Properties

Label 200.4.c.a.49.1
Level $200$
Weight $4$
Character 200.49
Analytic conductor $11.800$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,4,Mod(49,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8003820011\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.4.c.a.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.0000i q^{3} -18.0000i q^{7} -73.0000 q^{9} -16.0000 q^{11} +6.00000i q^{13} -6.00000i q^{17} +124.000 q^{19} -180.000 q^{21} -42.0000i q^{23} +460.000i q^{27} -142.000 q^{29} -188.000 q^{31} +160.000i q^{33} +202.000i q^{37} +60.0000 q^{39} +54.0000 q^{41} -66.0000i q^{43} +38.0000i q^{47} +19.0000 q^{49} -60.0000 q^{51} -738.000i q^{53} -1240.00i q^{57} -564.000 q^{59} -262.000 q^{61} +1314.00i q^{63} -554.000i q^{67} -420.000 q^{69} +140.000 q^{71} -882.000i q^{73} +288.000i q^{77} +1160.00 q^{79} +2629.00 q^{81} -642.000i q^{83} +1420.00i q^{87} +854.000 q^{89} +108.000 q^{91} +1880.00i q^{93} -478.000i q^{97} +1168.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 146 q^{9} - 32 q^{11} + 248 q^{19} - 360 q^{21} - 284 q^{29} - 376 q^{31} + 120 q^{39} + 108 q^{41} + 38 q^{49} - 120 q^{51} - 1128 q^{59} - 524 q^{61} - 840 q^{69} + 280 q^{71} + 2320 q^{79} + 5258 q^{81}+ \cdots + 2336 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 10.0000i − 1.92450i −0.272166 0.962250i \(-0.587740\pi\)
0.272166 0.962250i \(-0.412260\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 18.0000i − 0.971909i −0.873984 0.485954i \(-0.838472\pi\)
0.873984 0.485954i \(-0.161528\pi\)
\(8\) 0 0
\(9\) −73.0000 −2.70370
\(10\) 0 0
\(11\) −16.0000 −0.438562 −0.219281 0.975662i \(-0.570371\pi\)
−0.219281 + 0.975662i \(0.570371\pi\)
\(12\) 0 0
\(13\) 6.00000i 0.128008i 0.997950 + 0.0640039i \(0.0203870\pi\)
−0.997950 + 0.0640039i \(0.979613\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 6.00000i − 0.0856008i −0.999084 0.0428004i \(-0.986372\pi\)
0.999084 0.0428004i \(-0.0136280\pi\)
\(18\) 0 0
\(19\) 124.000 1.49724 0.748620 0.663000i \(-0.230717\pi\)
0.748620 + 0.663000i \(0.230717\pi\)
\(20\) 0 0
\(21\) −180.000 −1.87044
\(22\) 0 0
\(23\) − 42.0000i − 0.380765i −0.981710 0.190383i \(-0.939027\pi\)
0.981710 0.190383i \(-0.0609729\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 460.000i 3.27878i
\(28\) 0 0
\(29\) −142.000 −0.909267 −0.454633 0.890679i \(-0.650230\pi\)
−0.454633 + 0.890679i \(0.650230\pi\)
\(30\) 0 0
\(31\) −188.000 −1.08922 −0.544610 0.838690i \(-0.683322\pi\)
−0.544610 + 0.838690i \(0.683322\pi\)
\(32\) 0 0
\(33\) 160.000i 0.844013i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 202.000i 0.897530i 0.893650 + 0.448765i \(0.148136\pi\)
−0.893650 + 0.448765i \(0.851864\pi\)
\(38\) 0 0
\(39\) 60.0000 0.246351
\(40\) 0 0
\(41\) 54.0000 0.205692 0.102846 0.994697i \(-0.467205\pi\)
0.102846 + 0.994697i \(0.467205\pi\)
\(42\) 0 0
\(43\) − 66.0000i − 0.234068i −0.993128 0.117034i \(-0.962661\pi\)
0.993128 0.117034i \(-0.0373386\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 38.0000i 0.117933i 0.998260 + 0.0589667i \(0.0187806\pi\)
−0.998260 + 0.0589667i \(0.981219\pi\)
\(48\) 0 0
\(49\) 19.0000 0.0553936
\(50\) 0 0
\(51\) −60.0000 −0.164739
\(52\) 0 0
\(53\) − 738.000i − 1.91268i −0.292255 0.956341i \(-0.594405\pi\)
0.292255 0.956341i \(-0.405595\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1240.00i − 2.88144i
\(58\) 0 0
\(59\) −564.000 −1.24452 −0.622259 0.782812i \(-0.713785\pi\)
−0.622259 + 0.782812i \(0.713785\pi\)
\(60\) 0 0
\(61\) −262.000 −0.549929 −0.274964 0.961454i \(-0.588666\pi\)
−0.274964 + 0.961454i \(0.588666\pi\)
\(62\) 0 0
\(63\) 1314.00i 2.62775i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 554.000i − 1.01018i −0.863067 0.505089i \(-0.831460\pi\)
0.863067 0.505089i \(-0.168540\pi\)
\(68\) 0 0
\(69\) −420.000 −0.732783
\(70\) 0 0
\(71\) 140.000 0.234013 0.117007 0.993131i \(-0.462670\pi\)
0.117007 + 0.993131i \(0.462670\pi\)
\(72\) 0 0
\(73\) − 882.000i − 1.41411i −0.707157 0.707057i \(-0.750023\pi\)
0.707157 0.707057i \(-0.249977\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 288.000i 0.426242i
\(78\) 0 0
\(79\) 1160.00 1.65203 0.826014 0.563650i \(-0.190603\pi\)
0.826014 + 0.563650i \(0.190603\pi\)
\(80\) 0 0
\(81\) 2629.00 3.60631
