Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2016,2,Mod(1,2016)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2016, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2016.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2016.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(16.0978410475\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 672) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 2016.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 4.00000 | 1.78885 | 0.894427 | − | 0.447214i | \(-0.147584\pi\) | ||||
0.894427 | + | 0.447214i | \(0.147584\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −1.00000 | −0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −2.00000 | −0.603023 | −0.301511 | − | 0.953463i | \(-0.597491\pi\) | ||||
−0.301511 | + | 0.953463i | \(0.597491\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −2.00000 | −0.554700 | −0.277350 | − | 0.960769i | \(-0.589456\pi\) | ||||
−0.277350 | + | 0.960769i | \(0.589456\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −6.00000 | −1.25109 | −0.625543 | − | 0.780189i | \(-0.715123\pi\) | ||||
−0.625543 | + | 0.780189i | \(0.715123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 11.0000 | 2.20000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 10.0000 | 1.85695 | 0.928477 | − | 0.371391i | \(-0.121119\pi\) | ||||
0.928477 | + | 0.371391i | \(0.121119\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 1.43684 | 0.718421 | − | 0.695608i | \(-0.244865\pi\) | ||||
0.718421 | + | 0.695608i | \(0.244865\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −4.00000 | −0.676123 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 10.0000 | 1.64399 | 0.821995 | − | 0.569495i | \(-0.192861\pi\) | ||||
0.821995 | + | 0.569495i | \(0.192861\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 4.00000 | 0.624695 | 0.312348 | − | 0.949968i | \(-0.398885\pi\) | ||||
0.312348 | + | 0.949968i | \(0.398885\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 8.00000 | 1.21999 | 0.609994 | − | 0.792406i | \(-0.291172\pi\) | ||||
0.609994 | + | 0.792406i | \(0.291172\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −4.00000 | −0.583460 | −0.291730 | − | 0.956501i | \(-0.594231\pi\) | ||||
−0.291730 | + | 0.956501i | \(0.594231\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −10.0000 | −1.37361 | −0.686803 | − | 0.726844i | \(-0.740986\pi\) | ||||
−0.686803 | + | 0.726844i | \(0.740986\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −8.00000 | −1.07872 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 8.00000 | 1.04151 | 0.520756 | − | 0.853706i | \(-0.325650\pi\) | ||||
0.520756 | + | 0.853706i | \(0.325650\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −6.00000 | −0.768221 | −0.384111 | − | 0.923287i | \(-0.625492\pi\) | ||||
−0.384111 | + | 0.923287i | \(0.625492\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −8.00000 | −0.992278 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4.00000 | −0.488678 | −0.244339 | − | 0.969690i | \(-0.578571\pi\) | ||||
−0.244339 | + | 0.969690i | \(0.578571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 14.0000 | 1.66149 | 0.830747 | − | 0.556650i | \(-0.187914\pi\) | ||||
0.830747 | + | 0.556650i | \(0.187914\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 6.00000 | 0.702247 | 0.351123 | − | 0.936329i | \(-0.385800\pi\) | ||||
0.351123 | + | 0.936329i | \(0.385800\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 2.00000 | 0.227921 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −12.0000 | −1.31717 | −0.658586 | − | 0.752506i | \(-0.728845\pi\) | ||||
−0.658586 | + | 0.752506i | \(0.728845\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −4.00000 | −0.423999 | −0.212000 | − | 0.977270i | \(-0.567998\pi\) | ||||
−0.212000 | + | 0.977270i | \(0.567998\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 2.00000 | 0.209657 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 16.0000 | 1.64157 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −2.00000 | −0.203069 | −0.101535 | − | 0.994832i | \(-0.532375\pi\) | ||||
−0.101535 | + | 0.994832i | \(0.532375\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −10.0000 | −0.966736 | −0.483368 | − | 0.875417i | \(-0.660587\pi\) | ||||
−0.483368 | + | 0.875417i | \(0.660587\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 14.0000 | 1.34096 | 0.670478 | − | 0.741929i | \(-0.266089\pi\) | ||||
0.670478 | + | 0.741929i | \(0.266089\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −2.00000 | −0.188144 | −0.0940721 | − | 0.995565i | \(-0.529988\pi\) | ||||
