i 0.655649 + 0.213033i 0.617903 0.786254i \(-0.287982\pi\)
0.0377455 + 0.999287i \(0.487982\pi\)
\(164\) 0 0
\(165\) −10.8222 26.1088i −0.842509 2.03257i
\(166\) 0 0
\(167\) −9.01319 + 12.4056i −0.697461 + 0.959973i 0.302515 + 0.953145i \(0.402174\pi\)
−0.999977 + 0.00682879i \(0.997826\pi\)
\(168\) 0 0
\(169\) −9.86244 7.16548i −0.758649 0.551191i
\(170\) 0 0
\(171\) −10.0727 + 7.31828i −0.770282 + 0.559643i
\(172\) 0 0
\(173\) −0.415055 + 0.134860i −0.0315561 + 0.0102532i −0.324752 0.945799i \(-0.605281\pi\)
0.293196 + 0.956052i \(0.405281\pi\)
\(174\) 0 0
\(175\) 21.1295 10.7793i 1.59724 0.814835i
\(176\) 0 0
\(177\) −12.2901 + 3.99328i −0.923778 + 0.300154i
\(178\) 0 0
\(179\) −2.55087 + 1.85331i −0.190661 + 0.138523i −0.679021 0.734119i \(-0.737595\pi\)
0.488360 + 0.872642i \(0.337595\pi\)
\(180\) 0 0
\(181\) 2.29432 + 1.66692i 0.170535 + 0.123901i 0.669779 0.742560i \(-0.266389\pi\)
−0.499244 + 0.866462i \(0.666389\pi\)
\(182\) 0 0
\(183\) −11.1021 + 15.2807i −0.820690 + 1.12958i
\(184\) 0 0
\(185\) −2.88561 + 2.46578i −0.212154 + 0.181288i
\(186\) 0 0
\(187\) 3.72063 + 1.20891i 0.272079 + 0.0884040i
\(188\) 0 0
\(189\) 2.28212 + 7.02364i 0.166000 + 0.510894i
\(190\) 0 0
\(191\) 3.96648 12.2076i 0.287004 0.883308i −0.698787 0.715330i \(-0.746276\pi\)
0.985791 0.167978i \(-0.0537237\pi\)
\(192\) 0 0
\(193\) 12.6967i 0.913931i 0.889484 + 0.456965i \(0.151064\pi\)
−0.889484 + 0.456965i \(0.848936\pi\)
\(194\) 0 0
\(195\) −4.51429 1.08260i −0.323275 0.0775263i
\(196\) 0 0
\(197\) 14.6268 + 20.1321i 1.04212 + 1.43435i 0.895448 + 0.445167i \(0.146856\pi\)
0.146670 + 0.989185i \(0.453144\pi\)
\(198\) 0 0
\(199\) 9.23973 0.654987 0.327493 0.944853i \(-0.393796\pi\)
0.327493 + 0.944853i \(0.393796\pi\)
\(200\) 0 0
\(201\) 3.14572 0.221882
\(202\) 0 0
\(203\) −1.77588 2.44429i −0.124643 0.171556i
\(204\) 0 0
\(205\) −15.0371 17.5973i −1.05023 1.22905i
\(206\) 0 0
\(207\) 7.07285i 0.491597i
\(208\) 0 0
\(209\) 9.06201 27.8900i 0.626832 1.92919i
\(210\) 0 0
\(211\) −3.65928 11.2621i −0.251915 0.775314i −0.994422 0.105476i \(-0.966363\pi\)
0.742507 0.669838i \(-0.233637\pi\)
\(212\) 0 0
\(213\) −3.43552 1.11627i −0.235398 0.0764855i
\(214\) 0 0
\(215\) −15.4684 9.47375i −1.05494 0.646104i
\(216\) 0 0
\(217\) 16.8385 23.1763i 1.14307 1.57331i
\(218\) 0 0
\(219\) 15.1425 + 11.0017i 1.02324 + 0.743425i
\(220\) 0 0
\(221\) 0.519857 0.377698i 0.0349693 0.0254067i
\(222\) 0 0
\(223\) −16.5646 + 5.38218i −1.10925 + 0.360417i −0.805656 0.592384i \(-0.798187\pi\)
−0.303595 + 0.952801i \(0.598187\pi\)
\(224\) 0 0
\(225\) 11.4831 1.82460i 0.765538 0.121640i
\(226\) 0 0
\(227\) 11.6759 3.79373i 0.774957 0.251799i 0.105271 0.994444i \(-0.466429\pi\)
0.669685 + 0.742645i \(0.266429\pi\)
\(228\) 0 0
\(229\) −2.90584 + 2.11121i −0.192023 + 0.139513i −0.679643 0.733543i \(-0.737865\pi\)
0.487620 + 0.873056i \(0.337865\pi\)
\(230\) 0 0
\(231\) 48.5106 + 35.2450i 3.19176 + 2.31895i
\(232\) 0 0
\(233\) −6.77467 + 9.32454i −0.443824 + 0.610871i −0.971056 0.238850i \(-0.923230\pi\)
0.527233 + 0.849721i \(0.323230\pi\)
\(234\) 0 0
\(235\) −2.02665 + 0.160008i −0.132204 + 0.0104378i
\(236\) 0 0
\(237\) −26.6944 8.67352i −1.73399 0.563406i
\(238\) 0 0
\(239\) −8.08015 24.8681i −0.522661 1.60859i −0.768894 0.639376i \(-0.779193\pi\)
0.246233 0.969211i \(-0.420807\pi\)
\(240\) 0 0
\(241\) 4.27552 13.1587i 0.275411 0.847627i −0.713700 0.700452i \(-0.752982\pi\)
0.989110 0.147175i \(-0.0470182\pi\)
\(242\) 0 0
\(243\) 19.7191i 1.26498i
\(244\) 0 0
\(245\) −18.1088 + 29.5674i −1.15693 + 1.88899i
\(246\) 0 0
\(247\) −2.83124 3.89686i −0.180147 0.247952i
\(248\) 0 0
\(249\) −29.6110 −1.87652
\(250\) 0 0
\(251\) −21.1529 −1.33516 −0.667581 0.744537i \(-0.732670\pi\)
−0.667581 + 0.744537i \(0.732670\pi\)
\(252\) 0 0
\(253\) 9.79184 + 13.4773i 0.615608 + 0.847312i
\(254\) 0 0
\(255\) −1.92498 + 3.14304i −0.120547 + 0.196825i
\(256\) 0 0
\(257\) 10.6839i 0.666442i −0.942849 0.333221i \(-0.891865\pi\)
0.942849 0.333221i \(-0.108135\pi\)
\(258\) 0 0
\(259\) 2.48845 7.65867i 0.154625 0.475887i
\(260\) 0 0
\(261\) −0.457649 1.40850i −0.0283278 0.0871839i
\(262\) 0 0
\(263\) 0.0758648 + 0.0246500i 0.00467802 + 0.00151998i 0.311355 0.950294i \(-0.399217\pi\)
−0.306677 + 0.951814i \(0.599217\pi\)
\(264\) 0 0
