Properties

Label 2016.2.s.n
Level 20162016
Weight 22
Character orbit 2016.s
Analytic conductor 16.09816.098
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,2,Mod(289,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2016=25327 2016 = 2^{5} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2016.s (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.097841047516.0978410475
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3ζ6q5+(3ζ61)q7+(ζ61)q114q13+(4ζ6+4)q17+8ζ6q23+(4ζ64)q25+7q29+(11ζ611)q31++7q97+O(q100) q + 3 \zeta_{6} q^{5} + (3 \zeta_{6} - 1) q^{7} + (\zeta_{6} - 1) q^{11} - 4 q^{13} + ( - 4 \zeta_{6} + 4) q^{17} + 8 \zeta_{6} q^{23} + (4 \zeta_{6} - 4) q^{25} + 7 q^{29} + (11 \zeta_{6} - 11) q^{31}+ \cdots + 7 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q5+q7q118q13+4q17+8q234q25+14q2911q3112q354q37+8q414q432q4713q4911q536q55+7q59++14q97+O(q100) 2 q + 3 q^{5} + q^{7} - q^{11} - 8 q^{13} + 4 q^{17} + 8 q^{23} - 4 q^{25} + 14 q^{29} - 11 q^{31} - 12 q^{35} - 4 q^{37} + 8 q^{41} - 4 q^{43} - 2 q^{47} - 13 q^{49} - 11 q^{53} - 6 q^{55} + 7 q^{59}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2016Z)×\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times.

nn 127127 577577 17651765 17931793
χ(n)\chi(n) 11 ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 1.50000 2.59808i 0 0.500000 2.59808i 0 0 0
865.1 0 0 0 1.50000 + 2.59808i 0 0.500000 + 2.59808i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2016.2.s.n 2
3.b odd 2 1 672.2.q.a 2
4.b odd 2 1 2016.2.s.k 2
7.c even 3 1 inner 2016.2.s.n 2
12.b even 2 1 672.2.q.f yes 2
21.g even 6 1 4704.2.a.b 1
21.h odd 6 1 672.2.q.a 2
21.h odd 6 1 4704.2.a.bf 1
24.f even 2 1 1344.2.q.k 2
24.h odd 2 1 1344.2.q.u 2
28.g odd 6 1 2016.2.s.k 2
84.j odd 6 1 4704.2.a.s 1
84.n even 6 1 672.2.q.f yes 2
84.n even 6 1 4704.2.a.o 1
168.s odd 6 1 1344.2.q.u 2
168.s odd 6 1 9408.2.a.e 1
168.v even 6 1 1344.2.q.k 2
168.v even 6 1 9408.2.a.bt 1
168.ba even 6 1 9408.2.a.dc 1
168.be odd 6 1 9408.2.a.bl 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.a 2 3.b odd 2 1
672.2.q.a 2 21.h odd 6 1
672.2.q.f yes 2 12.b even 2 1
672.2.q.f yes 2 84.n even 6 1
1344.2.q.k 2 24.f even 2 1
1344.2.q.k 2 168.v even 6 1
1344.2.q.u 2 24.h odd 2 1
1344.2.q.u 2 168.s odd 6 1
2016.2.s.k 2 4.b odd 2 1
2016.2.s.k 2 28.g odd 6 1
2016.2.s.n 2 1.a even 1 1 trivial
2016.2.s.n 2 7.c even 3 1 inner
4704.2.a.b 1 21.g even 6 1
4704.2.a.o 1 84.n even 6 1
4704.2.a.s 1 84.j odd 6 1
4704.2.a.bf 1 21.h odd 6 1
9408.2.a.e 1 168.s odd 6 1
9408.2.a.bl 1 168.be odd 6 1
9408.2.a.bt 1 168.v even 6 1
9408.2.a.dc 1 168.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2016,[χ])S_{2}^{\mathrm{new}}(2016, [\chi]):

T523T5+9 T_{5}^{2} - 3T_{5} + 9 Copy content Toggle raw display
T112+T11+1 T_{11}^{2} + T_{11} + 1 Copy content Toggle raw display
T13+4 T_{13} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
77 T2T+7 T^{2} - T + 7 Copy content Toggle raw display
1111 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1313 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1717 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
2929 (T7)2 (T - 7)^{2} Copy content Toggle raw display
3131 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
3737 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
4141 (T4)2 (T - 4)^{2} Copy content Toggle raw display
4343 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4747 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
5353 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
5959 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
6161 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
6767 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
7171 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7373 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
7979 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
8383 (T+11)2 (T + 11)^{2} Copy content Toggle raw display
8989 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
9797 (T7)2 (T - 7)^{2} Copy content Toggle raw display
show more
show less