Properties

Label 2016.4.a.t.1.3
Level $2016$
Weight $4$
Character 2016.1
Self dual yes
Analytic conductor $118.948$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,4,Mod(1,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2016.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(118.947850572\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2981.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 224)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.32447\) of defining polynomial
Character \(\chi\) \(=\) 2016.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.3341 q^{5} +7.00000 q^{7} -39.5789 q^{11} +64.5130 q^{13} -109.264 q^{17} +137.462 q^{19} -45.2344 q^{23} +211.141 q^{25} +41.1964 q^{29} -262.984 q^{31} +128.339 q^{35} +125.630 q^{37} +299.598 q^{41} +36.9141 q^{43} +122.770 q^{47} +49.0000 q^{49} +20.4689 q^{53} -725.645 q^{55} +60.8037 q^{59} +791.626 q^{61} +1182.79 q^{65} +1046.45 q^{67} -407.738 q^{71} +562.215 q^{73} -277.052 q^{77} -601.491 q^{79} +652.836 q^{83} -2003.26 q^{85} +898.344 q^{89} +451.591 q^{91} +2520.25 q^{95} -621.580 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 10 q^{5} + 21 q^{7} - 24 q^{11} + 58 q^{13} - 174 q^{17} + 64 q^{19} + 112 q^{23} + 373 q^{25} - 314 q^{29} - 280 q^{31} - 70 q^{35} + 178 q^{37} - 318 q^{41} + 632 q^{43} + 664 q^{47} + 147 q^{49}+ \cdots - 1090 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 18.3341 1.63986 0.819928 0.572467i \(-0.194013\pi\)
0.819928 + 0.572467i \(0.194013\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −39.5789 −1.08486 −0.542431 0.840100i \(-0.682496\pi\)
−0.542431 + 0.840100i \(0.682496\pi\)
\(12\) 0 0
\(13\) 64.5130 1.37636 0.688180 0.725540i \(-0.258410\pi\)
0.688180 + 0.725540i \(0.258410\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −109.264 −1.55885 −0.779424 0.626496i \(-0.784488\pi\)
−0.779424 + 0.626496i \(0.784488\pi\)
\(18\) 0 0
\(19\) 137.462 1.65979 0.829895 0.557920i \(-0.188400\pi\)
0.829895 + 0.557920i \(0.188400\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −45.2344 −0.410088 −0.205044 0.978753i \(-0.565734\pi\)
−0.205044 + 0.978753i \(0.565734\pi\)
\(24\) 0 0
\(25\) 211.141 1.68913
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 41.1964 0.263793 0.131896 0.991264i \(-0.457893\pi\)
0.131896 + 0.991264i \(0.457893\pi\)
\(30\) 0 0
\(31\) −262.984 −1.52365 −0.761827 0.647780i \(-0.775697\pi\)
−0.761827 + 0.647780i \(0.775697\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 128.339 0.619807
\(36\) 0 0
\(37\) 125.630 0.558202 0.279101 0.960262i \(-0.409964\pi\)
0.279101 + 0.960262i \(0.409964\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 299.598 1.14120 0.570601 0.821227i \(-0.306710\pi\)
0.570601 + 0.821227i \(0.306710\pi\)
\(42\) 0 0
\(43\) 36.9141 0.130915 0.0654575 0.997855i \(-0.479149\pi\)
0.0654575 + 0.997855i \(0.479149\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 122.770 0.381017 0.190509 0.981686i \(-0.438986\pi\)
0.190509 + 0.981686i \(0.438986\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 20.4689 0.0530493 0.0265247 0.999648i \(-0.491556\pi\)
0.0265247 + 0.999648i \(0.491556\pi\)
\(54\) 0 0
\(55\) −725.645 −1.77902
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 60.8037 0.134169 0.0670845 0.997747i \(-0.478630\pi\)
0.0670845 + 0.997747i \(0.478630\pi\)
\(60\) 0 0
\(61\) 791.626 1.66160 0.830798 0.556574i \(-0.187884\pi\)
0.830798 + 0.556574i \(0.187884\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1182.79 2.25703
\(66\) 0 0
\(67\) 1046.45 1.90812 0.954058 0.299621i \(-0.0968601\pi\)
0.954058 + 0.299621i \(0.0968601\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −407.738 −0.681543 −0.340772 0.940146i \(-0.610688\pi\)
−0.340772 + 0.940146i \(0.610688\pi\)
\(72\) 0 0
\(73\) 562.215 0.901402 0.450701 0.892675i \(-0.351174\pi\)
0.450701 + 0.892675i \(0.351174\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −277.052 −0.410039
\(78\) 0 0
