Properties

Label 2025.1.p.a
Level 20252025
Weight 11
Character orbit 2025.p
Analytic conductor 1.0111.011
Analytic rank 00
Dimension 44
Projective image D2D_{2}
CM/RM discs -3, -15, 5
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,1,Mod(757,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.757"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2025=3452 2025 = 3^{4} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2025.p (of order 1212, degree 44, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(46)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.010606650581.01060665058
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 225)
Projective image: D2D_{2}
Projective field: Galois closure of Q(3,5)\Q(\sqrt{-3}, \sqrt{5})
Artin image: C3×OD16C_3\times \OD_{16}
Artin field: Galois closure of Q[x]/(x24)\mathbb{Q}[x]/(x^{24} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ125q4ζ124q162ζ123q19+2ζ122q31ζ125q49+2ζ124q61ζ123q642ζ122q76+2ζ12q79+O(q100) q - \zeta_{12}^{5} q^{4} - \zeta_{12}^{4} q^{16} - 2 \zeta_{12}^{3} q^{19} + 2 \zeta_{12}^{2} q^{31} - \zeta_{12}^{5} q^{49} + 2 \zeta_{12}^{4} q^{61} - \zeta_{12}^{3} q^{64} - 2 \zeta_{12}^{2} q^{76} + \cdots - 2 \zeta_{12} q^{79} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q16+4q314q614q76+O(q100) 4 q + 2 q^{16} + 4 q^{31} - 4 q^{61} - 4 q^{76}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2025Z)×\left(\mathbb{Z}/2025\mathbb{Z}\right)^\times.

nn 326326 17021702
χ(n)\chi(n) ζ122-\zeta_{12}^{2} ζ123-\zeta_{12}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
757.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 0 0.866025 + 0.500000i 0 0 0 0 0 0
1243.1 0 0 −0.866025 0.500000i 0 0 0 0 0 0
1432.1 0 0 −0.866025 + 0.500000i 0 0 0 0 0 0
1918.1 0 0 0.866025 0.500000i 0 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
5.b even 2 1 RM by Q(5)\Q(\sqrt{5})
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
5.c odd 4 2 inner
9.c even 3 1 inner
9.d odd 6 1 inner
15.e even 4 2 inner
45.h odd 6 1 inner
45.j even 6 1 inner
45.k odd 12 2 inner
45.l even 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2025.1.p.a 4
3.b odd 2 1 CM 2025.1.p.a 4
5.b even 2 1 RM 2025.1.p.a 4
5.c odd 4 2 inner 2025.1.p.a 4
9.c even 3 1 225.1.g.a 2
9.c even 3 1 inner 2025.1.p.a 4
9.d odd 6 1 225.1.g.a 2
9.d odd 6 1 inner 2025.1.p.a 4
15.d odd 2 1 CM 2025.1.p.a 4
15.e even 4 2 inner 2025.1.p.a 4
36.f odd 6 1 3600.1.bh.a 2
36.h even 6 1 3600.1.bh.a 2
45.h odd 6 1 225.1.g.a 2
45.h odd 6 1 inner 2025.1.p.a 4
45.j even 6 1 225.1.g.a 2
45.j even 6 1 inner 2025.1.p.a 4
45.k odd 12 2 225.1.g.a 2
45.k odd 12 2 inner 2025.1.p.a 4
45.l even 12 2 225.1.g.a 2
45.l even 12 2 inner 2025.1.p.a 4
180.n even 6 1 3600.1.bh.a 2
180.p odd 6 1 3600.1.bh.a 2
180.v odd 12 2 3600.1.bh.a 2
180.x even 12 2 3600.1.bh.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
225.1.g.a 2 9.c even 3 1
225.1.g.a 2 9.d odd 6 1
225.1.g.a 2 45.h odd 6 1
225.1.g.a 2 45.j even 6 1
225.1.g.a 2 45.k odd 12 2
225.1.g.a 2 45.l even 12 2
2025.1.p.a 4 1.a even 1 1 trivial
2025.1.p.a 4 3.b odd 2 1 CM
2025.1.p.a 4 5.b even 2 1 RM
2025.1.p.a 4 5.c odd 4 2 inner
2025.1.p.a 4 9.c even 3 1 inner
2025.1.p.a 4 9.d odd 6 1 inner
2025.1.p.a 4 15.d odd 2 1 CM
2025.1.p.a 4 15.e even 4 2 inner
2025.1.p.a 4 45.h odd 6 1 inner
2025.1.p.a 4 45.j even 6 1 inner
2025.1.p.a 4 45.k odd 12 2 inner
2025.1.p.a 4 45.l even 12 2 inner
3600.1.bh.a 2 36.f odd 6 1
3600.1.bh.a 2 36.h even 6 1
3600.1.bh.a 2 180.n even 6 1
3600.1.bh.a 2 180.p odd 6 1
3600.1.bh.a 2 180.v odd 12 2
3600.1.bh.a 2 180.x even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2025,[χ])S_{1}^{\mathrm{new}}(2025, [\chi]):

T2 T_{2} Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less