−0.0940721 | + | 0.995565i | \(0.529988\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −24.0000 | −2.23801 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 24.0000 | 2.14663 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 20.0000 | 1.77471 | 0.887357 | − | 0.461084i | \(-0.152539\pi\) | ||||
0.887357 | + | 0.461084i | \(0.152539\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −20.0000 | −1.74741 | −0.873704 | − | 0.486458i | \(-0.838289\pi\) | ||||
−0.873704 | + | 0.486458i | \(0.838289\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −4.00000 | −0.346844 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −6.00000 | −0.512615 | −0.256307 | − | 0.966595i | \(-0.582506\pi\) | ||||
−0.256307 | + | 0.966595i | \(0.582506\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 4.00000 | 0.334497 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 40.0000 | 3.32182 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 32.0000 | 2.57030 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −22.0000 | −1.75579 | −0.877896 | − | 0.478852i | \(-0.841053\pi\) | ||||
−0.877896 | + | 0.478852i | \(0.841053\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 6.00000 | 0.472866 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −20.0000 | −1.56652 | −0.783260 | − | 0.621694i | \(-0.786445\pi\) | ||||
−0.783260 | + | 0.621694i | \(0.786445\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 20.0000 | 1.54765 | 0.773823 | − | 0.633402i | \(-0.218342\pi\) | ||||
0.773823 | + | 0.633402i | \(0.218342\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −9.00000 | −0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −24.0000 | −1.82469 | −0.912343 | − | 0.409426i | \(-0.865729\pi\) | ||||
−0.912343 | + | 0.409426i | \(0.865729\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −11.0000 | −0.831522 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −6.00000 | −0.448461 | −0.224231 | − | 0.974536i | \(-0.571987\pi\) | ||||
−0.224231 | + | 0.974536i | \(0.571987\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 14.0000 | 1.04061 | 0.520306 | − | 0.853980i | \(-0.325818\pi\) | ||||
0.520306 | + | 0.853980i | \(0.325818\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 40.0000 | 2.94086 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 6.00000 | 0.434145 | 0.217072 | − | 0.976156i | \(-0.430349\pi\) | ||||
0.217072 | + | 0.976156i | \(0.430349\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 6.00000 | 0.431889 | 0.215945 | − | 0.976406i | \(-0.430717\pi\) | ||||
0.215945 | + | 0.976406i | \(0.430717\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −2.00000 | −0.142494 | −0.0712470 | − | 0.997459i | \(-0.522698\pi\) | ||||
−0.0712470 | + | 0.997459i | \(0.522698\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 8.00000 | 0.567105 | 0.283552 | − | 0.958957i | \(-0.408487\pi\) | ||||
0.283552 | + | 0.958957i | \(0.408487\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −10.0000 | −0.701862 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 16.0000 | 1.11749 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −8.00000 | −0.553372 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −8.00000 | −0.550743 | −0.275371 | − | 0.961338i | \(-0.588801\pi\) | ||||
−0.275371 | + | 0.961338i | \(0.588801\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 32.0000 | 2.18238 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −8.00000 | −0.543075 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.0000 | 1.07144 | 0.535720 | − | 0.844396i | \(-0.320040\pi\) | ||||
0.535720 | + | 0.844396i | \(0.320040\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 14.0000 | 0.925146 | 0.462573 | − | 0.886581i | \(-0.346926\pi\) | ||||
0.462573 | + | 0.886581i | \(0.346926\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 18.0000 | 1.17922 | 0.589610 | − | 0.807688i | \(-0.299282\pi\) | ||||
0.589610 | + | 0.807688i | \(0.299282\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −16.0000 | −1.04372 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −6.00000 | −0.388108 | −0.194054 | − | 0.980991i | \(-0.562164\pi\) | ||||
−0.194054 | + | 0.980991i | \(0.562164\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −2.00000 | −0.128831 | −0.0644157 | − | 0.997923i | \(-0.520518\pi\) | ||||
−0.0644157 | + | 0.997923i | \(0.520518\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 4.00000 | 0.255551 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −8.00000 | −0.509028 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 12.0000 | 0.754434 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 4.00000 | 0.249513 | 0.124757 | − | 0.992187i | \(-0.460185\pi\) | ||||