\(79\) −601.491 −0.856621 −0.428311 0.903632i \(-0.640891\pi\)
−0.428311 + 0.903632i \(0.640891\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 652.836 0.863351 0.431675 0.902029i \(-0.357923\pi\)
0.431675 + 0.902029i \(0.357923\pi\)
\(84\) 0 0
\(85\) −2003.26 −2.55629
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 898.344 1.06994 0.534968 0.844872i \(-0.320324\pi\)
0.534968 + 0.844872i \(0.320324\pi\)
\(90\) 0 0
\(91\) 451.591 0.520215
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2520.25 2.72182
\(96\) 0 0
\(97\) −621.580 −0.650638 −0.325319 0.945604i \(-0.605472\pi\)
−0.325319 + 0.945604i \(0.605472\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 566.973 0.558574 0.279287 0.960208i \(-0.409902\pi\)
0.279287 + 0.960208i \(0.409902\pi\)
\(102\) 0 0
\(103\) 143.459 0.137238 0.0686188 0.997643i \(-0.478141\pi\)
0.0686188 + 0.997643i \(0.478141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −951.778 −0.859924 −0.429962 0.902847i \(-0.641473\pi\)
−0.429962 + 0.902847i \(0.641473\pi\)
\(108\) 0 0
\(109\) 1122.90 0.986738 0.493369 0.869820i \(-0.335765\pi\)
0.493369 + 0.869820i \(0.335765\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −499.874 −0.416143 −0.208072 0.978114i \(-0.566719\pi\)
−0.208072 + 0.978114i \(0.566719\pi\)
\(114\) 0 0
\(115\) −829.335 −0.672486
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −764.848 −0.589189
\(120\) 0 0
\(121\) 235.487 0.176925
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1579.32 1.13007
\(126\) 0 0
\(127\) 644.834 0.450549 0.225275 0.974295i \(-0.427672\pi\)
0.225275 + 0.974295i \(0.427672\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1728.38 1.15274 0.576370 0.817189i \(-0.304469\pi\)
0.576370 + 0.817189i \(0.304469\pi\)
\(132\) 0 0
\(133\) 962.236 0.627341
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1146.24 −0.714815 −0.357408 0.933949i \(-0.616339\pi\)
−0.357408 + 0.933949i \(0.616339\pi\)
\(138\) 0 0
\(139\) −1638.07 −0.999564 −0.499782 0.866151i \(-0.666587\pi\)
−0.499782 + 0.866151i \(0.666587\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2553.35 −1.49316
\(144\) 0 0
\(145\) 755.301 0.432582
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1722.49 −0.947060 −0.473530 0.880778i \(-0.657020\pi\)
−0.473530 + 0.880778i \(0.657020\pi\)
\(150\) 0 0
\(151\) −3262.89 −1.75848 −0.879240 0.476380i \(-0.841949\pi\)
−0.879240 + 0.476380i \(0.841949\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4821.58 −2.49857
\(156\) 0 0
\(157\) 1027.98 0.522559 0.261280 0.965263i \(-0.415856\pi\)
0.261280 + 0.965263i \(0.415856\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −316.641 −0.154999
\(162\) 0 0
\(163\) −623.566 −0.299641 −0.149820 0.988713i \(-0.547870\pi\)
−0.149820 + 0.988713i \(0.547870\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1312.31 0.608083 0.304041 0.952659i \(-0.401664\pi\)
0.304041 + 0.952659i \(0.401664\pi\)
\(168\) 0 0
\(169\) 1964.92 0.894367
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1602.25 0.704145 0.352073 0.935973i \(-0.385477\pi\)
0.352073 + 0.935973i \(0.385477\pi\)
\(174\) 0 0
\(175\) 1477.99 0.638430
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2117.12 0.884030 0.442015 0.897008i \(-0.354264\pi\)
0.442015 + 0.897008i \(0.354264\pi\)
\(180\) 0 0
\(181\) 4200.80 1.72510 0.862550 0.505972i \(-0.168866\pi\)
0.862550 + 0.505972i \(0.168866\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2303.32 0.915370
\(186\) 0 0
\(187\) 4324.55 1.69114
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1211.18 0.458838 0.229419 0.973328i \(-0.426317\pi\)
0.229419 + 0.973328i \(0.426317\pi\)
\(192\) 0 0
\(193\) −1640.80 −0.611955 −0.305977 0.952039i \(-0.598983\pi\)
−0.305977 + 0.952039i \(0.598983\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2945.77 −1.06537 −0.532683 0.846315i \(-0.678816\pi\)
−0.532683 + 0.846315i \(0.678816\pi\)
\(198\) 0 0
\(199\) 1695.77 0.604071 0.302036 0.953297i \(-0.402334\pi\)