\(265\) −2.29466 + 0.181168i −0.140960 + 0.0111291i
\(266\) 0 0
\(267\) −5.40567 + 7.44026i −0.330821 + 0.455337i
\(268\) 0 0
\(269\) 2.92805 + 2.12735i 0.178526 + 0.129707i 0.673460 0.739224i \(-0.264808\pi\)
−0.494933 + 0.868931i \(0.664808\pi\)
\(270\) 0 0
\(271\) −8.65029 + 6.28480i −0.525468 + 0.381775i −0.818660 0.574279i \(-0.805282\pi\)
0.293192 + 0.956054i \(0.405282\pi\)
\(272\) 0 0
\(273\) 9.36701 3.04353i 0.566917 0.184203i
\(274\) 0 0
\(275\) −19.3550 + 19.3742i −1.16715 + 1.16831i
\(276\) 0 0
\(277\) −31.0990 + 10.1047i −1.86856 + 0.607132i −0.876493 + 0.481414i \(0.840123\pi\)
−0.992066 + 0.125717i \(0.959877\pi\)
\(278\) 0 0
\(279\) 11.3605 8.25389i 0.680136 0.494148i
\(280\) 0 0
\(281\) 13.1207 + 9.53275i 0.782715 + 0.568676i 0.905793 0.423721i \(-0.139276\pi\)
−0.123077 + 0.992397i \(0.539276\pi\)
\(282\) 0 0
\(283\) 18.9130 26.0315i 1.12426 1.54741i 0.325720 0.945466i \(-0.394393\pi\)
0.798539 0.601943i \(-0.205607\pi\)
\(284\) 0 0
\(285\) 23.5604 + 14.4298i 1.39560 + 0.854745i
\(286\) 0 0
\(287\) 46.7048 + 15.1753i 2.75690 + 0.895770i
\(288\) 0 0
\(289\) 5.09564 + 15.6828i 0.299743 + 0.922515i
\(290\) 0 0
\(291\) −6.38331 + 19.6458i −0.374197 + 1.15166i
\(292\) 0 0
\(293\) 24.6970i 1.44281i −0.692513 0.721406i \(-0.743496\pi\)
0.692513 0.721406i \(-0.256504\pi\)
\(294\) 0 0
\(295\) 8.13442 + 9.51939i 0.473604 + 0.554240i
\(296\) 0 0
\(297\) −5.01164 6.89794i −0.290805 0.400259i
\(298\) 0 0
\(299\) 2.73629 0.158244
\(300\) 0 0
\(301\) 38.4836 2.21816
\(302\) 0 0
\(303\) 5.66781 + 7.80107i 0.325607 + 0.448160i
\(304\) 0 0
\(305\) 17.7972 + 4.26804i 1.01906 + 0.244387i
\(306\) 0 0
\(307\) 32.1625i 1.83561i −0.397029 0.917806i \(-0.629959\pi\)
0.397029 0.917806i \(-0.370041\pi\)
\(308\) 0 0
\(309\) −6.76826 + 20.8305i −0.385033 + 1.18501i
\(310\) 0 0
\(311\) −6.78533 20.8831i −0.384761 1.18417i −0.936654 0.350257i \(-0.886094\pi\)
0.551893 0.833915i \(-0.313906\pi\)
\(312\) 0 0
\(313\) −5.18348 1.68422i −0.292988 0.0951975i 0.158835 0.987305i \(-0.449226\pi\)
−0.451823 + 0.892108i \(0.649226\pi\)
\(314\) 0 0
\(315\) −18.7538 + 16.0253i −1.05665 + 0.902923i
\(316\) 0 0
\(317\) −0.0839194 + 0.115505i −0.00471338 + 0.00648742i −0.811367 0.584537i \(-0.801276\pi\)
0.806654 + 0.591024i \(0.201276\pi\)
\(318\) 0 0
\(319\) 2.82202 + 2.05031i 0.158003 + 0.114796i
\(320\) 0 0
\(321\) −9.75269 + 7.08575i −0.544342 + 0.395488i
\(322\) 0 0
\(323\) −3.63706 + 1.18175i −0.202372 + 0.0657545i
\(324\) 0 0
\(325\) 0.705886 + 4.44248i 0.0391555 + 0.246424i
\(326\) 0 0
\(327\) 4.21828 1.37060i 0.233272 0.0757946i
\(328\) 0 0
\(329\) 3.48938 2.53519i 0.192376 0.139769i
\(330\) 0 0
\(331\) 18.8935 + 13.7269i 1.03848 + 0.754499i 0.969988 0.243153i \(-0.0781817\pi\)
0.0684907 + 0.997652i \(0.478182\pi\)
\(332\) 0 0
\(333\) 2.32017 3.19344i 0.127145 0.175000i
\(334\) 0 0
\(335\) −1.16715 2.81578i −0.0637684 0.153842i
\(336\) 0 0
\(337\) 15.4589 + 5.02291i 0.842101 + 0.273615i 0.698134 0.715967i \(-0.254014\pi\)
0.143967 + 0.989582i \(0.454014\pi\)
\(338\) 0 0
\(339\) −2.11474 6.50849i −0.114857 0.353493i
\(340\) 0 0
\(341\) −10.2205 + 31.4556i −0.553474 + 1.70342i
\(342\) 0 0
\(343\) 40.3522i 2.17881i
\(344\) 0 0
\(345\) −14.4986 + 6.00972i −0.780576 + 0.323553i
\(346\) 0 0
\(347\) 4.04280 + 5.56443i 0.217029 + 0.298714i 0.903625 0.428325i \(-0.140896\pi\)
−0.686596 + 0.727039i \(0.740896\pi\)
\(348\) 0 0
\(349\) 14.7392 0.788970 0.394485 0.918902i \(-0.370923\pi\)
0.394485 + 0.918902i \(0.370923\pi\)
\(350\) 0 0
\(351\) −1.40048 −0.0747522
\(352\) 0 0
\(353\) 14.7400 + 20.2879i 0.784532 + 1.07982i 0.994767 + 0.102165i \(0.0325770\pi\)
−0.210235 + 0.977651i \(0.567423\pi\)
\(354\) 0 0
\(355\) 0.275492 + 3.48935i 0.0146216 + 0.185196i
\(356\) 0 0
\(357\) 7.81954i 0.413854i
\(358\) 0 0
\(359\) −0.940477 + 2.89449i −0.0496365 + 0.152765i −0.972803 0.231636i \(-0.925592\pi\)
0.923166 + 0.384401i \(0.125592\pi\)
\(360\) 0 0
\(361\) 2.98715 + 9.19349i 0.157218 + 0.483868i
\(362\) 0 0
\(363\) −41.6980 13.5485i −2.18858 0.711112i
\(364\) 0 0
\(365\) 4.22945 17.6362i 0.221379 0.923123i
\(366\) 0 0
\(367\) 2.47416 3.40539i 0.129150 0.177760i −0.739545 0.673107i \(-0.764959\pi\)
0.868695 + 0.495347i \(0.164959\pi\)
\(368\) 0 0
\(369\) 19.4745 + 14.1491i 1.01380 + 0.736572i
\(370\) 0 0
\(371\) 3.95083 2.87045i 0.205117 0.149026i
