Properties

Label 2023.1.c.d.1735.2
Level $2023$
Weight $1$
Character 2023.1735
Self dual yes
Analytic conductor $1.010$
Analytic rank $0$
Dimension $3$
Projective image $D_{9}$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2023,1,Mod(1735,2023)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2023.1735");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2023.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.00960852056\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.16748793615841.1
Artin image: $D_9$
Artin field: Galois closure of 9.1.16748793615841.1

Embedding invariants

Embedding label 1735.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 2023.1735

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.347296 q^{2} -0.879385 q^{4} +1.00000 q^{7} -0.652704 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.347296 q^{2} -0.879385 q^{4} +1.00000 q^{7} -0.652704 q^{8} +1.00000 q^{9} -1.00000 q^{11} +0.347296 q^{14} +0.652704 q^{16} +0.347296 q^{18} -0.347296 q^{22} +1.53209 q^{23} +1.00000 q^{25} -0.879385 q^{28} -1.87939 q^{29} +0.879385 q^{32} -0.879385 q^{36} +0.347296 q^{37} +1.53209 q^{43} +0.879385 q^{44} +0.532089 q^{46} +1.00000 q^{49} +0.347296 q^{50} +1.53209 q^{53} -0.652704 q^{56} -0.652704 q^{58} +1.00000 q^{63} -0.347296 q^{64} -1.00000 q^{67} -1.87939 q^{71} -0.652704 q^{72} +0.120615 q^{74} -1.00000 q^{77} +0.347296 q^{79} +1.00000 q^{81} +0.532089 q^{86} +0.652704 q^{88} -1.34730 q^{92} +0.347296 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{4} + 3 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{4} + 3 q^{7} - 3 q^{8} + 3 q^{9} - 3 q^{11} + 3 q^{16} + 3 q^{25} + 3 q^{28} - 3 q^{32} + 3 q^{36} - 3 q^{44} - 3 q^{46} + 3 q^{49} - 3 q^{56} - 3 q^{58} + 3 q^{63} - 3 q^{67} - 3 q^{72} + 6 q^{74} - 3 q^{77} + 3 q^{81} - 3 q^{86} + 3 q^{88} - 3 q^{92} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2023\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(1737\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.879385 −0.879385
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 1.00000 1.00000
\(8\) −0.652704 −0.652704
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0.347296 0.347296
\(15\) 0 0
\(16\) 0.652704 0.652704
\(17\) 0 0
\(18\) 0.347296 0.347296
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.347296 −0.347296
\(23\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −0.879385 −0.879385
\(29\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.879385 0.879385
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.879385 −0.879385
\(37\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(44\) 0.879385 0.879385
\(45\) 0 0
\(46\) 0.532089 0.532089
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) 0.347296 0.347296
\(51\) 0 0
\(52\) 0 0
\(53\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.652704 −0.652704
\(57\) 0 0
\(58\) −0.652704 −0.652704
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 1.00000 1.00000
\(64\) −0.347296 −0.347296
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(72\) −0.652704 −0.652704
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0.120615 0.120615
\(75\) 0 0
\(76\) 0 0
\(77\) −1.00000 −1.00000
\(78\) 0 0
\(79\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.532089 0.532089
\(87\) 0 0
\(88\) 0.652704 0.652704
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.34730 −1.34730
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.347296 0.347296
\(99\) −1.00000 −1.00000
\(100\) −0.879385 −0.879385
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.532089 0.532089
\(107\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(108\) 0 0
\(109\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.652704 0.652704
\(113\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.65270 1.65270
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0.347296 0.347296
\(127\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.347296 −0.347296
\(135\) 0 0
\(136\) 0 0
\(137\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.652704 −0.652704
\(143\) 0 0
\(144\) 0.652704 0.652704
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −0.305407 −0.305407
\(149\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(150\) 0 0
\(151\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.347296 −0.347296