\(82\) 0 0
\(83\) − 642.000i − 0.849020i −0.905423 0.424510i \(-0.860446\pi\)
0.905423 0.424510i \(-0.139554\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1420.00i 1.74988i
\(88\) 0 0
\(89\) 854.000 1.01712 0.508561 0.861026i \(-0.330178\pi\)
0.508561 + 0.861026i \(0.330178\pi\)
\(90\) 0 0
\(91\) 108.000 0.124412
\(92\) 0 0
\(93\) 1880.00i 2.09620i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 478.000i − 0.500346i −0.968201 0.250173i \(-0.919513\pi\)
0.968201 0.250173i \(-0.0804875\pi\)
\(98\) 0 0
\(99\) 1168.00 1.18574
\(100\) 0 0
\(101\) −1794.00 −1.76742 −0.883711 0.468033i \(-0.844963\pi\)
−0.883711 + 0.468033i \(0.844963\pi\)
\(102\) 0 0
\(103\) − 642.000i − 0.614157i −0.951684 0.307078i \(-0.900649\pi\)
0.951684 0.307078i \(-0.0993514\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 850.000i − 0.767968i −0.923340 0.383984i \(-0.874552\pi\)
0.923340 0.383984i \(-0.125448\pi\)
\(108\) 0 0
\(109\) −666.000 −0.585241 −0.292620 0.956229i \(-0.594527\pi\)
−0.292620 + 0.956229i \(0.594527\pi\)
\(110\) 0 0
\(111\) 2020.00 1.72730
\(112\) 0 0
\(113\) 1446.00i 1.20379i 0.798575 + 0.601895i \(0.205587\pi\)
−0.798575 + 0.601895i \(0.794413\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 438.000i − 0.346095i
\(118\) 0 0
\(119\) −108.000 −0.0831962
\(120\) 0 0
\(121\) −1075.00 −0.807663
\(122\) 0 0
\(123\) − 540.000i − 0.395855i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1154.00i − 0.806307i −0.915132 0.403153i \(-0.867914\pi\)
0.915132 0.403153i \(-0.132086\pi\)
\(128\) 0 0
\(129\) −660.000 −0.450463
\(130\) 0 0
\(131\) −368.000 −0.245437 −0.122719 0.992441i \(-0.539161\pi\)
−0.122719 + 0.992441i \(0.539161\pi\)
\(132\) 0 0
\(133\) − 2232.00i − 1.45518i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 670.000i − 0.417825i −0.977934 0.208912i \(-0.933008\pi\)
0.977934 0.208912i \(-0.0669923\pi\)
\(138\) 0 0
\(139\) 572.000 0.349039 0.174519 0.984654i \(-0.444163\pi\)
0.174519 + 0.984654i \(0.444163\pi\)
\(140\) 0 0
\(141\) 380.000 0.226963
\(142\) 0 0
\(143\) − 96.0000i − 0.0561393i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 190.000i − 0.106605i
\(148\) 0 0
\(149\) −1730.00 −0.951189 −0.475594 0.879665i \(-0.657767\pi\)
−0.475594 + 0.879665i \(0.657767\pi\)
\(150\) 0 0
\(151\) 1324.00 0.713547 0.356773 0.934191i \(-0.383877\pi\)
0.356773 + 0.934191i \(0.383877\pi\)
\(152\) 0 0
\(153\) 438.000i 0.231439i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2946.00i 1.49756i 0.662820 + 0.748778i \(0.269359\pi\)
−0.662820 + 0.748778i \(0.730641\pi\)
\(158\) 0 0
\(159\) −7380.00 −3.68096
\(160\) 0 0
\(161\) −756.000 −0.370069
\(162\) 0 0
\(163\) − 2098.00i − 1.00815i −0.863661 0.504074i \(-0.831834\pi\)
0.863661 0.504074i \(-0.168166\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 866.000i − 0.401276i −0.979665 0.200638i \(-0.935699\pi\)
0.979665 0.200638i \(-0.0643015\pi\)
\(168\) 0 0
\(169\) 2161.00 0.983614
\(170\) 0 0
\(171\) −9052.00 −4.04809
\(172\) 0 0
\(173\) 1678.00i 0.737433i 0.929542 + 0.368717i \(0.120203\pi\)
−0.929542 + 0.368717i \(0.879797\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5640.00i 2.39508i
\(178\) 0 0
\(179\) 1620.00 0.676450 0.338225 0.941065i \(-0.390174\pi\)
0.338225 + 0.941065i \(0.390174\pi\)
\(180\) 0 0
\(181\) 2510.00 1.03076 0.515378 0.856963i \(-0.327652\pi\)
0.515378 + 0.856963i \(0.327652\pi\)
\(182\) 0 0
\(183\) 2620.00i 1.05834i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 96.0000i 0.0375413i
\(188\) 0 0
\(189\) 8280.00 3.18667
\(190\) 0 0
\(191\) −372.000 −0.140927 −0.0704633 0.997514i \(-0.522448\pi\)
−0.0704633 + 0.997514i \(0.522448\pi\)
\(192\) 0 0
\(193\) − 2938.00i − 1.09576i −0.836557 0.547880i \(-0.815435\pi\)
0.836557 0.547880i \(-0.184565\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2234.00i 0.807949i 0.914770 + 0.403974i \(0.132372\pi\)
−0.914770 + 0.403974i \(0.867628\pi\)
\(198\) 0 0
\(199\) 3048.00 1.08576 0.542882 0.839809i \(-0.317333\pi\)
0.542882 + 0.839809i \(0.317333\pi\)
\(200\) 0 0
\(201\) −5540.00 −1.94409
\(202\) 0 0
\(203\) 2556.00i 0.883724i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3066.00i 1.02948i
\(208\) 0 0
\(209\) −1984.00 −0.656632
\(210\) 0 0