0.302036 + 0.953297i \(0.402334\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 288.375 0.0997042
\(204\) 0 0
\(205\) 5492.87 1.87141
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5440.60 −1.80064
\(210\) 0 0
\(211\) −4907.89 −1.60129 −0.800647 0.599136i \(-0.795511\pi\)
−0.800647 + 0.599136i \(0.795511\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 676.788 0.214682
\(216\) 0 0
\(217\) −1840.89 −0.575887
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7048.95 −2.14554
\(222\) 0 0
\(223\) −4967.91 −1.49182 −0.745910 0.666046i \(-0.767985\pi\)
−0.745910 + 0.666046i \(0.767985\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4980.74 1.45632 0.728158 0.685410i \(-0.240377\pi\)
0.728158 + 0.685410i \(0.240377\pi\)
\(228\) 0 0
\(229\) −3630.32 −1.04759 −0.523795 0.851844i \(-0.675484\pi\)
−0.523795 + 0.851844i \(0.675484\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1138.20 0.320026 0.160013 0.987115i \(-0.448846\pi\)
0.160013 + 0.987115i \(0.448846\pi\)
\(234\) 0 0
\(235\) 2250.88 0.624813
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4226.15 −1.14380 −0.571898 0.820325i \(-0.693793\pi\)
−0.571898 + 0.820325i \(0.693793\pi\)
\(240\) 0 0
\(241\) −602.692 −0.161090 −0.0805452 0.996751i \(-0.525666\pi\)
−0.0805452 + 0.996751i \(0.525666\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 898.373 0.234265
\(246\) 0 0
\(247\) 8868.10 2.28447
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7249.07 1.82294 0.911469 0.411370i \(-0.134949\pi\)
0.911469 + 0.411370i \(0.134949\pi\)
\(252\) 0 0
\(253\) 1790.33 0.444889
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1373.20 −0.333299 −0.166650 0.986016i \(-0.553295\pi\)
−0.166650 + 0.986016i \(0.553295\pi\)
\(258\) 0 0
\(259\) 879.411 0.210980
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4458.42 −1.04532 −0.522658 0.852542i \(-0.675060\pi\)
−0.522658 + 0.852542i \(0.675060\pi\)
\(264\) 0 0
\(265\) 375.279 0.0869932
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6660.26 1.50960 0.754802 0.655953i \(-0.227733\pi\)
0.754802 + 0.655953i \(0.227733\pi\)
\(270\) 0 0
\(271\) 7604.31 1.70453 0.852267 0.523107i \(-0.175227\pi\)
0.852267 + 0.523107i \(0.175227\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8356.72 −1.83247
\(276\) 0 0
\(277\) 1853.26 0.401990 0.200995 0.979592i \(-0.435582\pi\)
0.200995 + 0.979592i \(0.435582\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6591.70 1.39939 0.699694 0.714443i \(-0.253320\pi\)
0.699694 + 0.714443i \(0.253320\pi\)
\(282\) 0 0
\(283\) 13.9668 0.00293371 0.00146686 0.999999i \(-0.499533\pi\)
0.00146686 + 0.999999i \(0.499533\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2097.18 0.431334
\(288\) 0 0
\(289\) 7025.64 1.43001
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6043.17 1.20493 0.602467 0.798144i \(-0.294184\pi\)
0.602467 + 0.798144i \(0.294184\pi\)
\(294\) 0 0
\(295\) 1114.78 0.220018
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2918.21 −0.564429
\(300\) 0 0
\(301\) 258.399 0.0494812
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14513.8 2.72478
\(306\) 0 0
\(307\) −4267.18 −0.793293 −0.396647 0.917971i \(-0.629826\pi\)
−0.396647 + 0.917971i \(0.629826\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 831.172 0.151548 0.0757740 0.997125i \(-0.475857\pi\)
0.0757740 + 0.997125i \(0.475857\pi\)
\(312\) 0 0
\(313\) 6078.60 1.09771 0.548854 0.835918i \(-0.315064\pi\)
0.548854 + 0.835918i \(0.315064\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −942.333 −0.166961 −0.0834806 0.996509i \(-0.526604\pi\)
−0.0834806 + 0.996509i \(0.526604\pi\)
\(318\) 0 0
\(319\) −1630.51 −0.286178
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15019.7 −2.58736
\(324\) 0 0
\(325\) 13621.3 2.32485
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 859.388 0.144011
\(330\) 0 0
\(331\) −1203.06 −0.199777 −0.0998884 0.994999i \(-0.531849\pi\)
−0.0998884 + 0.994999i \(0.531849\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19185.7 3.12904