\(372\) 0 0
\(373\) 17.0370 5.53566i 0.882143 0.286626i 0.167296 0.985907i \(-0.446496\pi\)
0.714847 + 0.699281i \(0.246496\pi\)
\(374\) 0 0
\(375\) −13.4973 21.9887i −0.696996 1.13549i
\(376\) 0 0
\(377\) 0.544909 0.177052i 0.0280642 0.00911862i
\(378\) 0 0
\(379\) −12.0031 + 8.72079i −0.616560 + 0.447957i −0.851718 0.524000i \(-0.824439\pi\)
0.235158 + 0.971957i \(0.424439\pi\)
\(380\) 0 0
\(381\) −24.2297 17.6039i −1.24132 0.901875i
\(382\) 0 0
\(383\) −6.35843 + 8.75163i −0.324901 + 0.447187i −0.939956 0.341297i \(-0.889134\pi\)
0.615055 + 0.788484i \(0.289134\pi\)
\(384\) 0 0
\(385\) 13.5494 56.4994i 0.690544 2.87948i
\(386\) 0 0
\(387\) 17.9406 + 5.82925i 0.911971 + 0.296317i
\(388\) 0 0
\(389\) −7.11821 21.9076i −0.360908 1.11076i −0.952504 0.304526i \(-0.901502\pi\)
0.591596 0.806234i \(-0.298498\pi\)
\(390\) 0 0
\(391\) 0.671322 2.06612i 0.0339502 0.104488i
\(392\) 0 0
\(393\) 5.37323i 0.271044i
\(394\) 0 0
\(395\) 2.14060 + 27.1126i 0.107705 + 1.36418i
\(396\) 0 0
\(397\) 2.19656 + 3.02330i 0.110242 + 0.151735i 0.860573 0.509327i \(-0.170106\pi\)
−0.750331 + 0.661063i \(0.770106\pi\)
\(398\) 0 0
\(399\) −58.6156 −2.93445
\(400\) 0 0
\(401\) −21.9778 −1.09752 −0.548760 0.835980i \(-0.684900\pi\)
−0.548760 + 0.835980i \(0.684900\pi\)
\(402\) 0 0
\(403\) 3.19320 + 4.39506i 0.159065 + 0.218934i
\(404\) 0 0
\(405\) 21.8311 9.04911i 1.08480 0.449654i
\(406\) 0 0
\(407\) 9.29722i 0.460846i
\(408\) 0 0
\(409\) −9.04832 + 27.8479i −0.447410 + 1.37699i 0.432408 + 0.901678i \(0.357664\pi\)
−0.879819 + 0.475310i \(0.842336\pi\)
\(410\) 0 0
\(411\) −9.45245 29.0917i −0.466255 1.43499i
\(412\) 0 0
\(413\) −25.2653 8.20920i −1.24323 0.403949i
\(414\) 0 0
\(415\) 10.9866 + 26.5053i 0.539309 + 1.30109i
\(416\) 0 0
\(417\) −5.23366 + 7.20351i −0.256293 + 0.352757i
\(418\) 0 0
\(419\) −32.9023 23.9049i −1.60738 1.16783i −0.871021 0.491247i \(-0.836541\pi\)
−0.736363 0.676586i \(-0.763459\pi\)
\(420\) 0 0
\(421\) 22.8307 16.5875i 1.11270 0.808425i 0.129615 0.991564i \(-0.458626\pi\)
0.983087 + 0.183139i \(0.0586259\pi\)
\(422\) 0 0
\(423\) 2.01072 0.653323i 0.0977646 0.0317656i
\(424\) 0 0
\(425\) 3.52761 + 0.556919i 0.171114 + 0.0270145i
\(426\) 0 0
\(427\) −36.9286 + 11.9988i −1.78710 + 0.580664i
\(428\) 0 0
\(429\) −9.19937 + 6.68373i −0.444150 + 0.322694i
\(430\) 0 0
\(431\) −2.43193 1.76690i −0.117142 0.0851086i 0.527672 0.849448i \(-0.323065\pi\)
−0.644814 + 0.764340i \(0.723065\pi\)
\(432\) 0 0
\(433\) −2.60850 + 3.59029i −0.125357 + 0.172539i −0.867082 0.498165i \(-0.834008\pi\)
0.741726 + 0.670703i \(0.234008\pi\)
\(434\) 0 0
\(435\) −2.49841 + 2.13492i −0.119789 + 0.102361i
\(436\) 0 0
\(437\) −15.4877 5.03225i −0.740876 0.240725i
\(438\) 0 0
\(439\) −5.67846 17.4765i −0.271018 0.834108i −0.990246 0.139333i \(-0.955504\pi\)
0.719227 0.694775i \(-0.244496\pi\)
\(440\) 0 0
\(441\) 11.1425 34.2929i 0.530593 1.63300i
\(442\) 0 0
\(443\) 8.18925i 0.389083i −0.980894 0.194541i \(-0.937678\pi\)
0.980894 0.194541i \(-0.0623219\pi\)
\(444\) 0 0
\(445\) 8.66555 + 2.07813i 0.410786 + 0.0985130i
\(446\) 0 0
\(447\) 28.8384 + 39.6926i 1.36401 + 1.87740i
\(448\) 0 0
\(449\) 21.4953 1.01442 0.507212 0.861821i \(-0.330676\pi\)
0.507212 + 0.861821i \(0.330676\pi\)
\(450\) 0 0
\(451\) −56.6971 −2.66976
\(452\) 0 0
\(453\) 18.5311 + 25.5058i 0.870665 + 1.19837i
\(454\) 0 0
\(455\) −6.19974 7.25530i −0.290648 0.340134i
\(456\) 0 0
\(457\) 19.9426i 0.932875i 0.884554 + 0.466438i \(0.154463\pi\)
−0.884554 + 0.466438i \(0.845537\pi\)
\(458\) 0 0
\(459\) −0.343595 + 1.05748i −0.0160376 + 0.0493588i
\(460\) 0 0
\(461\) −7.61758 23.4445i −0.354786 1.09192i −0.956134 0.292931i \(-0.905369\pi\)
0.601348 0.798987i \(-0.294631\pi\)
\(462\) 0 0
\(463\) 30.3515 + 9.86181i 1.41055 + 0.458317i 0.912588 0.408879i \(-0.134080\pi\)
0.497966 + 0.867196i \(0.334080\pi\)
\(464\) 0 0
\(465\) −26.5725 16.2745i −1.23227 0.754714i
\(466\) 0 0
\(467\) −3.39194 + 4.66860i −0.156960 + 0.216037i −0.880253 0.474504i \(-0.842627\pi\)
0.723293 + 0.690541i \(0.242627\pi\)
\(468\) 0 0
\(469\) 5.23176 + 3.80110i 0.241580 + 0.175518i
\(470\) 0 0
\(471\) 19.4452 14.1277i 0.895986 0.650972i
\(472\) 0 0
\(473\) −42.2560 + 13.7298i −1.94293 + 0.631297i
\(474\) 0 0
\(475\) 4.17468 26.4431i 0.191548 1.21329i
\(476\) 0 0