\(211\) 4896.00 1.59741 0.798707 0.601720i \(-0.205518\pi\)
0.798707 + 0.601720i \(0.205518\pi\)
\(212\) 0 0
\(213\) − 1400.00i − 0.450359i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3384.00i 1.05862i
\(218\) 0 0
\(219\) −8820.00 −2.72146
\(220\) 0 0
\(221\) 36.0000 0.0109576
\(222\) 0 0
\(223\) 5302.00i 1.59214i 0.605202 + 0.796072i \(0.293092\pi\)
−0.605202 + 0.796072i \(0.706908\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 3778.00i − 1.10465i −0.833630 0.552323i \(-0.813741\pi\)
0.833630 0.552323i \(-0.186259\pi\)
\(228\) 0 0
\(229\) 3034.00 0.875513 0.437756 0.899094i \(-0.355773\pi\)
0.437756 + 0.899094i \(0.355773\pi\)
\(230\) 0 0
\(231\) 2880.00 0.820303
\(232\) 0 0
\(233\) 3478.00i 0.977903i 0.872311 + 0.488951i \(0.162620\pi\)
−0.872311 + 0.488951i \(0.837380\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 11600.0i − 3.17933i
\(238\) 0 0
\(239\) −1560.00 −0.422209 −0.211105 0.977463i \(-0.567706\pi\)
−0.211105 + 0.977463i \(0.567706\pi\)
\(240\) 0 0
\(241\) −3218.00 −0.860123 −0.430061 0.902800i \(-0.641508\pi\)
−0.430061 + 0.902800i \(0.641508\pi\)
\(242\) 0 0
\(243\) − 13870.0i − 3.66157i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 744.000i 0.191658i
\(248\) 0 0
\(249\) −6420.00 −1.63394
\(250\) 0 0
\(251\) 688.000 0.173013 0.0865063 0.996251i \(-0.472430\pi\)
0.0865063 + 0.996251i \(0.472430\pi\)
\(252\) 0 0
\(253\) 672.000i 0.166989i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2170.00i 0.526696i 0.964701 + 0.263348i \(0.0848267\pi\)
−0.964701 + 0.263348i \(0.915173\pi\)
\(258\) 0 0
\(259\) 3636.00 0.872317
\(260\) 0 0
\(261\) 10366.0 2.45839
\(262\) 0 0
\(263\) − 2274.00i − 0.533159i −0.963813 0.266580i \(-0.914106\pi\)
0.963813 0.266580i \(-0.0858935\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 8540.00i − 1.95745i
\(268\) 0 0
\(269\) −7146.00 −1.61970 −0.809850 0.586637i \(-0.800452\pi\)
−0.809850 + 0.586637i \(0.800452\pi\)
\(270\) 0 0
\(271\) 2604.00 0.583696 0.291848 0.956465i \(-0.405730\pi\)
0.291848 + 0.956465i \(0.405730\pi\)
\(272\) 0 0
\(273\) − 1080.00i − 0.239431i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 5150.00i − 1.11709i −0.829475 0.558544i \(-0.811360\pi\)
0.829475 0.558544i \(-0.188640\pi\)
\(278\) 0 0
\(279\) 13724.0 2.94493
\(280\) 0 0
\(281\) 5270.00 1.11880 0.559398 0.828899i \(-0.311032\pi\)
0.559398 + 0.828899i \(0.311032\pi\)
\(282\) 0 0
\(283\) − 3434.00i − 0.721308i −0.932700 0.360654i \(-0.882554\pi\)
0.932700 0.360654i \(-0.117446\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 972.000i − 0.199914i
\(288\) 0 0
\(289\) 4877.00 0.992673
\(290\) 0 0
\(291\) −4780.00 −0.962916
\(292\) 0 0
\(293\) 9878.00i 1.96955i 0.173826 + 0.984776i \(0.444387\pi\)
−0.173826 + 0.984776i \(0.555613\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 7360.00i − 1.43795i
\(298\) 0 0
\(299\) 252.000 0.0487409
\(300\) 0 0
\(301\) −1188.00 −0.227492
\(302\) 0 0
\(303\) 17940.0i 3.40141i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8054.00i 1.49728i 0.662975 + 0.748642i \(0.269294\pi\)
−0.662975 + 0.748642i \(0.730706\pi\)
\(308\) 0 0
\(309\) −6420.00 −1.18195
\(310\) 0 0
\(311\) 5492.00 1.00136 0.500680 0.865633i \(-0.333083\pi\)
0.500680 + 0.865633i \(0.333083\pi\)
\(312\) 0 0
\(313\) 422.000i 0.0762072i 0.999274 + 0.0381036i \(0.0121317\pi\)
−0.999274 + 0.0381036i \(0.987868\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6194.00i 1.09744i 0.836005 + 0.548722i \(0.184885\pi\)
−0.836005 + 0.548722i \(0.815115\pi\)
\(318\) 0 0
\(319\) 2272.00 0.398770
\(320\) 0 0
\(321\) −8500.00 −1.47796
\(322\) 0 0
\(323\) − 744.000i − 0.128165i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 6660.00i 1.12630i
\(328\) 0 0
\(329\) 684.000 0.114620
\(330\) 0 0
\(331\) 7688.00 1.27665 0.638324 0.769768i \(-0.279628\pi\)
0.638324 + 0.769768i \(0.279628\pi\)
\(332\) 0 0
\(333\) − 14746.0i − 2.42665i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1438.00i − 0.232442i −0.993223 0.116221i \(-0.962922\pi\)
0.993223 0.116221i \(-0.0370780\pi\)
\(338\) 0 0
\(339\) 14460.0 2.31669
\(340\) 0 0
\(341\) 3008.00 0.477690
\(342\) 0 0
\(343\) − 6516.00i − 1.02575i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8838.00i 1.36729i 0.729816 + 0.683644i \(0.239606\pi\)
