Properties

Label 2000.2.a.q
Level $2000$
Weight $2$
Character orbit 2000.a
Self dual yes
Analytic conductor $15.970$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2000,2,Mod(1,2000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2000 = 2^{4} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.9700804043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.10025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 11x^{2} + 10x + 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1000)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{3} + 2) q^{7} + (\beta_{3} - \beta_{2} + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + (\beta_{3} + 2) q^{7} + (\beta_{3} - \beta_{2} + 2) q^{9} + ( - \beta_{2} + \beta_1 - 2) q^{11} + (\beta_{3} - \beta_1 + 1) q^{13} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{17} + (2 \beta_{3} + 3 \beta_{2} + 1) q^{19} + (4 \beta_{2} + 3 \beta_1 + 2) q^{21} + ( - \beta_{3} - 4 \beta_{2} + 1) q^{23} + ( - \beta_{3} + 3 \beta_{2} + \beta_1 + 1) q^{27} + ( - \beta_{3} - 3 \beta_{2} + \beta_1 + 1) q^{29} + ( - \beta_{3} - 5 \beta_{2} + 2 \beta_1 - 5) q^{31} + ( - 2 \beta_{2} - \beta_1 + 4) q^{33} + (3 \beta_{2} + \beta_1 + 5) q^{37} + ( - \beta_{3} + 5 \beta_{2} + 2 \beta_1 - 3) q^{39} + ( - 3 \beta_{3} - 2 \beta_{2} + 4) q^{41} + ( - \beta_{3} - \beta_{2} - \beta_1 - 3) q^{43} + (5 \beta_{2} + 6) q^{47} + (4 \beta_{3} + 3 \beta_{2} - \beta_1 + 5) q^{49} + ( - 2 \beta_{3} - 4 \beta_{2} + \cdots - 8) q^{51}+ \cdots + ( - 3 \beta_{3} + 2 \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 9 q^{7} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{3} + 9 q^{7} + 11 q^{9} - 5 q^{11} + 4 q^{13} + 4 q^{17} + 3 q^{21} + 11 q^{23} - 2 q^{27} + 10 q^{29} - 9 q^{31} + 19 q^{33} + 15 q^{37} - 21 q^{39} + 17 q^{41} - 12 q^{43} + 14 q^{47} + 17 q^{49} - 25 q^{51} - 6 q^{53} + 9 q^{57} - 18 q^{59} + 11 q^{61} + 52 q^{63} + q^{67} - 8 q^{69} - 26 q^{71} + 9 q^{73} - 8 q^{77} + 8 q^{79} - 4 q^{81} - 12 q^{83} + 17 q^{87} + 5 q^{89} + 33 q^{91} + 30 q^{93} + 29 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 11x^{2} + 10x + 20 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + \nu^{2} - 7\nu - 6 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 3\nu^{2} - 7\nu - 16 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 3\beta_{2} + 7\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.01670
−1.03989
2.39867
2.65792
0 −3.01670 0 0 0 4.48246 0 6.10049 0
1.2 0 −1.03989 0 0 0 −1.30060 0 −1.91864 0
1.3 0 2.39867 0 0 0 1.13558 0 2.75361 0
1.4 0 2.65792 0 0 0 4.68257 0 4.06454 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2000.2.a.q 4
4.b odd 2 1 1000.2.a.f 4
5.b even 2 1 2000.2.a.n 4
5.c odd 4 2 2000.2.c.i 8
8.b even 2 1 8000.2.a.be 4
8.d odd 2 1 8000.2.a.bn 4
12.b even 2 1 9000.2.a.q 4
20.d odd 2 1 1000.2.a.g yes 4
20.e even 4 2 1000.2.c.c 8
40.e odd 2 1 8000.2.a.bd 4
40.f even 2 1 8000.2.a.bo 4
60.h even 2 1 9000.2.a.bb 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1000.2.a.f 4 4.b odd 2 1
1000.2.a.g yes 4 20.d odd 2 1
1000.2.c.c 8 20.e even 4 2
2000.2.a.n 4 5.b even 2 1
2000.2.a.q 4 1.a even 1 1 trivial
2000.2.c.i 8 5.c odd 4 2
8000.2.a.bd 4 40.e odd 2 1
8000.2.a.be 4 8.b even 2 1
8000.2.a.bn 4 8.d odd 2 1
8000.2.a.bo 4 40.f even 2 1
9000.2.a.q 4 12.b even 2 1
9000.2.a.bb 4 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2000))\):

\( T_{3}^{4} - T_{3}^{3} - 11T_{3}^{2} + 10T_{3} + 20 \) Copy content Toggle raw display
\( T_{7}^{4} - 9T_{7}^{3} + 18T_{7}^{2} + 17T_{7} - 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + \cdots + 20 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 9 T^{3} + \cdots - 31 \) Copy content Toggle raw display
$11$ \( T^{4} + 5 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} - 4 T^{3} + \cdots + 19 \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots - 80 \) Copy content Toggle raw display
$19$ \( T^{4} - 57 T^{2} + \cdots + 191 \) Copy content Toggle raw display
$23$ \( T^{4} - 11 T^{3} + \cdots - 316 \) Copy content Toggle raw display
$29$ \( T^{4} - 10 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$31$ \( T^{4} + 9 T^{3} + \cdots - 1780 \) Copy content Toggle raw display
$37$ \( T^{4} - 15 T^{3} + \cdots - 404 \) Copy content Toggle raw display
$41$ \( T^{4} - 17 T^{3} + \cdots + 139 \) Copy content Toggle raw display
$43$ \( T^{4} + 12 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$47$ \( (T^{2} - 7 T - 19)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 6 T^{3} + \cdots - 709 \) Copy content Toggle raw display
$59$ \( T^{4} + 18 T^{3} + \cdots - 61 \) Copy content Toggle raw display
$61$ \( T^{4} - 11 T^{3} + \cdots - 100 \) Copy content Toggle raw display
$67$ \( T^{4} - T^{3} + \cdots + 8524 \) Copy content Toggle raw display
$71$ \( T^{4} + 26 T^{3} + \cdots - 20 \) Copy content Toggle raw display
$73$ \( T^{4} - 9 T^{3} + \cdots + 2524 \) Copy content Toggle raw display
$79$ \( T^{4} - 8 T^{3} + \cdots + 2420 \) Copy content Toggle raw display
$83$ \( T^{4} + 12 T^{3} + \cdots - 5696 \) Copy content Toggle raw display
$89$ \( T^{4} - 5 T^{3} + \cdots - 1084 \) Copy content Toggle raw display
$97$ \( T^{4} - 29 T^{3} + \cdots - 8804 \) Copy content Toggle raw display
show more
show less