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0.120615 0.120615
\(159\) 0 0
\(160\) 0 0
\(161\) 1.53209 1.53209
\(162\) 0.347296 0.347296
\(163\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −1.34730 −1.34730
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 1.00000 1.00000
\(176\) −0.652704 −0.652704
\(177\) 0 0
\(178\) 0 0
\(179\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.00000 −1.00000
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(192\) 0 0
\(193\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.879385 −0.879385
\(197\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) −0.347296 −0.347296
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.652704 −0.652704
\(201\) 0 0
\(202\) 0 0
\(203\) −1.87939 −1.87939
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.53209 1.53209
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(212\) −1.34730 −1.34730
\(213\) 0 0
\(214\) 0.120615 0.120615
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.532089 0.532089
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0.879385 0.879385
\(225\) 1.00000 1.00000
\(226\) 0.532089 0.532089
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.22668 1.22668
\(233\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −0.879385 −0.879385
\(253\) −1.53209 −1.53209
\(254\) −0.652704 −0.652704
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0.347296 0.347296
\(260\) 0 0
\(261\) −1.87939 −1.87939
\(262\) 0 0
\(263\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.879385 0.879385
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.652704 −0.652704
\(275\) −1.00000 −1.00000
\(276\) 0 0
\(277\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 1.65270 1.65270
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.879385 0.879385
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.226682 −0.226682
\(297\) 0 0
\(298\) −0.652704 −0.652704
\(299\) 0 0
\(300\) 0 0
\(301\) 1.53209 1.53209
\(302\) −0.347296 −0.347296
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0.879385 0.879385
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.305407 −0.305407
\(317\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(318\) 0 0
\(319\) 1.87939 1.87939
\(320\) 0 0
\(321\) 0 0
\(322\) 0.532089 0.532089
\(323\) 0 0
\(324\) −0.879385 −0.879385
\(325\) 0 0
\(326\) −0.652704 −0.652704
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(332\) 0 0
\(333\) 0.347296 0.347296
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(338\) 0.347296 0.347296
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) −1.00000 −1.00000
\(345\) 0 0
\(346\) 0 0
\(347\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0.347296 0.347296
\(351\) 0 0
\(352\) −0.879385 −0.879385
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −0.652704 −0.652704
\(359\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 1.00000 1.00000
\(369\) 0 0
\(370\) 0 0
\(371\) 1.53209 1.53209
\(372\) 0 0
\(373\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.532089 0.532089
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.347296 −0.347296
\(387\) 1.53209 1.53209
\(388\) 0 0
\(389\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.652704 −0.652704
\(393\) 0 0
\(394\) −0.347296 −0.347296
\(395\) 0 0
\(396\) 0.879385 0.879385
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.652704 0.652704
\(401\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −0.652704 −0.652704
\(407\) −0.347296 −0.347296
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.532089 0.532089
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) −0.652704 −0.652704
\(423\) 0 0
\(424\) −1.00000 −1.00000
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.305407 −0.305407
\(429\) 0 0
\(430\) 0 0
\(431\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.34730 −1.34730
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.347296 −0.347296
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0.347296 0.347296
\(451\) 0 0
\(452\) −1.34730 −1.34730
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(464\) −1.22668 −1.22668
\(465\) 0 0
\(466\) 0.120615 0.120615
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −1.00000 −1.00000
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.53209 −1.53209
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.53209 1.53209
\(478\) −0.347296 −0.347296