\(477\) 2.27662 0.739720i 0.104239 0.0338695i
\(478\) 0 0
\(479\) 29.9435 21.7552i 1.36815 0.994021i 0.370273 0.928923i \(-0.379264\pi\)
0.997879 0.0650976i \(-0.0207359\pi\)
\(480\) 0 0
\(481\) 1.23545 + 0.897609i 0.0563318 + 0.0409275i
\(482\) 0 0
\(483\) 19.5720 26.9386i 0.890558 1.22575i
\(484\) 0 0
\(485\) 19.9537 1.57538i 0.906049 0.0715344i
\(486\) 0 0
\(487\) 1.68760 + 0.548334i 0.0764724 + 0.0248474i 0.347003 0.937864i \(-0.387199\pi\)
−0.270531 + 0.962711i \(0.587199\pi\)
\(488\) 0 0
\(489\) 6.27651 + 19.3171i 0.283834 + 0.873550i
\(490\) 0 0
\(491\) 2.09693 6.45370i 0.0946333 0.291251i −0.892525 0.450999i \(-0.851068\pi\)
0.987158 + 0.159747i \(0.0510679\pi\)
\(492\) 0 0
\(493\) 0.454888i 0.0204871i
\(494\) 0 0
\(495\) 14.8748 24.2870i 0.668570 1.09162i
\(496\) 0 0
\(497\) −4.36492 6.00779i −0.195793 0.269486i
\(498\) 0 0
\(499\) 31.3417 1.40305 0.701524 0.712645i \(-0.252503\pi\)
0.701524 + 0.712645i \(0.252503\pi\)
\(500\) 0 0
\(501\) −35.3864 −1.58095
\(502\) 0 0
\(503\) −15.8717 21.8455i −0.707683 0.974042i −0.999844 0.0176728i \(-0.994374\pi\)
0.292161 0.956369i \(-0.405626\pi\)
\(504\) 0 0
\(505\) 4.87992 7.96776i 0.217154 0.354561i
\(506\) 0 0
\(507\) 28.1322i 1.24940i
\(508\) 0 0
\(509\) −2.55879 + 7.87516i −0.113417 + 0.349060i −0.991613 0.129239i \(-0.958747\pi\)
0.878197 + 0.478299i \(0.158747\pi\)
\(510\) 0 0
\(511\) 11.8903 + 36.5947i 0.525997 + 1.61885i
\(512\) 0 0
\(513\) 7.92688 + 2.57560i 0.349980 + 0.113715i
\(514\) 0 0
\(515\) 21.1569 1.67039i 0.932286 0.0736060i
\(516\) 0 0
\(517\) −2.92695 + 4.02861i −0.128727 + 0.177178i
\(518\) 0 0
\(519\) −0.814769 0.591964i −0.0357644 0.0259843i
\(520\) 0 0
\(521\) −25.8273 + 18.7646i −1.13151 + 0.822092i −0.985914 0.167252i \(-0.946511\pi\)
−0.145598 + 0.989344i \(0.546511\pi\)
\(522\) 0 0
\(523\) 40.4318 13.1371i 1.76796 0.574445i 0.769985 0.638062i \(-0.220264\pi\)
0.997974 + 0.0636177i \(0.0202638\pi\)
\(524\) 0 0
\(525\) 48.7850 + 24.8266i 2.12915 + 1.08352i
\(526\) 0 0
\(527\) 4.10205 1.33284i 0.178688 0.0580592i
\(528\) 0 0
\(529\) −11.1233 + 8.08152i −0.483620 + 0.351370i
\(530\) 0 0
\(531\) −10.5349 7.65406i −0.457176 0.332158i
\(532\) 0 0
\(533\) −5.47388 + 7.53415i −0.237100 + 0.326340i
\(534\) 0 0
\(535\) 9.96109 + 6.10075i 0.430655 + 0.263759i
\(536\) 0 0
\(537\) −6.92012 2.24848i −0.298625 0.0970293i
\(538\) 0 0
\(539\) 26.2441 + 80.7712i 1.13042 + 3.47906i
\(540\) 0 0
\(541\) 6.21935 19.1412i 0.267391 0.822945i −0.723742 0.690071i \(-0.757579\pi\)
0.991133 0.132874i \(-0.0424206\pi\)
\(542\) 0 0
\(543\) 6.54444i 0.280849i
\(544\) 0 0
\(545\) −2.79195 3.26731i −0.119594 0.139956i
\(546\) 0 0
\(547\) 2.86005 + 3.93652i 0.122287 + 0.168314i 0.865771 0.500440i \(-0.166828\pi\)
−0.743484 + 0.668753i \(0.766828\pi\)
\(548\) 0 0
\(549\) −19.0332 −0.812316
\(550\) 0 0
\(551\) −3.40986 −0.145265
\(552\) 0 0
\(553\) −33.9159 46.6812i −1.44225 1.98509i
\(554\) 0 0
\(555\) −8.51763 2.04266i −0.361553 0.0867061i
\(556\) 0 0
\(557\) 22.9342i 0.971754i 0.874027 + 0.485877i \(0.161500\pi\)
−0.874027 + 0.485877i \(0.838500\pi\)
\(558\) 0 0
\(559\) −2.25517 + 6.94071i −0.0953837 + 0.293561i
\(560\) 0 0
\(561\) 2.78978 + 8.58605i 0.117785 + 0.362504i
\(562\) 0 0
\(563\) 16.0201 + 5.20525i 0.675167 + 0.219375i 0.626478 0.779439i \(-0.284496\pi\)
0.0486890 + 0.998814i \(0.484496\pi\)
\(564\) 0 0
\(565\) −5.04122 + 4.30777i −0.212086 + 0.181229i
\(566\) 0 0
\(567\) −29.4705 + 40.5626i −1.23764 + 1.70347i
\(568\) 0 0
\(569\) 20.0653 + 14.5783i 0.841181 + 0.611153i 0.922700 0.385518i \(-0.125977\pi\)
−0.0815196 + 0.996672i \(0.525977\pi\)
\(570\) 0 0
\(571\) −21.8426 + 15.8696i −0.914085 + 0.664122i −0.942045 0.335487i \(-0.891099\pi\)
0.0279596 + 0.999609i \(0.491099\pi\)
\(572\) 0 0
\(573\) 28.1712 9.15339i 1.17687 0.382388i
\(574\) 0 0
\(575\) 10.7588 + 10.7481i 0.448672 + 0.448226i
\(576\) 0 0
\(577\) −11.7353 + 3.81304i −0.488549 + 0.158739i −0.542925 0.839781i \(-0.682683\pi\)
0.0543759 + 0.998521i \(0.482683\pi\)
\(578\) 0 0
\(579\) −23.7043 + 17.2222i −0.985116 + 0.715729i
\(580\) 0 0
\(581\) −49.2473 35.7802i −2.04312 1.48441i
\(582\) 0 0
\(583\) −3.31402 + 4.56136i −0.137253 + 0.188912i
\(584\) 0 0
\(585\) −1.79125 4.32143i −0.0740592 0.178669i
\(586\) 0 0
\(587\) 4.04083 + 1.31295i 0.166783 + 0.0541911i 0.391218 0.920298i \(-0.372054\pi\)