\(336\) 0 0
\(337\) 9139.85 1.47739 0.738693 0.674042i \(-0.235443\pi\)
0.738693 + 0.674042i \(0.235443\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10408.6 1.65295
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10250.4 −1.58580 −0.792898 0.609354i \(-0.791429\pi\)
−0.792898 + 0.609354i \(0.791429\pi\)
\(348\) 0 0
\(349\) −8186.99 −1.25570 −0.627850 0.778334i \(-0.716065\pi\)
−0.627850 + 0.778334i \(0.716065\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5928.04 0.893818 0.446909 0.894580i \(-0.352525\pi\)
0.446909 + 0.894580i \(0.352525\pi\)
\(354\) 0 0
\(355\) −7475.52 −1.11763
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5943.02 0.873707 0.436853 0.899533i \(-0.356093\pi\)
0.436853 + 0.899533i \(0.356093\pi\)
\(360\) 0 0
\(361\) 12036.9 1.75490
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10307.7 1.47817
\(366\) 0 0
\(367\) 978.903 0.139232 0.0696162 0.997574i \(-0.477823\pi\)
0.0696162 + 0.997574i \(0.477823\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 143.282 0.0200508
\(372\) 0 0
\(373\) −12025.2 −1.66928 −0.834639 0.550798i \(-0.814324\pi\)
−0.834639 + 0.550798i \(0.814324\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2657.70 0.363074
\(378\) 0 0
\(379\) 2528.04 0.342630 0.171315 0.985216i \(-0.445198\pi\)
0.171315 + 0.985216i \(0.445198\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9220.11 1.23009 0.615047 0.788491i \(-0.289137\pi\)
0.615047 + 0.788491i \(0.289137\pi\)
\(384\) 0 0
\(385\) −5079.51 −0.672405
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3269.81 −0.426186 −0.213093 0.977032i \(-0.568354\pi\)
−0.213093 + 0.977032i \(0.568354\pi\)
\(390\) 0 0
\(391\) 4942.50 0.639266
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11027.8 −1.40473
\(396\) 0 0
\(397\) 12910.1 1.63208 0.816042 0.577992i \(-0.196164\pi\)
0.816042 + 0.577992i \(0.196164\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15097.2 1.88010 0.940050 0.341036i \(-0.110778\pi\)
0.940050 + 0.341036i \(0.110778\pi\)
\(402\) 0 0
\(403\) −16965.9 −2.09710
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4972.30 −0.605572
\(408\) 0 0
\(409\) −8329.99 −1.00707 −0.503535 0.863975i \(-0.667967\pi\)
−0.503535 + 0.863975i \(0.667967\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 425.626 0.0507111
\(414\) 0 0
\(415\) 11969.2 1.41577
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10506.1 −1.22496 −0.612479 0.790487i \(-0.709828\pi\)
−0.612479 + 0.790487i \(0.709828\pi\)
\(420\) 0 0
\(421\) 1795.85 0.207897 0.103948 0.994583i \(-0.466852\pi\)
0.103948 + 0.994583i \(0.466852\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −23070.1 −2.63309
\(426\) 0 0
\(427\) 5541.38 0.628024
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3067.87 0.342864 0.171432 0.985196i \(-0.445161\pi\)
0.171432 + 0.985196i \(0.445161\pi\)
\(432\) 0 0
\(433\) 2713.60 0.301172 0.150586 0.988597i \(-0.451884\pi\)
0.150586 + 0.988597i \(0.451884\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6218.03 −0.680660
\(438\) 0 0
\(439\) −7001.06 −0.761145 −0.380572 0.924751i \(-0.624273\pi\)
−0.380572 + 0.924751i \(0.624273\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9583.07 1.02778 0.513889 0.857857i \(-0.328204\pi\)
0.513889 + 0.857857i \(0.328204\pi\)
\(444\) 0 0
\(445\) 16470.4 1.75454
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −14091.2 −1.48107 −0.740537 0.672015i \(-0.765429\pi\)
−0.740537 + 0.672015i \(0.765429\pi\)
\(450\) 0 0
\(451\) −11857.7 −1.23805
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8279.53 0.853078
\(456\) 0 0
\(457\) −4134.59 −0.423212 −0.211606 0.977355i \(-0.567869\pi\)
−0.211606 + 0.977355i \(0.567869\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.6890 0.00400977 0.00200488 0.999998i \(-0.499362\pi\)
0.00200488 + 0.999998i \(0.499362\pi\)
\(462\) 0 0
\(463\) −5059.57 −0.507858 −0.253929 0.967223i \(-0.581723\pi\)
