gp: [N,k,chi] = [200,8,Mod(1,200)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(200, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("200.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,34,0,0,0,106]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 − 34 T_{3} - 34 T 3 − 3 4
T3 - 34
acting on S 8 n e w ( Γ 0 ( 200 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(200)) S 8 n e w ( Γ 0 ( 2 0 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 34 T - 34 T − 3 4
T - 34
5 5 5
T T T
T
7 7 7
T − 106 T - 106 T − 1 0 6
T - 106
11 11 1 1
T + 1324 T + 1324 T + 1 3 2 4
T + 1324
13 13 1 3
T − 8828 T - 8828 T − 8 8 2 8
T - 8828
17 17 1 7
T + 24000 T + 24000 T + 2 4 0 0 0
T + 24000
19 19 1 9
T + 4876 T + 4876 T + 4 8 7 6
T + 4876
23 23 2 3
T − 46646 T - 46646 T − 4 6 6 4 6
T - 46646
29 29 2 9
T + 110902 T + 110902 T + 1 1 0 9 0 2
T + 110902
31 31 3 1
T + 247680 T + 247680 T + 2 4 7 6 8 0
T + 247680
37 37 3 7
T − 360092 T - 360092 T − 3 6 0 0 9 2
T - 360092
41 41 4 1
T − 104402 T - 104402 T − 1 0 4 4 0 2
T - 104402
43 43 4 3
T + 713622 T + 713622 T + 7 1 3 6 2 2
T + 713622
47 47 4 7
T − 156882 T - 156882 T − 1 5 6 8 8 2
T - 156882
53 53 5 3
T + 1066268 T + 1066268 T + 1 0 6 6 2 6 8
T + 1066268
59 59 5 9
T − 832572 T - 832572 T − 8 3 2 5 7 2
T - 832572
61 61 6 1
T − 529070 T - 529070 T − 5 2 9 0 7 0
T - 529070
67 67 6 7
T + 4174418 T + 4174418 T + 4 1 7 4 4 1 8
T + 4174418
71 71 7 1
T − 5176568 T - 5176568 T − 5 1 7 6 5 6 8
T - 5176568
73 73 7 3
T − 237976 T - 237976 T − 2 3 7 9 7 6
T - 237976
79 79 7 9
T + 3742736 T + 3742736 T + 3 7 4 2 7 3 6
T + 3742736
83 83 8 3
T + 7861886 T + 7861886 T + 7 8 6 1 8 8 6
T + 7861886
89 89 8 9
T − 4300854 T - 4300854 T − 4 3 0 0 8 5 4
T - 4300854
97 97 9 7
T + 1147792 T + 1147792 T + 1 1 4 7 7 9 2
T + 1147792
show more
show less