−0.224435 + 0.974489i \(0.572054\pi\)
\(588\) 0 0
\(589\) −9.99099 30.7491i −0.411671 1.26699i
\(590\) 0 0
\(591\) −17.7456 + 54.6154i −0.729957 + 2.24658i
\(592\) 0 0
\(593\) 4.87578i 0.200224i −0.994976 0.100112i \(-0.968080\pi\)
0.994976 0.100112i \(-0.0319202\pi\)
\(594\) 0 0
\(595\) −6.99939 + 2.90128i −0.286947 + 0.118941i
\(596\) 0 0
\(597\) 12.5330 + 17.2502i 0.512941 + 0.706003i
\(598\) 0 0
\(599\) −3.33018 −0.136068 −0.0680338 0.997683i \(-0.521673\pi\)
−0.0680338 + 0.997683i \(0.521673\pi\)
\(600\) 0 0
\(601\) 21.2834 0.868169 0.434084 0.900872i \(-0.357072\pi\)
0.434084 + 0.900872i \(0.357072\pi\)
\(602\) 0 0
\(603\) 1.86322 + 2.56450i 0.0758761 + 0.104434i
\(604\) 0 0
\(605\) 3.34373 + 42.3514i 0.135942 + 1.72183i
\(606\) 0 0
\(607\) 5.70241i 0.231454i −0.993281 0.115727i \(-0.963080\pi\)
0.993281 0.115727i \(-0.0369198\pi\)
\(608\) 0 0
\(609\) 2.15454 6.63100i 0.0873065 0.268702i
\(610\) 0 0
\(611\) 0.252752 + 0.777892i 0.0102253 + 0.0314701i
\(612\) 0 0
\(613\) 14.2319 + 4.62422i 0.574821 + 0.186771i 0.581979 0.813204i \(-0.302279\pi\)
−0.00715828 + 0.999974i \(0.502279\pi\)
\(614\) 0 0
\(615\) 12.4567 51.9430i 0.502304 2.09454i
\(616\) 0 0
\(617\) 8.61313 11.8550i 0.346752 0.477263i −0.599647 0.800265i \(-0.704692\pi\)
0.946398 + 0.323002i \(0.104692\pi\)
\(618\) 0 0
\(619\) 0.994220 + 0.722343i 0.0399611 + 0.0290334i 0.607586 0.794254i \(-0.292138\pi\)
−0.567625 + 0.823287i \(0.692138\pi\)
\(620\) 0 0
\(621\) −3.83052 + 2.78303i −0.153713 + 0.111679i
\(622\) 0 0
\(623\) −17.9807 + 5.84230i −0.720383 + 0.234067i
\(624\) 0 0
\(625\) −14.6745 + 20.2400i −0.586980 + 0.809602i
\(626\) 0 0
\(627\) 64.3614 20.9123i 2.57035 0.835156i
\(628\) 0 0
\(629\) 0.980874 0.712647i 0.0391100 0.0284151i
\(630\) 0 0
\(631\) 5.95746 + 4.32835i 0.237163 + 0.172309i 0.700018 0.714125i \(-0.253175\pi\)
−0.462855 + 0.886434i \(0.653175\pi\)
\(632\) 0 0
\(633\) 16.0623 22.1079i 0.638420 0.878710i
\(634\) 0 0
\(635\) −6.76757 + 28.2199i −0.268563 + 1.11987i
\(636\) 0 0
\(637\) 13.2670 + 4.31070i 0.525657 + 0.170796i
\(638\) 0 0
\(639\) −1.12485 3.46193i −0.0444983 0.136952i
\(640\) 0 0
\(641\) 9.03936 27.8203i 0.357033 1.09884i −0.597788 0.801654i \(-0.703953\pi\)
0.954821 0.297181i \(-0.0960465\pi\)
\(642\) 0 0
\(643\) 4.03921i 0.159291i −0.996823 0.0796454i \(-0.974621\pi\)
0.996823 0.0796454i \(-0.0253788\pi\)
\(644\) 0 0
\(645\) −3.29461 41.7293i −0.129725 1.64309i
\(646\) 0 0
\(647\) −10.2270 14.0763i −0.402066 0.553397i 0.559195 0.829036i \(-0.311110\pi\)
−0.961261 + 0.275639i \(0.911110\pi\)
\(648\) 0 0
\(649\) 30.6708 1.20393
\(650\) 0 0
\(651\) 66.1094 2.59103
\(652\) 0 0
\(653\) −14.8035 20.3753i −0.579307 0.797347i 0.414313 0.910135i \(-0.364022\pi\)
−0.993619 + 0.112788i \(0.964022\pi\)
\(654\) 0 0
\(655\) 4.80966 1.99363i 0.187929 0.0778975i
\(656\) 0 0
\(657\) 18.8611i 0.735840i
\(658\) 0 0
\(659\) 6.41249 19.7356i 0.249795 0.768790i −0.745016 0.667047i \(-0.767558\pi\)
0.994811 0.101743i \(-0.0324419\pi\)
\(660\) 0 0
\(661\) −7.93078 24.4084i −0.308472 0.949378i −0.978359 0.206915i \(-0.933658\pi\)
0.669887 0.742463i \(-0.266342\pi\)
\(662\) 0 0
\(663\) 1.41029 + 0.458232i 0.0547712 + 0.0177963i
\(664\) 0 0
\(665\) 21.7481 + 52.4677i 0.843356 + 2.03461i
\(666\) 0 0
\(667\) 1.13857 1.56710i 0.0440855 0.0606785i
\(668\) 0 0
\(669\) −32.5170 23.6250i −1.25718 0.913395i
\(670\) 0 0
\(671\) 36.2677 26.3500i 1.40010 1.01723i
\(672\) 0 0
\(673\) −24.7424 + 8.03928i −0.953748 + 0.309892i −0.744238 0.667915i \(-0.767187\pi\)
−0.209511 + 0.977806i \(0.567187\pi\)
\(674\) 0 0
\(675\) −5.50654 5.50106i −0.211947 0.211736i
\(676\) 0 0
\(677\) −11.6504 + 3.78545i −0.447762 + 0.145487i −0.524214 0.851587i \(-0.675641\pi\)
0.0764519 + 0.997073i \(0.475641\pi\)
\(678\) 0 0
\(679\) −34.3552 + 24.9605i −1.31843 + 0.957896i
\(680\) 0 0
\(681\) 22.9202 + 16.6525i 0.878305 + 0.638126i
\(682\) 0 0
\(683\) −19.2888 + 26.5488i −0.738067 + 1.01586i 0.260660 + 0.965431i \(0.416060\pi\)
−0.998728 + 0.0504316i \(0.983940\pi\)
\(684\) 0 0
\(685\) −22.5332 + 19.2549i −0.860950 + 0.735691i
\(686\) 0 0
\(687\) −7.88310 2.56137i −0.300759 0.0977225i
\(688\) 0 0
\(689\) 0.286177 + 0.880762i 0.0109025 + 0.0335544i
\(690\) 0 0
\(691\) −12.8444 + 39.5310i −0.488624 + 1.50383i 0.338040 + 0.941132i \(0.390236\pi\)