−0.729816 + 0.683644i \(0.760394\pi\)
\(348\) 0 0
\(349\) 7810.00 1.19788 0.598939 0.800794i \(-0.295589\pi\)
0.598939 + 0.800794i \(0.295589\pi\)
\(350\) 0 0
\(351\) −2760.00 −0.419709
\(352\) 0 0
\(353\) − 5906.00i − 0.890495i −0.895408 0.445247i \(-0.853116\pi\)
0.895408 0.445247i \(-0.146884\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1080.00i 0.160111i
\(358\) 0 0
\(359\) −8904.00 −1.30901 −0.654506 0.756057i \(-0.727123\pi\)
−0.654506 + 0.756057i \(0.727123\pi\)
\(360\) 0 0
\(361\) 8517.00 1.24173
\(362\) 0 0
\(363\) 10750.0i 1.55435i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7370.00i − 1.04826i −0.851639 0.524129i \(-0.824391\pi\)
0.851639 0.524129i \(-0.175609\pi\)
\(368\) 0 0
\(369\) −3942.00 −0.556131
\(370\) 0 0
\(371\) −13284.0 −1.85895
\(372\) 0 0
\(373\) 734.000i 0.101890i 0.998701 + 0.0509451i \(0.0162234\pi\)
−0.998701 + 0.0509451i \(0.983777\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 852.000i − 0.116393i
\(378\) 0 0
\(379\) −10300.0 −1.39598 −0.697989 0.716109i \(-0.745921\pi\)
−0.697989 + 0.716109i \(0.745921\pi\)
\(380\) 0 0
\(381\) −11540.0 −1.55174
\(382\) 0 0
\(383\) − 2682.00i − 0.357817i −0.983866 0.178908i \(-0.942743\pi\)
0.983866 0.178908i \(-0.0572566\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4818.00i 0.632849i
\(388\) 0 0
\(389\) −6114.00 −0.796895 −0.398447 0.917191i \(-0.630451\pi\)
−0.398447 + 0.917191i \(0.630451\pi\)
\(390\) 0 0
\(391\) −252.000 −0.0325938
\(392\) 0 0
\(393\) 3680.00i 0.472345i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 7174.00i − 0.906934i −0.891273 0.453467i \(-0.850187\pi\)
0.891273 0.453467i \(-0.149813\pi\)
\(398\) 0 0
\(399\) −22320.0 −2.80050
\(400\) 0 0
\(401\) 10498.0 1.30734 0.653672 0.756778i \(-0.273228\pi\)
0.653672 + 0.756778i \(0.273228\pi\)
\(402\) 0 0
\(403\) − 1128.00i − 0.139428i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 3232.00i − 0.393622i
\(408\) 0 0
\(409\) 1810.00 0.218823 0.109412 0.993997i \(-0.465103\pi\)
0.109412 + 0.993997i \(0.465103\pi\)
\(410\) 0 0
\(411\) −6700.00 −0.804104
\(412\) 0 0
\(413\) 10152.0i 1.20956i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 5720.00i − 0.671726i
\(418\) 0 0
\(419\) 3396.00 0.395956 0.197978 0.980206i \(-0.436563\pi\)
0.197978 + 0.980206i \(0.436563\pi\)
\(420\) 0 0
\(421\) −14974.0 −1.73346 −0.866732 0.498775i \(-0.833784\pi\)
−0.866732 + 0.498775i \(0.833784\pi\)
\(422\) 0 0
\(423\) − 2774.00i − 0.318857i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4716.00i 0.534481i
\(428\) 0 0
\(429\) −960.000 −0.108040
\(430\) 0 0
\(431\) −13540.0 −1.51322 −0.756611 0.653865i \(-0.773146\pi\)
−0.756611 + 0.653865i \(0.773146\pi\)
\(432\) 0 0
\(433\) − 15426.0i − 1.71207i −0.516918 0.856035i \(-0.672921\pi\)
0.516918 0.856035i \(-0.327079\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5208.00i − 0.570097i
\(438\) 0 0
\(439\) 10472.0 1.13850 0.569250 0.822165i \(-0.307234\pi\)
0.569250 + 0.822165i \(0.307234\pi\)
\(440\) 0 0
\(441\) −1387.00 −0.149768
\(442\) 0 0
\(443\) − 722.000i − 0.0774340i −0.999250 0.0387170i \(-0.987673\pi\)
0.999250 0.0387170i \(-0.0123271\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 17300.0i 1.83056i
\(448\) 0 0
\(449\) 11898.0 1.25056 0.625280 0.780401i \(-0.284985\pi\)
0.625280 + 0.780401i \(0.284985\pi\)
\(450\) 0 0
\(451\) −864.000 −0.0902088
\(452\) 0 0
\(453\) − 13240.0i − 1.37322i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 790.000i − 0.0808635i −0.999182 0.0404318i \(-0.987127\pi\)
0.999182 0.0404318i \(-0.0128733\pi\)
\(458\) 0 0
\(459\) 2760.00 0.280666
\(460\) 0 0
\(461\) −3418.00 −0.345319 −0.172660 0.984982i \(-0.555236\pi\)
−0.172660 + 0.984982i \(0.555236\pi\)
\(462\) 0 0
\(463\) 7534.00i 0.756230i 0.925759 + 0.378115i \(0.123428\pi\)
−0.925759 + 0.378115i \(0.876572\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 14314.0i − 1.41836i −0.705029 0.709179i \(-0.749066\pi\)
0.705029 0.709179i \(-0.250934\pi\)
\(468\) 0 0
\(469\) −9972.00 −0.981800
\(470\) 0 0
\(471\) 29460.0 2.88205
\(472\) 0 0
\(473\) 1056.00i 0.102653i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 53874.0i 5.17132i
\(478\) 0 0
\(479\) 7016.00 0.669247 0.334623 0.942352i \(-0.391391\pi\)
0.334623 + 0.942352i \(0.391391\pi\)