0.124757 | + | 0.992187i | \(0.460185\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −10.0000 | −0.621370 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −30.0000 | −1.84988 | −0.924940 | − | 0.380114i | \(-0.875885\pi\) | ||||
−0.924940 | + | 0.380114i | \(0.875885\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −40.0000 | −2.45718 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −12.0000 | −0.731653 | −0.365826 | − | 0.930683i | \(-0.619214\pi\) | ||||
−0.365826 | + | 0.930683i | \(0.619214\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 24.0000 | 1.45790 | 0.728948 | − | 0.684569i | \(-0.240010\pi\) | ||||
0.728948 | + | 0.684569i | \(0.240010\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −22.0000 | −1.32665 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 10.0000 | 0.600842 | 0.300421 | − | 0.953807i | \(-0.402873\pi\) | ||||
0.300421 | + | 0.953807i | \(0.402873\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −6.00000 | −0.357930 | −0.178965 | − | 0.983855i | \(-0.557275\pi\) | ||||
−0.178965 | + | 0.983855i | \(0.557275\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 20.0000 | 1.18888 | 0.594438 | − | 0.804141i | \(-0.297374\pi\) | ||||
0.594438 | + | 0.804141i | \(0.297374\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −4.00000 | −0.236113 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 32.0000 | 1.86311 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 12.0000 | 0.693978 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −8.00000 | −0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −24.0000 | −1.37424 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.0000 | 0.684876 | 0.342438 | − | 0.939540i | \(-0.388747\pi\) | ||||
0.342438 | + | 0.939540i | \(0.388747\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −12.0000 | −0.680458 | −0.340229 | − | 0.940343i | \(-0.610505\pi\) | ||||
−0.340229 | + | 0.940343i | \(0.610505\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −14.0000 | −0.791327 | −0.395663 | − | 0.918396i | \(-0.629485\pi\) | ||||
−0.395663 | + | 0.918396i | \(0.629485\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −18.0000 | −1.01098 | −0.505490 | − | 0.862832i | \(-0.668688\pi\) | ||||
−0.505490 | + | 0.862832i | \(0.668688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −20.0000 | −1.11979 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −22.0000 | −1.22034 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 4.00000 | 0.220527 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 32.0000 | 1.75888 | 0.879440 | − | 0.476011i | \(-0.157918\pi\) | ||||
0.879440 | + | 0.476011i | \(0.157918\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −16.0000 | −0.874173 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −22.0000 | −1.19842 | −0.599208 | − | 0.800593i | \(-0.704518\pi\) | ||||
−0.599208 | + | 0.800593i | \(0.704518\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −16.0000 | −0.866449 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −1.00000 | −0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 2.00000 | 0.107366 | 0.0536828 | − | 0.998558i | \(-0.482904\pi\) | ||||
0.0536828 | + | 0.998558i | \(0.482904\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −14.0000 | −0.749403 | −0.374701 | − | 0.927146i | \(-0.622255\pi\) | ||||
−0.374701 | + | 0.927146i | \(0.622255\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 8.00000 | 0.425797 | 0.212899 | − | 0.977074i | \(-0.431710\pi\) | ||||
0.212899 | + | 0.977074i | \(0.431710\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 56.0000 | 2.97217 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 22.0000 | 1.16112 | 0.580558 | − | 0.814219i | \(-0.302835\pi\) | ||||
0.580558 | + | 0.814219i | \(0.302835\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 24.0000 | 1.25622 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −24.0000 | −1.25279 | −0.626395 | − | 0.779506i | \(-0.715470\pi\) | ||||
−0.626395 | + | 0.779506i | \(0.715470\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 10.0000 | 0.519174 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 14.0000 | 0.724893 | 0.362446 | − | 0.932005i | \(-0.381942\pi\) | ||||
0.362446 | + | 0.932005i | \(0.381942\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −20.0000 | −1.03005 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −32.0000 | −1.64373 | −0.821865 | − | 0.569683i | \(-0.807066\pi\) | ||||