−0.826663 + 0.562697i \(0.809764\pi\)
\(692\) 0 0
\(693\) 60.4232i 2.29529i
\(694\) 0 0
\(695\) 8.38980 + 2.01201i 0.318243 + 0.0763197i
\(696\) 0 0
\(697\) 4.34593 + 5.98166i 0.164614 + 0.226571i
\(698\) 0 0
\(699\) −26.5979 −1.00602
\(700\) 0 0
\(701\) 39.2783 1.48352 0.741760 0.670666i \(-0.233991\pi\)
0.741760 + 0.670666i \(0.233991\pi\)
\(702\) 0 0
\(703\) −5.34203 7.35267i −0.201478 0.277311i
\(704\) 0 0
\(705\) −3.04773 3.56663i −0.114784 0.134327i
\(706\) 0 0
\(707\) 19.8229i 0.745517i
\(708\) 0 0
\(709\) 8.56055 26.3467i 0.321498 0.989470i −0.651498 0.758650i \(-0.725859\pi\)
0.972997 0.230820i \(-0.0741408\pi\)
\(710\) 0 0
\(711\) −8.74019 26.8995i −0.327783 1.00881i
\(712\) 0 0
\(713\) 17.4677 + 5.67561i 0.654171 + 0.212553i
\(714\) 0 0
\(715\) 9.39594 + 5.75462i 0.351388 + 0.215211i
\(716\) 0 0
\(717\) 35.4677 48.8171i 1.32457 1.82311i
\(718\) 0 0
\(719\) −32.7615 23.8026i −1.22180 0.887687i −0.225548 0.974232i \(-0.572417\pi\)
−0.996248 + 0.0865450i \(0.972417\pi\)
\(720\) 0 0
\(721\) −36.4270 + 26.4657i −1.35661 + 0.985635i
\(722\) 0 0
\(723\) 30.3662 9.86658i 1.12933 0.366942i
\(724\) 0 0
\(725\) 2.83798 + 1.44424i 0.105400 + 0.0536378i
\(726\) 0 0
\(727\) 28.3901 9.22452i 1.05293 0.342118i 0.269114 0.963108i \(-0.413269\pi\)
0.783819 + 0.620990i \(0.213269\pi\)
\(728\) 0 0
\(729\) −11.1640 + 8.11111i −0.413481 + 0.300412i
\(730\) 0 0
\(731\) 4.68751 + 3.40568i 0.173374 + 0.125963i
\(732\) 0 0
\(733\) −4.81385 + 6.62569i −0.177803 + 0.244725i −0.888612 0.458660i \(-0.848329\pi\)
0.710808 + 0.703386i \(0.248329\pi\)
\(734\) 0 0
\(735\) −79.7644 + 6.29756i −2.94215 + 0.232289i
\(736\) 0 0
\(737\) −7.10073 2.30717i −0.261559 0.0849856i
\(738\) 0 0
\(739\) −5.32564 16.3906i −0.195907 0.602939i −0.999965 0.00838832i \(-0.997330\pi\)
0.804058 0.594551i \(-0.202670\pi\)
\(740\) 0 0
\(741\) 3.43492 10.5716i 0.126185 0.388358i
\(742\) 0 0
\(743\) 33.0772i 1.21348i −0.794899 0.606742i \(-0.792476\pi\)
0.794899 0.606742i \(-0.207524\pi\)
\(744\) 0 0
\(745\) 24.8295 40.5407i 0.909683 1.48530i
\(746\) 0 0
\(747\) −17.5387 24.1399i −0.641707 0.883234i
\(748\) 0 0
\(749\) −24.7821 −0.905517
\(750\) 0 0
\(751\) −8.95863 −0.326905 −0.163453 0.986551i \(-0.552263\pi\)
−0.163453 + 0.986551i \(0.552263\pi\)
\(752\) 0 0
\(753\) −28.6924 39.4917i −1.04561 1.43916i
\(754\) 0 0
\(755\) 15.9550 26.0508i 0.580663 0.948086i
\(756\) 0 0
\(757\) 41.5769i 1.51114i 0.655069 + 0.755569i \(0.272640\pi\)
−0.655069 + 0.755569i \(0.727360\pi\)
\(758\) 0 0
\(759\) −11.8797 + 36.5619i −0.431206 + 1.32711i
\(760\) 0 0
\(761\) 8.91224 + 27.4290i 0.323068 + 0.994302i 0.972305 + 0.233716i \(0.0750884\pi\)
−0.649237 + 0.760586i \(0.724912\pi\)
\(762\) 0 0
\(763\) 8.67175 + 2.81762i 0.313938 + 0.102005i
\(764\) 0 0
\(765\) −3.70249 + 0.292320i −0.133864 + 0.0105688i
\(766\) 0 0
\(767\) 2.96114 4.07566i 0.106921 0.147164i
\(768\) 0 0
\(769\) −14.5312 10.5575i −0.524009 0.380715i 0.294103 0.955774i \(-0.404979\pi\)
−0.818112 + 0.575059i \(0.804979\pi\)
\(770\) 0 0
\(771\) 19.9463 14.4919i 0.718350 0.521912i
\(772\) 0 0
\(773\) 11.2650 3.66022i 0.405174 0.131649i −0.0993377 0.995054i \(-0.531672\pi\)
0.504512 + 0.863405i \(0.331672\pi\)
\(774\) 0 0
\(775\) −4.70840 + 29.8237i −0.169131 + 1.07130i
\(776\) 0 0
\(777\) 17.6738 5.74257i 0.634045 0.206014i
\(778\) 0 0
\(779\) 44.8387 32.5772i 1.60651 1.16720i
\(780\) 0 0
\(781\) 6.93619 + 5.03944i 0.248196 + 0.180325i
\(782\) 0 0
\(783\) −0.582739 + 0.802072i −0.0208254 + 0.0286637i
\(784\) 0 0
\(785\) −19.8607 12.1638i −0.708858 0.434146i
\(786\) 0 0
\(787\) −26.5822 8.63708i −0.947553 0.307879i −0.205832 0.978587i \(-0.565990\pi\)
−0.741721 + 0.670709i \(0.765990\pi\)
\(788\) 0 0
\(789\) 0.0568844 + 0.175072i 0.00202514 + 0.00623274i
\(790\) 0 0
\(791\) 4.34738 13.3799i 0.154575 0.475733i
\(792\) 0 0
\(793\) 7.36340i 0.261482i
\(794\) 0 0
\(795\) −3.45077 4.03830i −0.122386 0.143224i
\(796\) 0 0
\(797\) −9.76290 13.4375i −0.345820 0.475980i 0.600310 0.799767i \(-0.295044\pi\)
−0.946130 + 0.323787i \(0.895044\pi\)
\(798\) 0 0
\(799\) 0.649381 0.0229735
\(800\) 0 0
\(801\) −9.26735 −0.327446
\(802\) 0 0
\(803\) −26.1118 35.9398i −0.921464 1.26829i
\(804\) 0 0
\(805\) −31.3749 7.52419i −1.10582 0.265193i
\(806\) 0 0
\(807\) 8.35214i 0.294009i
\(808\) 0 0