\(480\) 0 0
\(481\) −1212.00 −0.114891
\(482\) 0 0
\(483\) 7560.00i 0.712199i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15190.0i 1.41340i 0.707515 + 0.706699i \(0.249816\pi\)
−0.707515 + 0.706699i \(0.750184\pi\)
\(488\) 0 0
\(489\) −20980.0 −1.94018
\(490\) 0 0
\(491\) −12624.0 −1.16031 −0.580156 0.814505i \(-0.697008\pi\)
−0.580156 + 0.814505i \(0.697008\pi\)
\(492\) 0 0
\(493\) 852.000i 0.0778340i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 2520.00i − 0.227440i
\(498\) 0 0
\(499\) 2492.00 0.223562 0.111781 0.993733i \(-0.464345\pi\)
0.111781 + 0.993733i \(0.464345\pi\)
\(500\) 0 0
\(501\) −8660.00 −0.772256
\(502\) 0 0
\(503\) − 11714.0i − 1.03837i −0.854661 0.519186i \(-0.826235\pi\)
0.854661 0.519186i \(-0.173765\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 21610.0i − 1.89297i
\(508\) 0 0
\(509\) 5618.00 0.489221 0.244610 0.969621i \(-0.421340\pi\)
0.244610 + 0.969621i \(0.421340\pi\)
\(510\) 0 0
\(511\) −15876.0 −1.37439
\(512\) 0 0
\(513\) 57040.0i 4.90912i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 608.000i − 0.0517211i
\(518\) 0 0
\(519\) 16780.0 1.41919
\(520\) 0 0
\(521\) 13770.0 1.15792 0.578958 0.815357i \(-0.303459\pi\)
0.578958 + 0.815357i \(0.303459\pi\)
\(522\) 0 0
\(523\) − 6986.00i − 0.584085i −0.956405 0.292042i \(-0.905665\pi\)
0.956405 0.292042i \(-0.0943349\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1128.00i 0.0932380i
\(528\) 0 0
\(529\) 10403.0 0.855018
\(530\) 0 0
\(531\) 41172.0 3.36481
\(532\) 0 0
\(533\) 324.000i 0.0263302i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 16200.0i − 1.30183i
\(538\) 0 0
\(539\) −304.000 −0.0242935
\(540\) 0 0
\(541\) 11958.0 0.950304 0.475152 0.879904i \(-0.342393\pi\)
0.475152 + 0.879904i \(0.342393\pi\)
\(542\) 0 0
\(543\) − 25100.0i − 1.98369i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 4194.00i − 0.327829i −0.986475 0.163915i \(-0.947588\pi\)
0.986475 0.163915i \(-0.0524121\pi\)
\(548\) 0 0
\(549\) 19126.0 1.48684
\(550\) 0 0
\(551\) −17608.0 −1.36139
\(552\) 0 0
\(553\) − 20880.0i − 1.60562i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 5382.00i − 0.409412i −0.978823 0.204706i \(-0.934376\pi\)
0.978823 0.204706i \(-0.0656239\pi\)
\(558\) 0 0
\(559\) 396.000 0.0299625
\(560\) 0 0
\(561\) 960.000 0.0722482
\(562\) 0 0
\(563\) − 15418.0i − 1.15416i −0.816688 0.577079i \(-0.804192\pi\)
0.816688 0.577079i \(-0.195808\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 47322.0i − 3.50500i
\(568\) 0 0
\(569\) 5778.00 0.425705 0.212853 0.977084i \(-0.431725\pi\)
0.212853 + 0.977084i \(0.431725\pi\)
\(570\) 0 0
\(571\) 6024.00 0.441500 0.220750 0.975330i \(-0.429149\pi\)
0.220750 + 0.975330i \(0.429149\pi\)
\(572\) 0 0
\(573\) 3720.00i 0.271213i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 554.000i 0.0399711i 0.999800 + 0.0199855i \(0.00636202\pi\)
−0.999800 + 0.0199855i \(0.993638\pi\)
\(578\) 0 0
\(579\) −29380.0 −2.10879
\(580\) 0 0
\(581\) −11556.0 −0.825170
\(582\) 0 0
\(583\) 11808.0i 0.838829i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 2386.00i − 0.167770i −0.996475 0.0838848i \(-0.973267\pi\)
0.996475 0.0838848i \(-0.0267328\pi\)
\(588\) 0 0
\(589\) −23312.0 −1.63082
\(590\) 0 0
\(591\) 22340.0 1.55490
\(592\) 0 0
\(593\) 846.000i 0.0585853i 0.999571 + 0.0292926i \(0.00932547\pi\)
−0.999571 + 0.0292926i \(0.990675\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 30480.0i − 2.08955i
\(598\) 0 0
\(599\) −22304.0 −1.52140 −0.760698 0.649105i \(-0.775143\pi\)
−0.760698 + 0.649105i \(0.775143\pi\)
\(600\) 0 0
\(601\) 5510.00 0.373973 0.186986 0.982363i \(-0.440128\pi\)
0.186986 + 0.982363i \(0.440128\pi\)
\(602\) 0 0
\(603\) 40442.0i 2.73122i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 8234.00i − 0.550589i −0.961360 0.275295i \(-0.911225\pi\)
0.961360 0.275295i \(-0.0887754\pi\)
\(608\) 0 0
\(609\) 25560.0 1.70073
\(610\) 0 0
\(611\) −228.000 −0.0150964
\(612\) 0 0
\(613\) 1046.00i 0.0689193i 0.999406 + 0.0344597i \(0.0109710\pi\)
−0.999406 + 0.0344597i \(0.989029\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 3862.00i − 0.251991i −0.992031 0.125995i \(-0.959788\pi\)
0.992031 0.125995i \(-0.0402124\pi\)
\(618\) 0 0