−0.821865 | + | 0.569683i | \(0.807066\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 8.00000 | 0.408781 | 0.204390 | − | 0.978889i | \(-0.434479\pi\) | ||||
0.204390 | + | 0.978889i | \(0.434479\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 8.00000 | 0.407718 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −30.0000 | −1.52106 | −0.760530 | − | 0.649303i | \(-0.775061\pi\) | ||||
−0.760530 | + | 0.649303i | \(0.775061\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −16.0000 | −0.805047 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −38.0000 | −1.90717 | −0.953583 | − | 0.301131i | \(-0.902636\pi\) | ||||
−0.953583 | + | 0.301131i | \(0.902636\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −22.0000 | −1.09863 | −0.549314 | − | 0.835616i | \(-0.685111\pi\) | ||||
−0.549314 | + | 0.835616i | \(0.685111\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −16.0000 | −0.797017 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −20.0000 | −0.991363 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 22.0000 | 1.08783 | 0.543915 | − | 0.839140i | \(-0.316941\pi\) | ||||
0.543915 | + | 0.839140i | \(0.316941\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −8.00000 | −0.393654 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −48.0000 | −2.35623 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 16.0000 | 0.781651 | 0.390826 | − | 0.920465i | \(-0.372190\pi\) | ||||
0.390826 | + | 0.920465i | \(0.372190\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −22.0000 | −1.07221 | −0.536107 | − | 0.844150i | \(-0.680106\pi\) | ||||
−0.536107 | + | 0.844150i | \(0.680106\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 6.00000 | 0.290360 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −18.0000 | −0.867029 | −0.433515 | − | 0.901146i | \(-0.642727\pi\) | ||||
−0.433515 | + | 0.901146i | \(0.642727\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −14.0000 | −0.672797 | −0.336399 | − | 0.941720i | \(-0.609209\pi\) | ||||
−0.336399 | + | 0.941720i | \(0.609209\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −24.0000 | −1.14808 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −8.00000 | −0.381819 | −0.190910 | − | 0.981608i | \(-0.561144\pi\) | ||||
−0.190910 | + | 0.981608i | \(0.561144\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −6.00000 | −0.285069 | −0.142534 | − | 0.989790i | \(-0.545525\pi\) | ||||
−0.142534 | + | 0.989790i | \(0.545525\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −16.0000 | −0.758473 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −10.0000 | −0.471929 | −0.235965 | − | 0.971762i | \(-0.575825\pi\) | ||||
−0.235965 | + | 0.971762i | \(0.575825\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −8.00000 | −0.376705 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 8.00000 | 0.375046 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −22.0000 | −1.02912 | −0.514558 | − | 0.857455i | \(-0.672044\pi\) | ||||
−0.514558 | + | 0.857455i | \(0.672044\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 20.0000 | 0.929479 | 0.464739 | − | 0.885448i | \(-0.346148\pi\) | ||||
0.464739 | + | 0.885448i | \(0.346148\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −8.00000 | −0.370196 | −0.185098 | − | 0.982720i | \(-0.559260\pi\) | ||||
−0.185098 | + | 0.982720i | \(0.559260\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 4.00000 | 0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −16.0000 | −0.735681 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 44.0000 | 2.01886 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −12.0000 | −0.548294 | −0.274147 | − | 0.961688i | \(-0.588395\pi\) | ||||
−0.274147 | + | 0.961688i | \(0.588395\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −20.0000 | −0.911922 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −8.00000 | −0.363261 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 40.0000 | 1.81257 | 0.906287 | − | 0.422664i | \(-0.138905\pi\) | ||||
0.906287 | + | 0.422664i | \(0.138905\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 10.0000 | 0.451294 | 0.225647 | − | 0.974209i | \(-0.427550\pi\) | ||||
0.225647 | + | 0.974209i | \(0.427550\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −14.0000 | −0.627986 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −24.0000 | −1.07439 | −0.537194 | − | 0.843459i | \(-0.680516\pi\) | ||||
−0.537194 | + | 0.843459i | \(0.680516\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 24.0000 | 1.07011 | 0.535054 | − | 0.844818i | \(-0.320291\pi\) | ||||
0.535054 | + | 0.844818i | \(0.320291\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 36.0000 | 1.59567 | 0.797836 | − | 0.602875i | \(-0.205978\pi\) | ||||
