Properties

Label 200.8.a.f
Level 200200
Weight 88
Character orbit 200.a
Self dual yes
Analytic conductor 62.47762.477
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,8,Mod(1,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 62.477005096862.4770050968
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 40)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+34q3+106q71031q91324q11+8828q1324000q174876q19+3604q21+46646q23109412q27110902q29247680q3145016q33+360092q37++1365044q99+O(q100) q + 34 q^{3} + 106 q^{7} - 1031 q^{9} - 1324 q^{11} + 8828 q^{13} - 24000 q^{17} - 4876 q^{19} + 3604 q^{21} + 46646 q^{23} - 109412 q^{27} - 110902 q^{29} - 247680 q^{31} - 45016 q^{33} + 360092 q^{37}+ \cdots + 1365044 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 34.0000 0 0 0 106.000 0 −1031.00 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.8.a.f 1
4.b odd 2 1 400.8.a.h 1
5.b even 2 1 200.8.a.c 1
5.c odd 4 2 40.8.c.a 2
15.e even 4 2 360.8.f.a 2
20.d odd 2 1 400.8.a.n 1
20.e even 4 2 80.8.c.b 2
40.i odd 4 2 320.8.c.b 2
40.k even 4 2 320.8.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.8.c.a 2 5.c odd 4 2
80.8.c.b 2 20.e even 4 2
200.8.a.c 1 5.b even 2 1
200.8.a.f 1 1.a even 1 1 trivial
320.8.c.a 2 40.k even 4 2
320.8.c.b 2 40.i odd 4 2
360.8.f.a 2 15.e even 4 2
400.8.a.h 1 4.b odd 2 1
400.8.a.n 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T334 T_{3} - 34 acting on S8new(Γ0(200))S_{8}^{\mathrm{new}}(\Gamma_0(200)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T34 T - 34 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T106 T - 106 Copy content Toggle raw display
1111 T+1324 T + 1324 Copy content Toggle raw display
1313 T8828 T - 8828 Copy content Toggle raw display
1717 T+24000 T + 24000 Copy content Toggle raw display
1919 T+4876 T + 4876 Copy content Toggle raw display
2323 T46646 T - 46646 Copy content Toggle raw display
2929 T+110902 T + 110902 Copy content Toggle raw display
3131 T+247680 T + 247680 Copy content Toggle raw display
3737 T360092 T - 360092 Copy content Toggle raw display
4141 T104402 T - 104402 Copy content Toggle raw display
4343 T+713622 T + 713622 Copy content Toggle raw display
4747 T156882 T - 156882 Copy content Toggle raw display
5353 T+1066268 T + 1066268 Copy content Toggle raw display
5959 T832572 T - 832572 Copy content Toggle raw display
6161 T529070 T - 529070 Copy content Toggle raw display
6767 T+4174418 T + 4174418 Copy content Toggle raw display
7171 T5176568 T - 5176568 Copy content Toggle raw display
7373 T237976 T - 237976 Copy content Toggle raw display
7979 T+3742736 T + 3742736 Copy content Toggle raw display
8383 T+7861886 T + 7861886 Copy content Toggle raw display
8989 T4300854 T - 4300854 Copy content Toggle raw display
9797 T+1147792 T + 1147792 Copy content Toggle raw display
show more
show less