\(619\) −13964.0 −0.906721 −0.453361 0.891327i \(-0.649775\pi\)
−0.453361 + 0.891327i \(0.649775\pi\)
\(620\) 0 0
\(621\) 19320.0 1.24845
\(622\) 0 0
\(623\) − 15372.0i − 0.988549i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 19840.0i 1.26369i
\(628\) 0 0
\(629\) 1212.00 0.0768293
\(630\) 0 0
\(631\) −14884.0 −0.939022 −0.469511 0.882927i \(-0.655570\pi\)
−0.469511 + 0.882927i \(0.655570\pi\)
\(632\) 0 0
\(633\) − 48960.0i − 3.07423i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 114.000i 0.00709081i
\(638\) 0 0
\(639\) −10220.0 −0.632703
\(640\) 0 0
\(641\) 17838.0 1.09916 0.549578 0.835443i \(-0.314789\pi\)
0.549578 + 0.835443i \(0.314789\pi\)
\(642\) 0 0
\(643\) 7814.00i 0.479244i 0.970866 + 0.239622i \(0.0770236\pi\)
−0.970866 + 0.239622i \(0.922976\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 774.000i 0.0470310i 0.999723 + 0.0235155i \(0.00748591\pi\)
−0.999723 + 0.0235155i \(0.992514\pi\)
\(648\) 0 0
\(649\) 9024.00 0.545798
\(650\) 0 0
\(651\) 33840.0 2.03732
\(652\) 0 0
\(653\) 23422.0i 1.40364i 0.712357 + 0.701818i \(0.247628\pi\)
−0.712357 + 0.701818i \(0.752372\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 64386.0i 3.82334i
\(658\) 0 0
\(659\) 13508.0 0.798478 0.399239 0.916847i \(-0.369274\pi\)
0.399239 + 0.916847i \(0.369274\pi\)
\(660\) 0 0
\(661\) −6222.00 −0.366124 −0.183062 0.983101i \(-0.558601\pi\)
−0.183062 + 0.983101i \(0.558601\pi\)
\(662\) 0 0
\(663\) − 360.000i − 0.0210878i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5964.00i 0.346217i
\(668\) 0 0
\(669\) 53020.0 3.06408
\(670\) 0 0
\(671\) 4192.00 0.241178
\(672\) 0 0
\(673\) 15566.0i 0.891568i 0.895141 + 0.445784i \(0.147075\pi\)
−0.895141 + 0.445784i \(0.852925\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2234.00i 0.126824i 0.997987 + 0.0634118i \(0.0201982\pi\)
−0.997987 + 0.0634118i \(0.979802\pi\)
\(678\) 0 0
\(679\) −8604.00 −0.486290
\(680\) 0 0
\(681\) −37780.0 −2.12589
\(682\) 0 0
\(683\) − 13282.0i − 0.744102i −0.928212 0.372051i \(-0.878655\pi\)
0.928212 0.372051i \(-0.121345\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 30340.0i − 1.68492i
\(688\) 0 0
\(689\) 4428.00 0.244838
\(690\) 0 0
\(691\) −27416.0 −1.50934 −0.754670 0.656105i \(-0.772203\pi\)
−0.754670 + 0.656105i \(0.772203\pi\)
\(692\) 0 0
\(693\) − 21024.0i − 1.15243i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 324.000i − 0.0176074i
\(698\) 0 0
\(699\) 34780.0 1.88197
\(700\) 0 0
\(701\) 25626.0 1.38071 0.690357 0.723469i \(-0.257453\pi\)
0.690357 + 0.723469i \(0.257453\pi\)
\(702\) 0 0
\(703\) 25048.0i 1.34382i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 32292.0i 1.71777i
\(708\) 0 0
\(709\) −11702.0 −0.619856 −0.309928 0.950760i \(-0.600305\pi\)
−0.309928 + 0.950760i \(0.600305\pi\)
\(710\) 0 0
\(711\) −84680.0 −4.46659
\(712\) 0 0
\(713\) 7896.00i 0.414737i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15600.0i 0.812542i
\(718\) 0 0
\(719\) 28008.0 1.45274 0.726371 0.687302i \(-0.241205\pi\)
0.726371 + 0.687302i \(0.241205\pi\)
\(720\) 0 0
\(721\) −11556.0 −0.596904
\(722\) 0 0
\(723\) 32180.0i 1.65531i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 7682.00i − 0.391898i −0.980614 0.195949i \(-0.937221\pi\)
0.980614 0.195949i \(-0.0627787\pi\)
\(728\) 0 0
\(729\) −67717.0 −3.44038
\(730\) 0 0
\(731\) −396.000 −0.0200364
\(732\) 0 0
\(733\) 14270.0i 0.719065i 0.933133 + 0.359532i \(0.117064\pi\)
−0.933133 + 0.359532i \(0.882936\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8864.00i 0.443025i
\(738\) 0 0
\(739\) −29324.0 −1.45968 −0.729838 0.683620i \(-0.760405\pi\)
−0.729838 + 0.683620i \(0.760405\pi\)
\(740\) 0 0
\(741\) 7440.00 0.368846
\(742\) 0 0
\(743\) − 29258.0i − 1.44465i −0.691556 0.722323i \(-0.743074\pi\)
0.691556 0.722323i \(-0.256926\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 46866.0i 2.29550i
\(748\) 0 0
\(749\) −15300.0 −0.746395
\(750\) 0 0
\(751\) 19076.0 0.926888 0.463444 0.886126i \(-0.346613\pi\)
0.463444 + 0.886126i \(0.346613\pi\)
\(752\) 0 0
\(753\) − 6880.00i − 0.332963i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 22670.0i − 1.08845i −0.838940 0.544224i \(-0.816824\pi\)
0.838940 0.544224i \(-0.183176\pi\)
\(758\) 0 0
\(759\) 6720.00 0.321371
\(760\) 0 0