0.797836 | + | 0.602875i | \(0.205978\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −6.00000 | −0.265424 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 8.00000 | 0.351840 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 36.0000 | 1.57417 | 0.787085 | − | 0.616844i | \(-0.211589\pi\) | ||||
0.787085 | + | 0.616844i | \(0.211589\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.0000 | 0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −8.00000 | −0.346518 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −40.0000 | −1.72935 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −2.00000 | −0.0861461 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −14.0000 | −0.601907 | −0.300954 | − | 0.953639i | \(-0.597305\pi\) | ||||
−0.300954 | + | 0.953639i | \(0.597305\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 56.0000 | 2.39878 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −12.0000 | −0.513083 | −0.256541 | − | 0.966533i | \(-0.582583\pi\) | ||||
−0.256541 | + | 0.966533i | \(0.582583\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 40.0000 | 1.70406 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 4.00000 | 0.170097 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 22.0000 | 0.932170 | 0.466085 | − | 0.884740i | \(-0.345664\pi\) | ||||
0.466085 | + | 0.884740i | \(0.345664\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.0000 | −0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −24.0000 | −1.01148 | −0.505740 | − | 0.862686i | \(-0.668780\pi\) | ||||
−0.505740 | + | 0.862686i | \(0.668780\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −8.00000 | −0.336563 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −14.0000 | −0.586911 | −0.293455 | − | 0.955973i | \(-0.594805\pi\) | ||||
−0.293455 | + | 0.955973i | \(0.594805\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −20.0000 | −0.836974 | −0.418487 | − | 0.908223i | \(-0.637439\pi\) | ||||
−0.418487 | + | 0.908223i | \(0.637439\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −66.0000 | −2.75239 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −6.00000 | −0.249783 | −0.124892 | − | 0.992170i | \(-0.539858\pi\) | ||||
−0.124892 | + | 0.992170i | \(0.539858\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 12.0000 | 0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 20.0000 | 0.828315 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 48.0000 | 1.98117 | 0.990586 | − | 0.136892i | \(-0.0437113\pi\) | ||||
0.990586 | + | 0.136892i | \(0.0437113\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 32.0000 | 1.31854 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 24.0000 | 0.985562 | 0.492781 | − | 0.870153i | \(-0.335980\pi\) | ||||
0.492781 | + | 0.870153i | \(0.335980\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −10.0000 | −0.408589 | −0.204294 | − | 0.978909i | \(-0.565490\pi\) | ||||
−0.204294 | + | 0.978909i | \(0.565490\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 34.0000 | 1.38689 | 0.693444 | − | 0.720510i | \(-0.256092\pi\) | ||||
0.693444 | + | 0.720510i | \(0.256092\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −28.0000 | −1.13836 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 8.00000 | 0.324710 | 0.162355 | − | 0.986732i | \(-0.448091\pi\) | ||||
0.162355 | + | 0.986732i | \(0.448091\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 8.00000 | 0.323645 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 6.00000 | 0.242338 | 0.121169 | − | 0.992632i | \(-0.461336\pi\) | ||||
0.121169 | + | 0.992632i | \(0.461336\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 18.0000 | 0.724653 | 0.362326 | − | 0.932051i | \(-0.381983\pi\) | ||||
0.362326 | + | 0.932051i | \(0.381983\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −36.0000 | −1.44696 | −0.723481 | − | 0.690344i | \(-0.757459\pi\) | ||||
−0.723481 | + | 0.690344i | \(0.757459\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 4.00000 | 0.160257 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 41.0000 | 1.64000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −4.00000 | −0.159237 | −0.0796187 | − | 0.996825i | \(-0.525370\pi\) | ||||
−0.0796187 | + | 0.996825i | \(0.525370\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 80.0000 | 3.17470 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −2.00000 | −0.0792429 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 2.00000 | 0.0789953 | 0.0394976 | − | 0.999220i | \(-0.487424\pi\) | ||||