−0.253929 + 0.967223i \(0.581723\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5316.15 −0.526771 −0.263386 0.964691i \(-0.584839\pi\)
−0.263386 + 0.964691i \(0.584839\pi\)
\(468\) 0 0
\(469\) 7325.13 0.721200
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1461.02 −0.142025
\(474\) 0 0
\(475\) 29023.9 2.80359
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9881.68 −0.942600 −0.471300 0.881973i \(-0.656215\pi\)
−0.471300 + 0.881973i \(0.656215\pi\)
\(480\) 0 0
\(481\) 8104.77 0.768287
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11396.1 −1.06695
\(486\) 0 0
\(487\) 6028.14 0.560905 0.280453 0.959868i \(-0.409515\pi\)
0.280453 + 0.959868i \(0.409515\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2441.52 −0.224408 −0.112204 0.993685i \(-0.535791\pi\)
−0.112204 + 0.993685i \(0.535791\pi\)
\(492\) 0 0
\(493\) −4501.29 −0.411213
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2854.16 −0.257599
\(498\) 0 0
\(499\) 3980.18 0.357069 0.178534 0.983934i \(-0.442864\pi\)
0.178534 + 0.983934i \(0.442864\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4203.45 0.372610 0.186305 0.982492i \(-0.440349\pi\)
0.186305 + 0.982492i \(0.440349\pi\)
\(504\) 0 0
\(505\) 10395.0 0.915981
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7000.16 −0.609581 −0.304790 0.952419i \(-0.598586\pi\)
−0.304790 + 0.952419i \(0.598586\pi\)
\(510\) 0 0
\(511\) 3935.51 0.340698
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2630.20 0.225050
\(516\) 0 0
\(517\) −4859.09 −0.413351
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19922.9 −1.67531 −0.837657 0.546197i \(-0.816075\pi\)
−0.837657 + 0.546197i \(0.816075\pi\)
\(522\) 0 0
\(523\) −18826.8 −1.57407 −0.787033 0.616911i \(-0.788384\pi\)
−0.787033 + 0.616911i \(0.788384\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28734.7 2.37515
\(528\) 0 0
\(529\) −10120.8 −0.831828
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19327.9 1.57071
\(534\) 0 0
\(535\) −17450.0 −1.41015
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1939.36 −0.154980
\(540\) 0 0
\(541\) 7267.56 0.577555 0.288777 0.957396i \(-0.406751\pi\)
0.288777 + 0.957396i \(0.406751\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 20587.4 1.61811
\(546\) 0 0
\(547\) −17807.3 −1.39193 −0.695966 0.718075i \(-0.745023\pi\)
−0.695966 + 0.718075i \(0.745023\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5662.95 0.437840
\(552\) 0 0
\(553\) −4210.44 −0.323772
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14127.4 −1.07468 −0.537342 0.843364i \(-0.680572\pi\)
−0.537342 + 0.843364i \(0.680572\pi\)
\(558\) 0 0
\(559\) 2381.44 0.180186
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19742.3 −1.47787 −0.738934 0.673778i \(-0.764670\pi\)
−0.738934 + 0.673778i \(0.764670\pi\)
\(564\) 0 0
\(565\) −9164.76 −0.682415
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1074.96 0.0791999 0.0396000 0.999216i \(-0.487392\pi\)
0.0396000 + 0.999216i \(0.487392\pi\)
\(570\) 0 0
\(571\) 11584.3 0.849012 0.424506 0.905425i \(-0.360448\pi\)
0.424506 + 0.905425i \(0.360448\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9550.84 −0.692691
\(576\) 0 0
\(577\) −16784.8 −1.21103 −0.605513 0.795835i \(-0.707032\pi\)
−0.605513 + 0.795835i \(0.707032\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4569.86 0.326316
\(582\) 0 0
\(583\) −810.134 −0.0575512
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22677.2 1.59453 0.797265 0.603629i \(-0.206279\pi\)
0.797265 + 0.603629i \(0.206279\pi\)
\(588\) 0 0
\(589\) −36150.3 −2.52895
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2238.64 −0.155025 −0.0775126 0.996991i \(-0.524698\pi\)
−0.0775126 + 0.996991i \(0.524698\pi\)
\(594\) 0 0
\(595\) −14022.8 −0.966186
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8128.35 −0.554450 −0.277225 0.960805i \(-0.589415\pi\)
−0.277225 + 0.960805i \(0.589415\pi\)
\(600\) 0 0
\(601\) 27024.7 1.83421 0.917104 0.398647i \(-0.130520\pi\)
0.917104 + 0.398647i \(0.130520\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4317.45 0.290131