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.87939 −1.87939
\(498\) 0 0
\(499\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −0.652704 −0.652704
\(505\) 0 0
\(506\) −0.532089 −0.532089
\(507\) 0 0
\(508\) 1.65270 1.65270
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.120615 0.120615
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −0.652704 −0.652704
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.120615 0.120615
\(527\) 0 0
\(528\) 0 0
\(529\) 1.34730 1.34730
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.652704 0.652704
\(537\) 0 0
\(538\) 0 0
\(539\) −1.00000 −1.00000
\(540\) 0 0
\(541\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(548\) 1.65270 1.65270
\(549\) 0 0
\(550\) −0.347296 −0.347296
\(551\) 0 0
\(552\) 0 0
\(553\) 0.347296 0.347296
\(554\) −0.347296 −0.347296
\(555\) 0 0
\(556\) 0 0
\(557\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.120615 0.120615
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 1.00000
\(568\) 1.22668 1.22668
\(569\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.53209 1.53209
\(576\) −0.347296 −0.347296
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.53209 −1.53209
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.226682 0.226682
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.65270 1.65270
\(597\) 0 0
\(598\) 0 0
\(599\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0.532089 0.532089
\(603\) −1.00000 −1.00000
\(604\) 0.879385 0.879385
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.652704 0.652704
\(617\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(632\) −0.226682 −0.226682
\(633\) 0 0
\(634\) 0.694593 0.694593
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0.652704 0.652704
\(639\) −1.87939 −1.87939
\(640\) 0 0
\(641\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −1.34730 −1.34730
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.652704 −0.652704
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.65270 1.65270
\(653\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0.120615 0.120615
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.120615 0.120615
\(667\) −2.87939 −2.87939
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(674\) −0.652704 −0.652704
\(675\) 0 0
\(676\) −0.879385 −0.879385
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.347296 0.347296
\(687\) 0 0
\(688\) 1.00000 1.00000
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) −1.00000 −1.00000
\(694\) 0.120615 0.120615
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.879385 −0.879385
\(701\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.347296 0.347296
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0.347296 0.347296
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.65270 1.65270
\(717\) 0 0
\(718\) −0.652704 −0.652704
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.347296 0.347296
\(723\) 0 0
\(724\) 0 0
\(725\) −1.87939 −1.87939
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.34730 1.34730
\(737\) 1.00000 1.00000
\(738\) 0 0
\(739\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.532089 0.532089
\(743\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.120615 0.120615
\(747\) 0 0
\(748\) 0 0
\(749\) 0.347296 0.347296
\(750\) 0 0
\(751\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0.532089 0.532089
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.53209 1.53209
\(764\) −1.34730 −1.34730
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.879385 0.879385
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0.532089 0.532089
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0.120615 0.120615
\(779\) 0 0
\(780\) 0 0
\(781\) 1.87939 1.87939
\(782\) 0 0
\(783\) 0 0
\(784\) 0.652704 0.652704
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0.879385 0.879385
\(789\) 0 0
\(790\) 0 0
\(791\) 1.53209 1.53209
\(792\) 0.652704 0.652704
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.879385 0.879385
\(801\) 0 0
\(802\) 0.694593 0.694593
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 1.65270 1.65270
\(813\) 0 0
\(814\) −0.120615 −0.120615
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(822\) 0 0
\(823\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(828\) −1.34730 −1.34730
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 2.53209 2.53209