\(809\) 5.56807 17.1368i 0.195763 0.602496i −0.804204 0.594353i \(-0.797408\pi\)
0.999967 0.00814278i \(-0.00259195\pi\)
\(810\) 0 0
\(811\) 10.6951 + 32.9161i 0.375555 + 1.15584i 0.943103 + 0.332500i \(0.107892\pi\)
−0.567548 + 0.823340i \(0.692108\pi\)
\(812\) 0 0
\(813\) −23.4669 7.62487i −0.823021 0.267416i
\(814\) 0 0
\(815\) 14.9622 12.7854i 0.524105 0.447853i
\(816\) 0 0
\(817\) 25.5291 35.1377i 0.893149 1.22931i
\(818\) 0 0
\(819\) 8.02929 + 5.83362i 0.280566 + 0.203843i
\(820\) 0 0
\(821\) 5.74383 4.17314i 0.200461 0.145644i −0.483026 0.875606i \(-0.660462\pi\)
0.683487 + 0.729962i \(0.260462\pi\)
\(822\) 0 0
\(823\) −47.8938 + 15.5616i −1.66947 + 0.542445i −0.982824 0.184545i \(-0.940919\pi\)
−0.686648 + 0.726990i \(0.740919\pi\)
\(824\) 0 0
\(825\) −62.4245 9.85522i −2.17334 0.343115i
\(826\) 0 0
\(827\) −13.7780 + 4.47675i −0.479108 + 0.155672i −0.538608 0.842557i \(-0.681050\pi\)
0.0594995 + 0.998228i \(0.481050\pi\)
\(828\) 0 0
\(829\) −36.0753 + 26.2102i −1.25295 + 0.910319i −0.998389 0.0567386i \(-0.981930\pi\)
−0.254558 + 0.967058i \(0.581930\pi\)
\(830\) 0 0
\(831\) −61.0485 44.3543i −2.11775 1.53864i
\(832\) 0 0
\(833\) 6.50985 8.96005i 0.225553 0.310447i
\(834\) 0 0
\(835\) 13.1294 + 31.6749i 0.454362 + 1.09616i
\(836\) 0 0
\(837\) −8.94030 2.90488i −0.309022 0.100407i
\(838\) 0 0
\(839\) 9.49108 + 29.2105i 0.327668 + 1.00846i 0.970222 + 0.242219i \(0.0778751\pi\)
−0.642553 + 0.766241i \(0.722125\pi\)
\(840\) 0 0
\(841\) −8.83616 + 27.1949i −0.304695 + 0.937755i
\(842\) 0 0
\(843\) 37.4263i 1.28903i
\(844\) 0 0
\(845\) −25.1815 + 10.4379i −0.866271 + 0.359074i
\(846\) 0 0
\(847\) −52.9784 72.9185i −1.82036 2.50551i
\(848\) 0 0
\(849\) 74.2537 2.54838
\(850\) 0 0
\(851\) 5.16287 0.176981
\(852\) 0 0
\(853\) 9.07778 + 12.4945i 0.310817 + 0.427803i 0.935636 0.352967i \(-0.114827\pi\)
−0.624819 + 0.780770i \(0.714827\pi\)
\(854\) 0 0
\(855\) 2.19124 + 27.7540i 0.0749388 + 0.949168i
\(856\) 0 0
\(857\) 39.7161i 1.35668i −0.734750 0.678338i \(-0.762701\pi\)
0.734750 0.678338i \(-0.237299\pi\)
\(858\) 0 0
\(859\) 10.5848 32.5767i 0.361149 1.11150i −0.591209 0.806519i \(-0.701349\pi\)
0.952358 0.304984i \(-0.0986510\pi\)
\(860\) 0 0
\(861\) 35.0199 + 107.780i 1.19347 + 3.67314i
\(862\) 0 0
\(863\) 3.96924 + 1.28969i 0.135115 + 0.0439014i 0.375794 0.926703i \(-0.377370\pi\)
−0.240679 + 0.970605i \(0.577370\pi\)
\(864\) 0 0
\(865\) −0.227572 + 0.948947i −0.00773769 + 0.0322652i
\(866\) 0 0
\(867\) −22.3672 + 30.7858i −0.759631 + 1.04554i
\(868\) 0 0
\(869\) 53.8949 + 39.1569i 1.82826 + 1.32831i
\(870\) 0 0
\(871\) −0.992133 + 0.720827i −0.0336171 + 0.0244243i
\(872\) 0 0
\(873\) −19.7968 + 6.43237i −0.670021 + 0.217703i
\(874\) 0 0
\(875\) 4.12199 52.8795i 0.139349 1.78765i
\(876\) 0 0
\(877\) 6.06523 1.97071i 0.204808 0.0665462i −0.204816 0.978800i \(-0.565660\pi\)
0.409625 + 0.912254i \(0.365660\pi\)
\(878\) 0 0
\(879\) 46.1082 33.4996i 1.55519 1.12991i
\(880\) 0 0
\(881\) 2.10044 + 1.52606i 0.0707655 + 0.0514141i 0.622606 0.782536i \(-0.286074\pi\)
−0.551840 + 0.833950i \(0.686074\pi\)
\(882\) 0 0
\(883\) −1.59774 + 2.19910i −0.0537683 + 0.0740057i −0.835054 0.550167i \(-0.814564\pi\)
0.781286 + 0.624173i \(0.214564\pi\)
\(884\) 0 0
\(885\) −6.73857 + 28.0990i −0.226515 + 0.944536i
\(886\) 0 0
\(887\) −24.3954 7.92654i −0.819117 0.266147i −0.130663 0.991427i \(-0.541710\pi\)
−0.688454 + 0.725280i \(0.741710\pi\)
\(888\) 0 0
\(889\) −19.0258 58.5554i −0.638105 1.96389i
\(890\) 0 0
\(891\) 17.8878 55.0530i 0.599264 1.84434i
\(892\) 0 0
\(893\) 4.86778i 0.162894i
\(894\) 0 0
\(895\) 0.554919 + 7.02856i 0.0185489 + 0.234939i
\(896\) 0 0
\(897\) 3.71157 + 5.10853i 0.123926 + 0.170569i
\(898\) 0 0
\(899\) 3.84579 0.128264
\(900\) 0 0
\(901\) 0.735257 0.0244950
\(902\) 0 0
\(903\) 52.2002 + 71.8474i 1.73711 + 2.39093i
\(904\) 0 0
\(905\) 5.85802 2.42818i 0.194727 0.0807155i
\(906\) 0 0
\(907\) 4.64330i 0.154178i 0.997024 + 0.0770892i \(0.0245626\pi\)
−0.997024 + 0.0770892i \(0.975437\pi\)
\(908\) 0 0
\(909\) −3.00264 + 9.24119i −0.0995914 + 0.306511i
\(910\) 0 0
\(911\) 12.1764 + 37.4752i 0.403423 + 1.24161i 0.922205 + 0.386702i \(0.126386\pi\)
−0.518782 + 0.854907i \(0.673614\pi\)
\(912\) 0 0
\(913\) 66.8400 + 21.7176i 2.21208 + 0.718749i
\(914\) 0 0
\(915\) 16.1723 + 39.0159i 0.534639 + 1.28983i