\(606\) 0 0
\(607\) 12152.5 0.812608 0.406304 0.913738i \(-0.366817\pi\)
0.406304 + 0.913738i \(0.366817\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7920.24 0.524417
\(612\) 0 0
\(613\) 3652.32 0.240646 0.120323 0.992735i \(-0.461607\pi\)
0.120323 + 0.992735i \(0.461607\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6601.28 −0.430725 −0.215363 0.976534i \(-0.569093\pi\)
−0.215363 + 0.976534i \(0.569093\pi\)
\(618\) 0 0
\(619\) 1475.11 0.0957832 0.0478916 0.998853i \(-0.484750\pi\)
0.0478916 + 0.998853i \(0.484750\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6288.41 0.404398
\(624\) 0 0
\(625\) 2562.85 0.164022
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13726.9 −0.870152
\(630\) 0 0
\(631\) −4306.01 −0.271664 −0.135832 0.990732i \(-0.543371\pi\)
−0.135832 + 0.990732i \(0.543371\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11822.5 0.738835
\(636\) 0 0
\(637\) 3161.14 0.196623
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5992.29 −0.369238 −0.184619 0.982810i \(-0.559105\pi\)
−0.184619 + 0.982810i \(0.559105\pi\)
\(642\) 0 0
\(643\) 11978.2 0.734643 0.367322 0.930094i \(-0.380275\pi\)
0.367322 + 0.930094i \(0.380275\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24522.4 1.49007 0.745035 0.667026i \(-0.232433\pi\)
0.745035 + 0.667026i \(0.232433\pi\)
\(648\) 0 0
\(649\) −2406.54 −0.145555
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2758.50 −0.165311 −0.0826557 0.996578i \(-0.526340\pi\)
−0.0826557 + 0.996578i \(0.526340\pi\)
\(654\) 0 0
\(655\) 31688.3 1.89033
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4620.17 0.273105 0.136553 0.990633i \(-0.456398\pi\)
0.136553 + 0.990633i \(0.456398\pi\)
\(660\) 0 0
\(661\) 464.202 0.0273152 0.0136576 0.999907i \(-0.495653\pi\)
0.0136576 + 0.999907i \(0.495653\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 17641.8 1.02875
\(666\) 0 0
\(667\) −1863.50 −0.108178
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −31331.7 −1.80260
\(672\) 0 0
\(673\) −16725.1 −0.957954 −0.478977 0.877827i \(-0.658992\pi\)
−0.478977 + 0.877827i \(0.658992\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13671.5 0.776125 0.388063 0.921633i \(-0.373144\pi\)
0.388063 + 0.921633i \(0.373144\pi\)
\(678\) 0 0
\(679\) −4351.06 −0.245918
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −71.8070 −0.00402287 −0.00201143 0.999998i \(-0.500640\pi\)
−0.00201143 + 0.999998i \(0.500640\pi\)
\(684\) 0 0
\(685\) −21015.3 −1.17219
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1320.51 0.0730150
\(690\) 0 0
\(691\) 1148.37 0.0632212 0.0316106 0.999500i \(-0.489936\pi\)
0.0316106 + 0.999500i \(0.489936\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −30032.6 −1.63914
\(696\) 0 0
\(697\) −32735.3 −1.77896
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −24434.2 −1.31650 −0.658249 0.752800i \(-0.728703\pi\)
−0.658249 + 0.752800i \(0.728703\pi\)
\(702\) 0 0
\(703\) 17269.4 0.926497
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3968.81 0.211121
\(708\) 0 0
\(709\) −22082.3 −1.16970 −0.584850 0.811141i \(-0.698847\pi\)
−0.584850 + 0.811141i \(0.698847\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11895.9 0.624833
\(714\) 0 0
\(715\) −46813.5 −2.44857
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18467.9 0.957910 0.478955 0.877839i \(-0.341016\pi\)
0.478955 + 0.877839i \(0.341016\pi\)
\(720\) 0 0
\(721\) 1004.22 0.0518709
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8698.25 0.445579
\(726\) 0 0
\(727\) −12179.8 −0.621352 −0.310676 0.950516i \(-0.600555\pi\)
−0.310676 + 0.950516i \(0.600555\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4033.38 −0.204077
\(732\) 0 0
\(733\) −16641.6 −0.838571 −0.419286 0.907854i \(-0.637719\pi\)
−0.419286 + 0.907854i \(0.637719\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −41417.2 −2.07004
\(738\) 0 0
\(739\) 18704.7 0.931076 0.465538 0.885028i \(-0.345861\pi\)
