Properties

Label 200.4.a.f
Level 200200
Weight 44
Character orbit 200.a
Self dual yes
Analytic conductor 11.80011.800
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,4,Mod(1,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.800382001111.8003820011
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q36q726q919q11+12q1375q1791q196q21+174q2353q27272q29230q3119q33182q37+12q39+117q41+372q43++494q99+O(q100) q + q^{3} - 6 q^{7} - 26 q^{9} - 19 q^{11} + 12 q^{13} - 75 q^{17} - 91 q^{19} - 6 q^{21} + 174 q^{23} - 53 q^{27} - 272 q^{29} - 230 q^{31} - 19 q^{33} - 182 q^{37} + 12 q^{39} + 117 q^{41} + 372 q^{43}+ \cdots + 494 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 1.00000 0 0 0 −6.00000 0 −26.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.4.a.f yes 1
3.b odd 2 1 1800.4.a.l 1
4.b odd 2 1 400.4.a.j 1
5.b even 2 1 200.4.a.e 1
5.c odd 4 2 200.4.c.g 2
8.b even 2 1 1600.4.a.w 1
8.d odd 2 1 1600.4.a.be 1
15.d odd 2 1 1800.4.a.w 1
15.e even 4 2 1800.4.f.p 2
20.d odd 2 1 400.4.a.k 1
20.e even 4 2 400.4.c.m 2
40.e odd 2 1 1600.4.a.v 1
40.f even 2 1 1600.4.a.bf 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.4.a.e 1 5.b even 2 1
200.4.a.f yes 1 1.a even 1 1 trivial
200.4.c.g 2 5.c odd 4 2
400.4.a.j 1 4.b odd 2 1
400.4.a.k 1 20.d odd 2 1
400.4.c.m 2 20.e even 4 2
1600.4.a.v 1 40.e odd 2 1
1600.4.a.w 1 8.b even 2 1
1600.4.a.be 1 8.d odd 2 1
1600.4.a.bf 1 40.f even 2 1
1800.4.a.l 1 3.b odd 2 1
1800.4.a.w 1 15.d odd 2 1
1800.4.f.p 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T31 T_{3} - 1 acting on S4new(Γ0(200))S_{4}^{\mathrm{new}}(\Gamma_0(200)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T1 T - 1 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+6 T + 6 Copy content Toggle raw display
1111 T+19 T + 19 Copy content Toggle raw display
1313 T12 T - 12 Copy content Toggle raw display
1717 T+75 T + 75 Copy content Toggle raw display
1919 T+91 T + 91 Copy content Toggle raw display
2323 T174 T - 174 Copy content Toggle raw display
2929 T+272 T + 272 Copy content Toggle raw display
3131 T+230 T + 230 Copy content Toggle raw display
3737 T+182 T + 182 Copy content Toggle raw display
4141 T117 T - 117 Copy content Toggle raw display
4343 T372 T - 372 Copy content Toggle raw display
4747 T+52 T + 52 Copy content Toggle raw display
5353 T+402 T + 402 Copy content Toggle raw display
5959 T312 T - 312 Copy content Toggle raw display
6161 T170 T - 170 Copy content Toggle raw display
6767 T763 T - 763 Copy content Toggle raw display
7171 T+52 T + 52 Copy content Toggle raw display
7373 T+981 T + 981 Copy content Toggle raw display
7979 T1054 T - 1054 Copy content Toggle raw display
8383 T351 T - 351 Copy content Toggle raw display
8989 T799 T - 799 Copy content Toggle raw display
9797 T962 T - 962 Copy content Toggle raw display
show more
show less