\(761\) −23206.0 −1.10541 −0.552705 0.833377i \(-0.686404\pi\)
−0.552705 + 0.833377i \(0.686404\pi\)
\(762\) 0 0
\(763\) 11988.0i 0.568800i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 3384.00i − 0.159308i
\(768\) 0 0
\(769\) 1854.00 0.0869401 0.0434701 0.999055i \(-0.486159\pi\)
0.0434701 + 0.999055i \(0.486159\pi\)
\(770\) 0 0
\(771\) 21700.0 1.01363
\(772\) 0 0
\(773\) − 6474.00i − 0.301234i −0.988592 0.150617i \(-0.951874\pi\)
0.988592 0.150617i \(-0.0481260\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 36360.0i − 1.67877i
\(778\) 0 0
\(779\) 6696.00 0.307971
\(780\) 0 0
\(781\) −2240.00 −0.102629
\(782\) 0 0
\(783\) − 65320.0i − 2.98129i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 20354.0i − 0.921908i −0.887424 0.460954i \(-0.847507\pi\)
0.887424 0.460954i \(-0.152493\pi\)
\(788\) 0 0
\(789\) −22740.0 −1.02607
\(790\) 0 0
\(791\) 26028.0 1.16997
\(792\) 0 0
\(793\) − 1572.00i − 0.0703952i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1886.00i − 0.0838213i −0.999121 0.0419106i \(-0.986656\pi\)
0.999121 0.0419106i \(-0.0133445\pi\)
\(798\) 0 0
\(799\) 228.000 0.0100952
\(800\) 0 0
\(801\) −62342.0 −2.75000
\(802\) 0 0
\(803\) 14112.0i 0.620176i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 71460.0i 3.11711i
\(808\) 0 0
\(809\) 9462.00 0.411207 0.205603 0.978635i \(-0.434084\pi\)
0.205603 + 0.978635i \(0.434084\pi\)
\(810\) 0 0
\(811\) 24512.0 1.06132 0.530661 0.847584i \(-0.321944\pi\)
0.530661 + 0.847584i \(0.321944\pi\)
\(812\) 0 0
\(813\) − 26040.0i − 1.12332i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 8184.00i − 0.350455i
\(818\) 0 0
\(819\) −7884.00 −0.336373
\(820\) 0 0
\(821\) 36242.0 1.54063 0.770313 0.637666i \(-0.220100\pi\)
0.770313 + 0.637666i \(0.220100\pi\)
\(822\) 0 0
\(823\) 17718.0i 0.750438i 0.926936 + 0.375219i \(0.122433\pi\)
−0.926936 + 0.375219i \(0.877567\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6726.00i 0.282812i 0.989952 + 0.141406i \(0.0451624\pi\)
−0.989952 + 0.141406i \(0.954838\pi\)
\(828\) 0 0
\(829\) −41722.0 −1.74797 −0.873984 0.485955i \(-0.838472\pi\)
−0.873984 + 0.485955i \(0.838472\pi\)
\(830\) 0 0
\(831\) −51500.0 −2.14984
\(832\) 0 0
\(833\) − 114.000i − 0.00474174i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 86480.0i − 3.57131i
\(838\) 0 0
\(839\) −16720.0 −0.688008 −0.344004 0.938968i \(-0.611783\pi\)
−0.344004 + 0.938968i \(0.611783\pi\)
\(840\) 0 0
\(841\) −4225.00 −0.173234
\(842\) 0 0
\(843\) − 52700.0i − 2.15313i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 19350.0i 0.784975i
\(848\) 0 0
\(849\) −34340.0 −1.38816
\(850\) 0 0
\(851\) 8484.00 0.341748
\(852\) 0 0
\(853\) 33286.0i 1.33610i 0.744118 + 0.668049i \(0.232870\pi\)
−0.744118 + 0.668049i \(0.767130\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38978.0i 1.55363i 0.629727 + 0.776816i \(0.283167\pi\)
−0.629727 + 0.776816i \(0.716833\pi\)
\(858\) 0 0
\(859\) 1916.00 0.0761037 0.0380518 0.999276i \(-0.487885\pi\)
0.0380518 + 0.999276i \(0.487885\pi\)
\(860\) 0 0
\(861\) −9720.00 −0.384735
\(862\) 0 0
\(863\) 2374.00i 0.0936407i 0.998903 + 0.0468203i \(0.0149088\pi\)
−0.998903 + 0.0468203i \(0.985091\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 48770.0i − 1.91040i
\(868\) 0 0
\(869\) −18560.0 −0.724517
\(870\) 0 0
\(871\) 3324.00 0.129310
\(872\) 0 0
\(873\) 34894.0i 1.35279i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32722.0i 1.25991i 0.776631 + 0.629956i \(0.216927\pi\)
−0.776631 + 0.629956i \(0.783073\pi\)
\(878\) 0 0
\(879\) 98780.0 3.79041
\(880\) 0 0
\(881\) 5390.00 0.206122 0.103061 0.994675i \(-0.467136\pi\)
0.103061 + 0.994675i \(0.467136\pi\)
\(882\) 0 0
\(883\) 43238.0i 1.64788i 0.566680 + 0.823938i \(0.308228\pi\)
−0.566680 + 0.823938i \(0.691772\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 11010.0i − 0.416775i −0.978046 0.208388i \(-0.933178\pi\)
0.978046 0.208388i \(-0.0668215\pi\)
\(888\) 0 0
\(889\) −20772.0 −0.783656
\(890\) 0 0
\(891\) −42064.0 −1.58159
\(892\) 0 0
\(893\) 4712.00i 0.176575i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 2520.00i − 0.0938020i
\(898\) 0 0
\(899\) 26696.0 0.990391
\(900\) 0 0
\(901\) −4428.00 −0.163727
\(902\) 0 0