0.0394976 | + | 0.999220i | \(0.487424\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 12.0000 | 0.473234 | 0.236617 | − | 0.971603i | \(-0.423961\pi\) | ||||
0.236617 | + | 0.971603i | \(0.423961\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 12.0000 | 0.471769 | 0.235884 | − | 0.971781i | \(-0.424201\pi\) | ||||
0.235884 | + | 0.971781i | \(0.424201\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −16.0000 | −0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 26.0000 | 1.01746 | 0.508729 | − | 0.860927i | \(-0.330115\pi\) | ||||
0.508729 | + | 0.860927i | \(0.330115\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −80.0000 | −3.12586 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 6.00000 | 0.233727 | 0.116863 | − | 0.993148i | \(-0.462716\pi\) | ||||
0.116863 | + | 0.993148i | \(0.462716\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −22.0000 | −0.855701 | −0.427850 | − | 0.903850i | \(-0.640729\pi\) | ||||
−0.427850 | + | 0.903850i | \(0.640729\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | −16.0000 | −0.620453 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −60.0000 | −2.32321 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 12.0000 | 0.463255 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −34.0000 | −1.31060 | −0.655302 | − | 0.755367i | \(-0.727459\pi\) | ||||
−0.655302 | + | 0.755367i | \(0.727459\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −16.0000 | −0.614930 | −0.307465 | − | 0.951559i | \(-0.599481\pi\) | ||||
−0.307465 | + | 0.951559i | \(0.599481\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 2.00000 | 0.0767530 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 18.0000 | 0.688751 | 0.344375 | − | 0.938832i | \(-0.388091\pi\) | ||||
0.344375 | + | 0.938832i | \(0.388091\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −24.0000 | −0.916993 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 20.0000 | 0.761939 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 28.0000 | 1.06517 | 0.532585 | − | 0.846376i | \(-0.321221\pi\) | ||||
0.532585 | + | 0.846376i | \(0.321221\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −16.0000 | −0.606915 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 18.0000 | 0.679851 | 0.339925 | − | 0.940452i | \(-0.389598\pi\) | ||||
0.339925 | + | 0.940452i | \(0.389598\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 40.0000 | 1.50863 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −26.0000 | −0.976450 | −0.488225 | − | 0.872718i | \(-0.662356\pi\) | ||||
−0.488225 | + | 0.872718i | \(0.662356\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −48.0000 | −1.79761 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 16.0000 | 0.598366 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 32.0000 | 1.19340 | 0.596699 | − | 0.802465i | \(-0.296479\pi\) | ||||
0.596699 | + | 0.802465i | \(0.296479\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 110.000 | 4.08530 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 38.0000 | 1.40356 | 0.701781 | − | 0.712393i | \(-0.252388\pi\) | ||||
0.701781 | + | 0.712393i | \(0.252388\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 8.00000 | 0.294684 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −20.0000 | −0.735712 | −0.367856 | − | 0.929883i | \(-0.619908\pi\) | ||||
−0.367856 | + | 0.929883i | \(0.619908\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 6.00000 | 0.220119 | 0.110059 | − | 0.993925i | \(-0.464896\pi\) | ||||
0.110059 | + | 0.993925i | \(0.464896\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 24.0000 | 0.879292 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 10.0000 | 0.365392 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −16.0000 | −0.583848 | −0.291924 | − | 0.956441i | \(-0.594295\pi\) | ||||
−0.291924 | + | 0.956441i | \(0.594295\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −42.0000 | −1.52652 | −0.763258 | − | 0.646094i | \(-0.776401\pi\) | ||||
−0.763258 | + | 0.646094i | \(0.776401\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −12.0000 | −0.435000 | −0.217500 | − | 0.976060i | \(-0.569790\pi\) | ||||
−0.217500 | + | 0.976060i | \(0.569790\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −14.0000 | −0.506834 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −16.0000 | −0.577727 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 34.0000 | 1.22607 | 0.613036 | − | 0.790055i | \(-0.289948\pi\) | ||||
0.613036 | + | 0.790055i | \(0.289948\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −24.0000 | −0.863220 | −0.431610 | − | 0.902060i | \(-0.642054\pi\) | ||||