0.465538 + 0.885028i \(0.345861\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16296.5 0.804655 0.402328 0.915496i \(-0.368201\pi\)
0.402328 + 0.915496i \(0.368201\pi\)
\(744\) 0 0
\(745\) −31580.4 −1.55304
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6662.45 −0.325021
\(750\) 0 0
\(751\) −17959.2 −0.872625 −0.436313 0.899795i \(-0.643716\pi\)
−0.436313 + 0.899795i \(0.643716\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −59822.3 −2.88365
\(756\) 0 0
\(757\) 12110.2 0.581441 0.290721 0.956808i \(-0.406105\pi\)
0.290721 + 0.956808i \(0.406105\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1672.00 −0.0796452 −0.0398226 0.999207i \(-0.512679\pi\)
−0.0398226 + 0.999207i \(0.512679\pi\)
\(762\) 0 0
\(763\) 7860.31 0.372952
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3922.63 0.184665
\(768\) 0 0
\(769\) −1668.39 −0.0782365 −0.0391182 0.999235i \(-0.512455\pi\)
−0.0391182 + 0.999235i \(0.512455\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19569.3 0.910555 0.455278 0.890350i \(-0.349540\pi\)
0.455278 + 0.890350i \(0.349540\pi\)
\(774\) 0 0
\(775\) −55526.6 −2.57364
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 41183.4 1.89416
\(780\) 0 0
\(781\) 16137.8 0.739380
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 18847.2 0.856922
\(786\) 0 0
\(787\) 13612.2 0.616548 0.308274 0.951298i \(-0.400249\pi\)
0.308274 + 0.951298i \(0.400249\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3499.12 −0.157287
\(792\) 0 0
\(793\) 51070.2 2.28695
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13828.6 0.614599 0.307299 0.951613i \(-0.400575\pi\)
0.307299 + 0.951613i \(0.400575\pi\)
\(798\) 0 0
\(799\) −13414.3 −0.593948
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22251.8 −0.977896
\(804\) 0 0
\(805\) −5805.34 −0.254176
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −30455.6 −1.32356 −0.661781 0.749697i \(-0.730199\pi\)
−0.661781 + 0.749697i \(0.730199\pi\)
\(810\) 0 0
\(811\) −23267.1 −1.00742 −0.503711 0.863872i \(-0.668032\pi\)
−0.503711 + 0.863872i \(0.668032\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11432.6 −0.491368
\(816\) 0 0
\(817\) 5074.29 0.217291
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46489.9 −1.97626 −0.988130 0.153618i \(-0.950908\pi\)
−0.988130 + 0.153618i \(0.950908\pi\)
\(822\) 0 0
\(823\) −9843.10 −0.416900 −0.208450 0.978033i \(-0.566842\pi\)
−0.208450 + 0.978033i \(0.566842\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11930.7 −0.501656 −0.250828 0.968032i \(-0.580703\pi\)
−0.250828 + 0.968032i \(0.580703\pi\)
\(828\) 0 0
\(829\) 7023.96 0.294273 0.147136 0.989116i \(-0.452994\pi\)
0.147136 + 0.989116i \(0.452994\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5353.94 −0.222693
\(834\) 0 0
\(835\) 24060.1 0.997168
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −18204.6 −0.749097 −0.374548 0.927207i \(-0.622202\pi\)
−0.374548 + 0.927207i \(0.622202\pi\)
\(840\) 0 0
\(841\) −22691.9 −0.930413
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36025.2 1.46663
\(846\) 0 0
\(847\) 1648.41 0.0668713
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5682.81 −0.228912
\(852\) 0 0
\(853\) −36774.6 −1.47613 −0.738064 0.674730i \(-0.764260\pi\)
−0.738064 + 0.674730i \(0.764260\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −29302.0 −1.16796 −0.583978 0.811770i \(-0.698504\pi\)
−0.583978 + 0.811770i \(0.698504\pi\)
\(858\) 0 0
\(859\) 25701.0 1.02085 0.510423 0.859923i \(-0.329489\pi\)
0.510423 + 0.859923i \(0.329489\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36648.1 1.44556 0.722779 0.691079i \(-0.242864\pi\)
0.722779 + 0.691079i \(0.242864\pi\)
\(864\) 0 0
\(865\) 29376.0 1.15470
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 23806.3 0.929315
\(870\) 0 0
\(871\) 67509.4 2.62626
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11055.2 0.427126
\(876\) 0 0
\(877\) −14241.2 −0.548338 −0.274169 0.961681i \(-0.588403\pi\)