\(903\) 11880.0i 0.437809i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 74.0000i − 0.00270907i −0.999999 0.00135454i \(-0.999569\pi\)
0.999999 0.00135454i \(-0.000431163\pi\)
\(908\) 0 0
\(909\) 130962. 4.77859
\(910\) 0 0
\(911\) 17460.0 0.634990 0.317495 0.948260i \(-0.397158\pi\)
0.317495 + 0.948260i \(0.397158\pi\)
\(912\) 0 0
\(913\) 10272.0i 0.372348i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6624.00i 0.238543i
\(918\) 0 0
\(919\) −17072.0 −0.612789 −0.306395 0.951905i \(-0.599123\pi\)
−0.306395 + 0.951905i \(0.599123\pi\)
\(920\) 0 0
\(921\) 80540.0 2.88152
\(922\) 0 0
\(923\) 840.000i 0.0299555i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 46866.0i 1.66050i
\(928\) 0 0
\(929\) 14826.0 0.523601 0.261800 0.965122i \(-0.415684\pi\)
0.261800 + 0.965122i \(0.415684\pi\)
\(930\) 0 0
\(931\) 2356.00 0.0829375
\(932\) 0 0
\(933\) − 54920.0i − 1.92712i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3354.00i 0.116937i 0.998289 + 0.0584687i \(0.0186218\pi\)
−0.998289 + 0.0584687i \(0.981378\pi\)
\(938\) 0 0
\(939\) 4220.00 0.146661
\(940\) 0 0
\(941\) −15434.0 −0.534680 −0.267340 0.963602i \(-0.586145\pi\)
−0.267340 + 0.963602i \(0.586145\pi\)
\(942\) 0 0
\(943\) − 2268.00i − 0.0783205i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 9306.00i − 0.319329i −0.987171 0.159664i \(-0.948959\pi\)
0.987171 0.159664i \(-0.0510412\pi\)
\(948\) 0 0
\(949\) 5292.00 0.181017
\(950\) 0 0
\(951\) 61940.0 2.11203
\(952\) 0 0
\(953\) − 12202.0i − 0.414755i −0.978261 0.207378i \(-0.933507\pi\)
0.978261 0.207378i \(-0.0664928\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 22720.0i − 0.767433i
\(958\) 0 0
\(959\) −12060.0 −0.406087
\(960\) 0 0
\(961\) 5553.00 0.186399
\(962\) 0 0
\(963\) 62050.0i 2.07636i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 17478.0i 0.581235i 0.956839 + 0.290618i \(0.0938608\pi\)
−0.956839 + 0.290618i \(0.906139\pi\)
\(968\) 0 0
\(969\) −7440.00 −0.246653
\(970\) 0 0
\(971\) 10920.0 0.360906 0.180453 0.983584i \(-0.442244\pi\)
0.180453 + 0.983584i \(0.442244\pi\)
\(972\) 0 0
\(973\) − 10296.0i − 0.339234i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10834.0i 0.354770i 0.984142 + 0.177385i \(0.0567638\pi\)
−0.984142 + 0.177385i \(0.943236\pi\)
\(978\) 0 0
\(979\) −13664.0 −0.446071
\(980\) 0 0
\(981\) 48618.0 1.58232
\(982\) 0 0
\(983\) 36862.0i 1.19605i 0.801478 + 0.598024i \(0.204047\pi\)
−0.801478 + 0.598024i \(0.795953\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 6840.00i − 0.220587i
\(988\) 0 0
\(989\) −2772.00 −0.0891248
\(990\) 0 0
\(991\) 5380.00 0.172453 0.0862267 0.996276i \(-0.472519\pi\)
0.0862267 + 0.996276i \(0.472519\pi\)
\(992\) 0 0
\(993\) − 76880.0i − 2.45691i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 31266.0i 0.993184i 0.867984 + 0.496592i \(0.165415\pi\)
−0.867984 + 0.496592i \(0.834585\pi\)
\(998\) 0 0
\(999\) −92920.0 −2.94280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.4.c.a.49.1 2
3.2 odd 2 1800.4.f.n.649.1 2
4.3 odd 2 400.4.c.a.49.2 2
5.2 odd 4 200.4.a.a.1.1 1
5.3 odd 4 40.4.a.c.1.1 1
5.4 even 2 inner 200.4.c.a.49.2 2
15.2 even 4 1800.4.a.bd.1.1 1
15.8 even 4 360.4.a.i.1.1 1
15.14 odd 2 1800.4.f.n.649.2 2
20.3 even 4 80.4.a.a.1.1 1
20.7 even 4 400.4.a.u.1.1 1
20.19 odd 2 400.4.c.a.49.1 2
35.13 even 4 1960.4.a.a.1.1 1
40.3 even 4 320.4.a.n.1.1 1
40.13 odd 4 320.4.a.a.1.1 1
40.27 even 4 1600.4.a.a.1.1 1
40.37 odd 4 1600.4.a.ca.1.1 1
60.23 odd 4 720.4.a.ba.1.1 1
80.3 even 4 1280.4.d.b.641.1 2
80.13 odd 4 1280.4.d.o.641.2 2
80.43 even 4 1280.4.d.b.641.2 2
80.53 odd 4 1280.4.d.o.641.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.a.c.1.1 1 5.3 odd 4
80.4.a.a.1.1 1 20.3 even 4
200.4.a.a.1.1 1 5.2 odd 4
200.4.c.a.49.1 2 1.1 even 1 trivial
200.4.c.a.49.2 2 5.4 even 2 inner
320.4.a.a.1.1 1 40.13 odd 4
320.4.a.n.1.1 1 40.3 even 4
360.4.a.i.1.1 1 15.8 even 4
400.4.a.u.1.1 1 20.7 even 4
400.4.c.a.49.1 2 20.19 odd 2
400.4.c.a.49.2 2 4.3 odd 2
720.4.a.ba.1.1 1 60.23 odd 4
1280.4.d.b.641.1 2 80.3 even 4
1280.4.d.b.641.2 2 80.43 even 4
1280.4.d.o.641.1 2 80.53 odd 4
1280.4.d.o.641.2 2 80.13 odd 4
1600.4.a.a.1.1 1 40.27 even 4
1600.4.a.ca.1.1 1 40.37 odd 4
1800.4.a.bd.1.1 1 15.2 even 4
1800.4.f.n.649.1 2 3.2 odd 2
1800.4.f.n.649.2 2 15.14 odd 2
1960.4.a.a.1.1 1 35.13 even 4