−0.431610 | + | 0.902060i | \(0.642054\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 88.0000 | 3.16105 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 16.0000 | 0.573259 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −28.0000 | −1.00192 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −88.0000 | −3.14085 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −36.0000 | −1.28326 | −0.641631 | − | 0.767014i | \(-0.721742\pi\) | ||||
−0.641631 | + | 0.767014i | \(0.721742\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 2.00000 | 0.0711118 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 12.0000 | 0.426132 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −24.0000 | −0.850124 | −0.425062 | − | 0.905164i | \(-0.639748\pi\) | ||||
−0.425062 | + | 0.905164i | \(0.639748\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −12.0000 | −0.423471 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 24.0000 | 0.845889 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 14.0000 | 0.492214 | 0.246107 | − | 0.969243i | \(-0.420849\pi\) | ||||
0.246107 | + | 0.969243i | \(0.420849\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −20.0000 | −0.702295 | −0.351147 | − | 0.936320i | \(-0.614208\pi\) | ||||
−0.351147 | + | 0.936320i | \(0.614208\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −80.0000 | −2.80228 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 32.0000 | 1.11954 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −2.00000 | −0.0698005 | −0.0349002 | − | 0.999391i | \(-0.511111\pi\) | ||||
−0.0349002 | + | 0.999391i | \(0.511111\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 4.00000 | 0.139431 | 0.0697156 | − | 0.997567i | \(-0.477791\pi\) | ||||
0.0697156 | + | 0.997567i | \(0.477791\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −26.0000 | −0.904109 | −0.452054 | − | 0.891990i | \(-0.649309\pi\) | ||||
−0.452054 | + | 0.891990i | \(0.649309\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 14.0000 | 0.486240 | 0.243120 | − | 0.969996i | \(-0.421829\pi\) | ||||
0.243120 | + | 0.969996i | \(0.421829\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 80.0000 | 2.76851 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 44.0000 | 1.51905 | 0.759524 | − | 0.650479i | \(-0.225432\pi\) | ||||
0.759524 | + | 0.650479i | \(0.225432\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 71.0000 | 2.44828 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −36.0000 | −1.23844 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 7.00000 | 0.240523 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −60.0000 | −2.05677 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 42.0000 | 1.43805 | 0.719026 | − | 0.694983i | \(-0.244588\pi\) | ||||
0.719026 | + | 0.694983i | \(0.244588\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −28.0000 | −0.956462 | −0.478231 | − | 0.878234i | \(-0.658722\pi\) | ||||
−0.478231 | + | 0.878234i | \(0.658722\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 20.0000 | 0.682391 | 0.341196 | − | 0.939992i | \(-0.389168\pi\) | ||||
0.341196 | + | 0.939992i | \(0.389168\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −22.0000 | −0.748889 | −0.374444 | − | 0.927249i | \(-0.622167\pi\) | ||||
−0.374444 | + | 0.927249i | \(0.622167\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −96.0000 | −3.26410 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 8.00000 | 0.271381 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 8.00000 | 0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −24.0000 | −0.811348 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −50.0000 | −1.68838 | −0.844190 | − | 0.536044i | \(-0.819918\pi\) | ||||
−0.844190 | + | 0.536044i | \(0.819918\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −48.0000 | −1.61716 | −0.808581 | − | 0.588386i | \(-0.799764\pi\) | ||||
−0.808581 | + | 0.588386i | \(0.799764\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 8.00000 | 0.269221 | 0.134611 | − | 0.990899i | \(-0.457022\pi\) | ||||
0.134611 | + | 0.990899i | \(0.457022\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −12.0000 | −0.402921 | −0.201460 | − | 0.979497i | \(-0.564569\pi\) | ||||
−0.201460 | + | 0.979497i | \(0.564569\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −20.0000 | −0.670778 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −16.0000 | −0.535420 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −24.0000 | −0.802232 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 80.0000 | 2.66815 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 56.0000 | 1.86150 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −32.0000 | −1.06254 | −0.531271 | − | 0.847202i | \(-0.678286\pi\) | ||||