\(916\) 0 0
\(917\) −6.49270 + 8.93643i −0.214408 + 0.295107i
\(918\) 0 0
\(919\) 38.1655 + 27.7289i 1.25896 + 0.914691i 0.998706 0.0508479i \(-0.0161924\pi\)
0.260258 + 0.965539i \(0.416192\pi\)
\(920\) 0 0
\(921\) 60.0461 43.6261i 1.97859 1.43753i
\(922\) 0 0
\(923\) 1.33932 0.435172i 0.0440844 0.0143239i
\(924\) 0 0
\(925\) 1.33188 + 8.38214i 0.0437918 + 0.275603i
\(926\) 0 0
\(927\) −20.9906 + 6.82027i −0.689423 + 0.224007i
\(928\) 0 0
\(929\) −12.3373 + 8.96357i −0.404774 + 0.294085i −0.771483 0.636251i \(-0.780484\pi\)
0.366709 + 0.930336i \(0.380484\pi\)
\(930\) 0 0
\(931\) −67.1648 48.7981i −2.20124 1.59929i
\(932\) 0 0
\(933\) 29.7841 40.9943i 0.975087 1.34209i
\(934\) 0 0
\(935\) 6.65041 5.68285i 0.217492 0.185849i
\(936\) 0 0
\(937\) −24.5440 7.97482i −0.801817 0.260526i −0.120689 0.992690i \(-0.538510\pi\)
−0.681128 + 0.732164i \(0.738510\pi\)
\(938\) 0 0
\(939\) −3.88664 11.9619i −0.126836 0.390361i
\(940\) 0 0
\(941\) −7.80115 + 24.0095i −0.254310 + 0.782686i 0.739655 + 0.672987i \(0.234989\pi\)
−0.993965 + 0.109700i \(0.965011\pi\)
\(942\) 0 0
\(943\) 31.4847i 1.02528i
\(944\) 0 0
\(945\) 16.0582 + 3.85102i 0.522375 + 0.125274i
\(946\) 0 0
\(947\) 13.9453 + 19.1940i 0.453161 + 0.623722i 0.973073 0.230497i \(-0.0740354\pi\)
−0.519912 + 0.854220i \(0.674035\pi\)
\(948\) 0 0
\(949\) −7.29681 −0.236865
\(950\) 0 0
\(951\) −0.329474 −0.0106839
\(952\) 0 0
\(953\) 28.0510 + 38.6089i 0.908661 + 1.25066i 0.967622 + 0.252404i \(0.0812212\pi\)
−0.0589610 + 0.998260i \(0.518779\pi\)
\(954\) 0 0
\(955\) −18.6457 21.8203i −0.603360 0.706088i
\(956\) 0 0
\(957\) 8.04968i 0.260209i
\(958\) 0 0
\(959\) 19.4319 59.8052i 0.627489 1.93121i
\(960\) 0 0
\(961\) 1.68877 + 5.19749i 0.0544764 + 0.167661i
\(962\) 0 0
\(963\) −11.5531 3.75383i −0.372293 0.120965i
\(964\) 0 0
\(965\) 24.2108 + 14.8281i 0.779373 + 0.477334i
\(966\) 0 0
\(967\) −22.2597 + 30.6379i −0.715825 + 0.985248i 0.283827 + 0.958875i \(0.408396\pi\)
−0.999652 + 0.0263728i \(0.991604\pi\)
\(968\) 0 0
\(969\) −7.13969 5.18729i −0.229360 0.166640i
\(970\) 0 0
\(971\) 23.1067 16.7880i 0.741528 0.538752i −0.151661 0.988433i \(-0.548462\pi\)
0.893189 + 0.449681i \(0.148462\pi\)
\(972\) 0 0
\(973\) −17.4086 + 5.65639i −0.558094 + 0.181336i
\(974\) 0 0
\(975\) −7.33644 + 7.34375i −0.234954 + 0.235188i
\(976\) 0 0
\(977\) 20.4567 6.64677i 0.654467 0.212649i 0.0370841 0.999312i \(-0.488193\pi\)
0.617383 + 0.786663i \(0.288193\pi\)
\(978\) 0 0
\(979\) 17.6590 12.8300i 0.564383 0.410048i
\(980\) 0 0
\(981\) 3.61587 + 2.62708i 0.115446 + 0.0838762i
\(982\) 0 0
\(983\) −0.131193 + 0.180572i −0.00418441 + 0.00575934i −0.811104 0.584902i \(-0.801133\pi\)
0.806920 + 0.590661i \(0.201133\pi\)
\(984\) 0 0
\(985\) 55.4711 4.37956i 1.76746 0.139544i
\(986\) 0 0
\(987\) 9.46618 + 3.07575i 0.301312 + 0.0979021i
\(988\) 0 0
\(989\) 7.62434 + 23.4653i 0.242440 + 0.746154i
\(990\) 0 0
\(991\) 5.95183 18.3179i 0.189066 0.581886i −0.810929 0.585145i \(-0.801038\pi\)
0.999995 + 0.00325947i \(0.00103752\pi\)
\(992\) 0 0
\(993\) 53.8928i 1.71024i
\(994\) 0 0
\(995\) 10.7908 17.6188i 0.342091 0.558553i
\(996\) 0 0
\(997\) −27.1237 37.3325i −0.859015 1.18233i −0.981803 0.189900i \(-0.939184\pi\)
0.122789 0.992433i \(-0.460816\pi\)
\(998\) 0 0
\(999\) −2.64245 −0.0836034
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.q.a.169.7 yes 32
4.3 odd 2 400.2.y.d.369.2 32
5.2 odd 4 1000.2.m.e.401.7 32
5.3 odd 4 1000.2.m.d.401.2 32
5.4 even 2 1000.2.q.c.849.2 32
25.2 odd 20 5000.2.a.q.1.4 16
25.3 odd 20 1000.2.m.d.601.2 32
25.4 even 10 inner 200.2.q.a.129.7 32
25.21 even 5 1000.2.q.c.649.2 32
25.22 odd 20 1000.2.m.e.601.7 32
25.23 odd 20 5000.2.a.r.1.13 16
100.23 even 20 10000.2.a.bq.1.4 16
100.27 even 20 10000.2.a.br.1.13 16
100.79 odd 10 400.2.y.d.129.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.q.a.129.7 32 25.4 even 10 inner
200.2.q.a.169.7 yes 32 1.1 even 1 trivial
400.2.y.d.129.2 32 100.79 odd 10
400.2.y.d.369.2 32 4.3 odd 2
1000.2.m.d.401.2 32 5.3 odd 4
1000.2.m.d.601.2 32 25.3 odd 20
1000.2.m.e.401.7 32 5.2 odd 4
1000.2.m.e.601.7 32 25.22 odd 20
1000.2.q.c.649.2 32 25.21 even 5
1000.2.q.c.849.2 32 5.4 even 2
5000.2.a.q.1.4 16 25.2 odd 20
5000.2.a.r.1.13 16 25.23 odd 20
10000.2.a.bq.1.4 16 100.23 even 20
10000.2.a.br.1.13 16 100.27 even 20