−0.274169 + 0.961681i \(0.588403\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −13882.1 −0.530873 −0.265436 0.964128i \(-0.585516\pi\)
−0.265436 + 0.964128i \(0.585516\pi\)
\(882\) 0 0
\(883\) 19084.7 0.727350 0.363675 0.931526i \(-0.381522\pi\)
0.363675 + 0.931526i \(0.381522\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32467.3 1.22902 0.614512 0.788907i \(-0.289353\pi\)
0.614512 + 0.788907i \(0.289353\pi\)
\(888\) 0 0
\(889\) 4513.83 0.170292
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16876.2 0.632408
\(894\) 0 0
\(895\) 38815.7 1.44968
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10834.0 −0.401929
\(900\) 0 0
\(901\) −2236.51 −0.0826959
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 77018.1 2.82891
\(906\) 0 0
\(907\) 11625.3 0.425593 0.212796 0.977097i \(-0.431743\pi\)
0.212796 + 0.977097i \(0.431743\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −34260.3 −1.24599 −0.622994 0.782226i \(-0.714084\pi\)
−0.622994 + 0.782226i \(0.714084\pi\)
\(912\) 0 0
\(913\) −25838.5 −0.936616
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12098.6 0.435695
\(918\) 0 0
\(919\) −15872.6 −0.569738 −0.284869 0.958566i \(-0.591950\pi\)
−0.284869 + 0.958566i \(0.591950\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −26304.4 −0.938049
\(924\) 0 0
\(925\) 26525.6 0.942873
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −37178.4 −1.31301 −0.656503 0.754323i \(-0.727965\pi\)
−0.656503 + 0.754323i \(0.727965\pi\)
\(930\) 0 0
\(931\) 6735.65 0.237113
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 79286.9 2.77322
\(936\) 0 0
\(937\) 14608.9 0.509340 0.254670 0.967028i \(-0.418033\pi\)
0.254670 + 0.967028i \(0.418033\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6991.39 −0.242203 −0.121101 0.992640i \(-0.538643\pi\)
−0.121101 + 0.992640i \(0.538643\pi\)
\(942\) 0 0
\(943\) −13552.1 −0.467994
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −41762.5 −1.43305 −0.716525 0.697562i \(-0.754268\pi\)
−0.716525 + 0.697562i \(0.754268\pi\)
\(948\) 0 0
\(949\) 36270.2 1.24065
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33451.8 1.13705 0.568526 0.822665i \(-0.307514\pi\)
0.568526 + 0.822665i \(0.307514\pi\)
\(954\) 0 0
\(955\) 22206.0 0.752429
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8023.66 −0.270175
\(960\) 0 0
\(961\) 39369.5 1.32152
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −30082.6 −1.00352
\(966\) 0 0
\(967\) 3559.92 0.118386 0.0591931 0.998247i \(-0.481147\pi\)
0.0591931 + 0.998247i \(0.481147\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −17768.8 −0.587258 −0.293629 0.955919i \(-0.594863\pi\)
−0.293629 + 0.955919i \(0.594863\pi\)
\(972\) 0 0
\(973\) −11466.5 −0.377800
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27096.9 −0.887313 −0.443657 0.896197i \(-0.646319\pi\)
−0.443657 + 0.896197i \(0.646319\pi\)
\(978\) 0 0
\(979\) −35555.5 −1.16073
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 47107.4 1.52848 0.764239 0.644933i \(-0.223115\pi\)
0.764239 + 0.644933i \(0.223115\pi\)
\(984\) 0 0
\(985\) −54008.1 −1.74705
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1669.79 −0.0536867
\(990\) 0 0
\(991\) 6337.58 0.203148 0.101574 0.994828i \(-0.467612\pi\)
0.101574 + 0.994828i \(0.467612\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 31090.6 0.990590
\(996\) 0 0
\(997\) 33027.7 1.04915 0.524573 0.851365i \(-0.324225\pi\)
0.524573 + 0.851365i \(0.324225\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.4.a.t.1.3 3
3.2 odd 2 224.4.a.h.1.2 yes 3
4.3 odd 2 2016.4.a.s.1.3 3
12.11 even 2 224.4.a.e.1.2 3
21.20 even 2 1568.4.a.v.1.2 3
24.5 odd 2 448.4.a.u.1.2 3
24.11 even 2 448.4.a.x.1.2 3
84.83 odd 2 1568.4.a.y.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.4.a.e.1.2 3 12.11 even 2
224.4.a.h.1.2 yes 3 3.2 odd 2
448.4.a.u.1.2 3 24.5 odd 2
448.4.a.x.1.2 3 24.11 even 2
1568.4.a.v.1.2 3 21.20 even 2
1568.4.a.y.1.2 3 84.83 odd 2
2016.4.a.s.1.3 3 4.3 odd 2
2016.4.a.t.1.3 3 1.1 even 1 trivial