\(842\) −0.347296 −0.347296
\(843\) 0 0
\(844\) 1.65270 1.65270
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 1.00000 1.00000
\(849\) 0 0
\(850\) 0 0
\(851\) 0.532089 0.532089
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.226682 −0.226682
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.120615 0.120615
\(863\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.347296 −0.347296
\(870\) 0 0
\(871\) 0 0
\(872\) −1.00000 −1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0.347296 0.347296
\(883\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.120615 0.120615
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −1.87939 −1.87939
\(890\) 0 0
\(891\) −1.00000 −1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −1.00000
\(897\) 0 0
\(898\) −0.347296 −0.347296
\(899\) 0 0
\(900\) −0.879385 −0.879385
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.00000 −1.00000
\(905\) 0 0
\(906\) 0 0
\(907\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.532089 0.532089
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.347296 0.347296
\(926\) 0.120615 0.120615
\(927\) 0 0
\(928\) −1.65270 −1.65270
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.305407 −0.305407
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) −0.347296 −0.347296
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −0.532089 −0.532089
\(947\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(954\) 0.532089 0.532089
\(955\) 0 0
\(956\) 0.879385 0.879385
\(957\) 0 0
\(958\) 0 0
\(959\) −1.87939 −1.87939
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0.347296 0.347296
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.652704 −0.652704
\(975\) 0 0
\(976\) 0 0
\(977\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.53209 1.53209
\(982\) −0.347296 −0.347296
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.34730 2.34730
\(990\) 0 0
\(991\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −0.652704 −0.652704
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0.120615 0.120615
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.1.c.d.1735.2 yes 3
7.6 odd 2 CM 2023.1.c.d.1735.2 yes 3
17.2 even 8 2023.1.f.c.1483.3 12
17.3 odd 16 2023.1.l.c.468.3 24
17.4 even 4 2023.1.d.b.2022.4 6
17.5 odd 16 2023.1.l.c.1266.3 24
17.6 odd 16 2023.1.l.c.1889.3 24
17.7 odd 16 2023.1.l.c.1868.3 24
17.8 even 8 2023.1.f.c.251.4 12
17.9 even 8 2023.1.f.c.251.3 12
17.10 odd 16 2023.1.l.c.1868.4 24
17.11 odd 16 2023.1.l.c.1889.4 24
17.12 odd 16 2023.1.l.c.1266.4 24
17.13 even 4 2023.1.d.b.2022.3 6
17.14 odd 16 2023.1.l.c.468.4 24
17.15 even 8 2023.1.f.c.1483.4 12
17.16 even 2 2023.1.c.c.1735.2 3
119.6 even 16 2023.1.l.c.1889.3 24
119.13 odd 4 2023.1.d.b.2022.3 6
119.20 even 16 2023.1.l.c.468.3 24
119.27 even 16 2023.1.l.c.1868.4 24
119.41 even 16 2023.1.l.c.1868.3 24
119.48 even 16 2023.1.l.c.468.4 24
119.55 odd 4 2023.1.d.b.2022.4 6
119.62 even 16 2023.1.l.c.1889.4 24
119.76 odd 8 2023.1.f.c.251.4 12
119.83 odd 8 2023.1.f.c.1483.4 12
119.90 even 16 2023.1.l.c.1266.3 24
119.97 even 16 2023.1.l.c.1266.4 24
119.104 odd 8 2023.1.f.c.1483.3 12
119.111 odd 8 2023.1.f.c.251.3 12
119.118 odd 2 2023.1.c.c.1735.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2023.1.c.c.1735.2 3 17.16 even 2
2023.1.c.c.1735.2 3 119.118 odd 2
2023.1.c.d.1735.2 yes 3 1.1 even 1 trivial
2023.1.c.d.1735.2 yes 3 7.6 odd 2 CM
2023.1.d.b.2022.3 6 17.13 even 4
2023.1.d.b.2022.3 6 119.13 odd 4
2023.1.d.b.2022.4 6 17.4 even 4
2023.1.d.b.2022.4 6 119.55 odd 4
2023.1.f.c.251.3 12 17.9 even 8
2023.1.f.c.251.3 12 119.111 odd 8
2023.1.f.c.251.4 12 17.8 even 8
2023.1.f.c.251.4 12 119.76 odd 8
2023.1.f.c.1483.3 12 17.2 even 8
2023.1.f.c.1483.3 12 119.104 odd 8
2023.1.f.c.1483.4 12 17.15 even 8
2023.1.f.c.1483.4 12 119.83 odd 8
2023.1.l.c.468.3 24 17.3 odd 16
2023.1.l.c.468.3 24 119.20 even 16
2023.1.l.c.468.4 24 17.14 odd 16
2023.1.l.c.468.4 24 119.48 even 16
2023.1.l.c.1266.3 24 17.5 odd 16
2023.1.l.c.1266.3 24 119.90 even 16
2023.1.l.c.1266.4 24 17.12 odd 16
2023.1.l.c.1266.4 24 119.97 even 16
2023.1.l.c.1868.3 24 17.7 odd 16
2023.1.l.c.1868.3 24 119.41 even 16
2023.1.l.c.1868.4 24 17.10 odd 16
2023.1.l.c.1868.4 24 119.27 even 16
2023.1.l.c.1889.3 24 17.6 odd 16
2023.1.l.c.1889.3 24 119.6 even 16
2023.1.l.c.1889.4 24 17.11 odd 16
2023.1.l.c.1889.4 24 119.62 even 16