−0.531271 | + | 0.847202i | \(0.678286\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −18.0000 | −0.596367 | −0.298183 | − | 0.954509i | \(-0.596381\pi\) | ||||
−0.298183 | + | 0.954509i | \(0.596381\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 24.0000 | 0.794284 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 20.0000 | 0.660458 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −28.0000 | −0.921631 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 110.000 | 3.61678 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 36.0000 | 1.18112 | 0.590561 | − | 0.806993i | \(-0.298907\pi\) | ||||
0.590561 | + | 0.806993i | \(0.298907\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 4.00000 | 0.131095 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 2.00000 | 0.0653372 | 0.0326686 | − | 0.999466i | \(-0.489599\pi\) | ||||
0.0326686 | + | 0.999466i | \(0.489599\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −4.00000 | −0.130396 | −0.0651981 | − | 0.997872i | \(-0.520768\pi\) | ||||
−0.0651981 | + | 0.997872i | \(0.520768\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −24.0000 | −0.781548 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −18.0000 | −0.584921 | −0.292461 | − | 0.956278i | \(-0.594474\pi\) | ||||
−0.292461 | + | 0.956278i | \(0.594474\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −12.0000 | −0.389536 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6.00000 | 0.194359 | 0.0971795 | − | 0.995267i | \(-0.469018\pi\) | ||||
0.0971795 | + | 0.995267i | \(0.469018\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 24.0000 | 0.776622 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 6.00000 | 0.193750 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 24.0000 | 0.772587 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −12.0000 | −0.385894 | −0.192947 | − | 0.981209i | \(-0.561805\pi\) | ||||
−0.192947 | + | 0.981209i | \(0.561805\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −20.0000 | −0.641831 | −0.320915 | − | 0.947108i | \(-0.603990\pi\) | ||||
−0.320915 | + | 0.947108i | \(0.603990\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 4.00000 | 0.128234 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −14.0000 | −0.447900 | −0.223950 | − | 0.974601i | \(-0.571895\pi\) | ||||
−0.223950 | + | 0.974601i | \(0.571895\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 8.00000 | 0.255681 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −8.00000 | −0.254901 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −48.0000 | −1.52631 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −16.0000 | −0.508257 | −0.254128 | − | 0.967170i | \(-0.581789\pi\) | ||||
−0.254128 | + | 0.967170i | \(0.581789\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 32.0000 | 1.01447 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −6.00000 | −0.190022 | −0.0950110 | − | 0.995476i | \(-0.530289\pi\) | ||||
−0.0950110 | + | 0.995476i | \(0.530289\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2016.2.a.m.1.1 | 1 | ||
3.2 | odd | 2 | 672.2.a.a.1.1 | ✓ | 1 | ||
4.3 | odd | 2 | 2016.2.a.n.1.1 | 1 | |||
8.3 | odd | 2 | 4032.2.a.c.1.1 | 1 | |||
8.5 | even | 2 | 4032.2.a.b.1.1 | 1 | |||
12.11 | even | 2 | 672.2.a.e.1.1 | yes | 1 | ||
21.20 | even | 2 | 4704.2.a.bg.1.1 | 1 | |||
24.5 | odd | 2 | 1344.2.a.t.1.1 | 1 | |||
24.11 | even | 2 | 1344.2.a.j.1.1 | 1 | |||
48.5 | odd | 4 | 5376.2.c.bf.2689.2 | 2 | |||
48.11 | even | 4 | 5376.2.c.b.2689.1 | 2 | |||
48.29 | odd | 4 | 5376.2.c.bf.2689.1 | 2 | |||
48.35 | even | 4 | 5376.2.c.b.2689.2 | 2 | |||
84.83 | odd | 2 | 4704.2.a.q.1.1 | 1 | |||
168.83 | odd | 2 | 9408.2.a.bq.1.1 | 1 | |||
168.125 | even | 2 | 9408.2.a.c.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
672.2.a.a.1.1 | ✓ | 1 | 3.2 | odd | 2 | ||
672.2.a.e.1.1 | yes | 1 | 12.11 | even | 2 | ||
1344.2.a.j.1.1 | 1 | 24.11 | even | 2 | |||
1344.2.a.t.1.1 | 1 | 24.5 | odd | 2 | |||
2016.2.a.m.1.1 | 1 | 1.1 | even | 1 | trivial | ||
2016.2.a.n.1.1 | 1 | 4.3 | odd | 2 | |||
4032.2.a.b.1.1 | 1 | 8.5 | even | 2 | |||
4032.2.a.c.1.1 | 1 | 8.3 | odd | 2 | |||
4704.2.a.q.1.1 | 1 | 84.83 | odd | 2 | |||
4704.2.a.bg.1.1 | 1 | 21.20 | even | 2 | |||
5376.2.c.b.2689.1 | 2 | 48.11 | even | 4 | |||
5376.2.c.b.2689.2 | 2 | 48.35 | even | 4 | |||
5376.2.c.bf.2689.1 | 2 | 48.29 | odd | 4 | |||
5376.2.c.bf.2689.2 | 2 | 48.5 | odd | 4 | |||
9408.2.a.c.1.1 | 1 | 168.125 | even | 2 | |||
9408.2.a.bq.1.1 | 1 | 168.83 | odd | 2 |